
 Open access Report DOI:10.21236/ADA614474

The emperor's new password manager: security analysis of web-based password
managers — Source link

Zhiwei Li, Warren He, Devdatta Akhawe, Dawn Song

Institutions: University of California, Berkeley

Published on: 20 Aug 2014 - USENIX Security Symposium

Topics: Password policy, Password strength, One-time password, Cognitive password and S/KEY

Related papers:

 Password managers: attacks and defenses

 The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes

 A large-scale study of web password habits

 The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords

 A usability study and critique of two password managers

Share this paper:

View more about this paper here: https://typeset.io/papers/the-emperor-s-new-password-manager-security-analysis-of-web-
16r3e6mi5j

https://typeset.io/
https://www.doi.org/10.21236/ADA614474
https://typeset.io/papers/the-emperor-s-new-password-manager-security-analysis-of-web-16r3e6mi5j
https://typeset.io/authors/zhiwei-li-2evzntrxoo
https://typeset.io/authors/warren-he-4onvmawjzm
https://typeset.io/authors/devdatta-akhawe-3grmnyzxwr
https://typeset.io/authors/dawn-song-172gr9dpf8
https://typeset.io/institutions/university-of-california-berkeley-24veh4gb
https://typeset.io/conferences/usenix-security-symposium-2nqvgoik
https://typeset.io/topics/password-policy-1fqfezcy
https://typeset.io/topics/password-strength-4w0wbrc2
https://typeset.io/topics/one-time-password-9c255mvj
https://typeset.io/topics/cognitive-password-31wkxtms
https://typeset.io/topics/s-key-39xs5gwg
https://typeset.io/papers/password-managers-attacks-and-defenses-dizcxlmmzo
https://typeset.io/papers/the-quest-to-replace-passwords-a-framework-for-comparative-3ohujijx0b
https://typeset.io/papers/a-large-scale-study-of-web-password-habits-23a4auo2u7
https://typeset.io/papers/the-science-of-guessing-analyzing-an-anonymized-corpus-of-70-3japkv7a47
https://typeset.io/papers/a-usability-study-and-critique-of-two-password-managers-1rgc0uc84l
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-emperor-s-new-password-manager-security-analysis-of-web-16r3e6mi5j
https://twitter.com/intent/tweet?text=The%20emperor's%20new%20password%20manager:%20security%20analysis%20of%20web-based%20password%20managers&url=https://typeset.io/papers/the-emperor-s-new-password-manager-security-analysis-of-web-16r3e6mi5j
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-emperor-s-new-password-manager-security-analysis-of-web-16r3e6mi5j
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-emperor-s-new-password-manager-security-analysis-of-web-16r3e6mi5j
https://typeset.io/papers/the-emperor-s-new-password-manager-security-analysis-of-web-16r3e6mi5j

The Emperor’s New Password Manager: Security

Analysis of Web-based Password Managers

Zhiwei Li
Warren He
Devdatta Akhawe
Dawn Song

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-138

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-138.html

July 7, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Emperor’s New Password Manager:

Security Analysis of Web-based Password Managers

Zhiwei Li, Warren He, Devdatta Akhawe, Dawn Song

University of California, Berkeley

Abstract

We conduct a security analysis of five popular web-based

password managers. Unlike “local” password managers,

web-based password managers run in the browser. We

identify four key security concerns for web-based pass-

word managers and, for each, identify representative vul-

nerabilities through our case studies. Our attacks are se-

vere: in four out of the five password managers we stud-

ied, an attacker can learn a user’s credentials for arbi-

trary websites. We find vulnerabilities in diverse features

like one-time passwords, bookmarklets, and shared pass-

words. The root-causes of the vulnerabilities are also di-

verse: ranging from logic and authorization mistakes to

misunderstandings about the web security model, in ad-

dition to the typical vulnerabilities like CSRF and XSS.

Our study suggests that it remains to be a challenge for

the password managers to be secure; password managers,

in their current form, may not provide sufficient security

for user secrets. To guide future development of pass-

word managers, we provide guidance for password man-

agers. Given the diversity of vulnerabilities we identi-

fied, we advocate a defense-in-depth approach to ensure

security of password managers.

1 Introduction

It is a truth universally acknowledged, that password-

based authentication on the web is insecure. One pri-

mary, if not the primary, concern with password authen-

tication is the cognitive burden of choosing secure, ran-

dom passwords across all the sites that rely on pass-

word authentication. A large body of evidence suggests

users have—possibly, rationally [22]—given up, choos-

ing simple passwords and reusing them across sites.

Password managers aim to provide a way out of this

dire scenario. A secure password manager could au-

tomatically generate and fill-in passwords on websites,

freeing users from the cognitive burden of remembering

them. Additionally, since password managers automati-

cally fill in passwords based on the current location of the

page, they also provide some protection against phish-

ing attacks. Add cloud-based synchronization across de-

vices, and password managers promise tremendous se-

curity and usability benefits at minimal deployability

costs [10].

Given these advantages, the popular media often ex-

tols the security advantages of modern password man-

agers (e.g., CNET [11], PC Magazine [30], and New

York Times [34]). Even technical publications, from

books [12, 36] to papers [21], recommend password

managers. A recent US-CERT publication [23] notes:

[A Password Manager] is one of the best

ways to keep track of each unique password

or passphrase that you have created for your

various online accounts without writing them

down on a piece of paper and risking that oth-

ers will see them.

Unsurprisingly, users are increasingly looking towards

password managers for relieving password fatigue. Last-

Pass, a web-based password manager that syncs across

devices, claimed to have over a million users in Jan-

uary 2011 [27]. PasswordBox, launched in May 2013,

claims to have over a million users in less than three

months [44].

Our work aims to evaluate the security of popular

password managers in practice. While idealized pass-

word managers provide a lot of advantages, implemen-

tation flaws can negate all the advantages of an idealized

password manager, similar to previous results with other

password replacement schemes such as SSOs [42, 40].

We aim to understand the current state of password man-

agers and identify best practices and anti-patterns to

guide the design of current and future password man-

agers.

Widespread adoption of insecure password managers

could make things worse: adding a new, untested sin-

gle point of failure to the web authentication ecosystem.

After all, a vulnerability in a password manager could

1

allow an attacker to steal all passwords for a user in a

single swoop. Given the increasing popularity of pass-

word managers, the possibility of vulnerable password

managers is disconcerting and motivates our work.

We conduct a comprehensive security analysis of five

popular, modern web-based password managers. We

identified four key concerns for modern web-based pass-

word managers: bookmarklet vulnerabilities, “classic”

web vulnerabilities, logic vulnerabilities, and UI vulner-

abilities. Using this framework for our analysis, we stud-

ied each password application and found multiple vulner-

abilities of each of the four types.

Our attacks are severe: in four out of the five password

managers we studied, an attacker can learn a user’s cre-

dentials for arbitrary websites. We find vulnerabilities in

diverse features like one-time passwords, bookmarklets,

and shared passwords. The root-causes of the vulnerabil-

ities are also diverse: ranging from logic and authoriza-

tion mistakes to misunderstandings about the web secu-

rity model, in addition to vulnerabilities like CSRF and

XSS.

All the password manager applications we studied are

proprietary and rely on code obfuscation/minification

techniques. In the absence of standard, cross-platform

mechanisms, the password managers we study imple-

ment features like auto-fill, client-side encryption, and

one-time password in diverse ways. The password man-

agers we study also lack a published security architec-

ture. All these issues combine to make analysis difficult.

Our main contribution is systematically identifying the

attack surface, security goals, and vulnerabilities in pop-

ular password managers. Modern web-based password

managers are complex applications and our systematic

approach enables a comprehensive security analysis (in

contrast to typical manual approaches).

Millions of users trust these vulnerable password man-

agers to securely store their secrets. Our study strikes a

note of caution: while in theory password managers pro-

vide a number of advantages, it appears that real-world

password managers are often insecure.

Finally, to guide future development of password man-

agers, we provide guidance for password managers. We

identify anti-patterns that could hide more vulnerabili-

ties; architectural and protocol changes that would fix the

vulnerabilities; as well as identify mitigations (such as

Content Security Policy [14]) that could have mitigated

some vulnerabilities. Our focus is not on finding fixes for

the vulnerabilities we identified; instead, our guidance

is broader and aims to reduce and mitigate any future

vulnerabilities. Given the diversity of vulnerabilities we

identified, we believe a defense-in-depth approach has

the best shot at ensuring the security of password man-

agers.

Ethics and Responsible Disclosure. We experimen-

Alice a legitimate user

Bob a legitimate collaborator

hunter2 an example password

dropbox.com a benign web application

facebook.com a benign web application

/login entry point (login page) for a web application

Mallory an attacker

Eve an attacker

evil.com a website controlled by an attacker

dropbox.com The dropbox.com JavaScript code

running in the browser

Figure 1: Naming convention used in the paper. URLs

default to https unless otherwise specified.

tally verified all our attacks in an ethical manner. We

reported all the attacks discussed below to the software

vendors affected in the last week of August 2013. Four

out of the five vendors responded within a week of our

report, while one (NeedMyPassword) still has not re-

sponded to our report. Aside from linkability vulnera-

bilities and those found in NeedMyPassword, all other

bugs that we describe in the paper have been fixed by

vendors within days after disclosure. None of the pass-

word managers had a bug bounty program.

Organization. We organize the rest of the paper as

follows: Section 2 provides background on modern web-

based password managers and their features. We also ar-

ticulate their security goals and explain our threat model

in Section 2. Next, we present the four key sources of

vulnerabilities we used to guide our analysis (Section 3).

Section 4 presents our study of five representative pass-

word managers, broken down by the source of vulnera-

bilities (per Section 3). We provide guidance to password

managers in Section 5. We present related work in Sec-

tion 6 before concluding (Section 7).

2 Background

To start, we explain the concept of a password manager

and discuss some salient features in modern implemen-

tations. We also briefly list the password managers we

studied, identify the threat model we work with, and the

security goals for web-based password managers. Here

and throughout this paper, we rely on a familiar naming

convention (presented in Figure 1) to identify users, web

applications, and attackers.

2.1 A Basic Password Manager

At its core, a password manager exists as a database to

store a user’s passwords and usernames on different sites.

The password manager controls access to this database

via a master username/password. A secure password

manager, with a strong master password, ensures that a

user can rely on distinct, unguessable passwords for each

2

web application without the associated cognitive burden

of memorizing all them. Instead, the user only has to

remember one strong master password.

A password manager maintains a database of a user’s

credentials on different web applications. A web appli-

cation is a site that authenticates its users by asking for a

username/password combination. The web application’s

“entry point” is the page where the application’s user can

enter her username and password. We call the combina-

tion of an entry point, username, and password a creden-

tial. A user can store multiple credentials for the same

web application, in which case a name distinguishes each

(typically the username).

Figure 2 (a) illustrates the general protocol of how a

user (Alice) uses a password manager (e.g., LastPass) to

log in to a web application (e.g., Dropbox). Alice first

logs in to the password manager using her master user-

name/password (her LastPass username and password),

as shown in Step ..1 . Then, in Step ..2 , Alice retrieves

her credential for dropbox.com. Finally, Alice uses this

credential to log into dropbox.com in Step ..3 and ..4 .

Since manually retrieving and sending credentials is

cumbersome, password managers may also automate the

process of selecting the appropriate credential and log-

ging in to the opened web application. This may include

navigating a web browser to the entry point, filling in

some text boxes with the username/password, and sub-

mitting the login form. Since these tasks involve execut-

ing code inside the web application, password managers

often rely on a privileged browser extension or a book-

marklet for the same.

2.2 Features in Modern Password Man-

agers

Modern password managers provide a number of conve-

nience and security features that are relevant to a security

analysis. We briefly elucidate three below.

Manager Application

User

①

②

③

④

Manager

User

②

Collaborator

①

(a). authentication to a web application (b). sharing with a collaborator

Figure 2: Different parties in a password manager

scheme

Collaboration. Modern password managers include

the ability to share passwords with a collaborator. Fig-

ure 2 (b) illustrates the general protocol of how a user Al-

ice shares a credential of hers with a collaborator Bob. In

Step ..1 , Alice requests that the password manager share

a specified credential with Bob. In Step ..2 , the pass-

word manager forwards the credential to Bob when Bob

requests it. Both Alice and Bob need accounts with the

password manager. My1login even allows the password

owner to set read/write permissions on the shared creden-

tials, but the efficacy of these fine-grained controls is not

clear, since denying write access does not prevent a col-

laborator from going to the web application and changing

the account’s password.

Credential Encryption. Due to the particularly sen-

sitive nature of the data handled by password managers,

password managers aim to minimize the amount of

code and personnel with access to the credentials in the

clear. One common technique is encrypting the creden-

tial database on the user’s computer, thus preventing a

passive attacker at the server-side from accessing the cre-

dentials in plaintext. In web-based password managers,

this corresponds to using JavaScript to encrypt pass-

words on the client side (including pages on the pass-

word manager’s website, browser extensions, and book-

marklets). The password manager encrypts/decrypts the

credential database using a key derivation function start-

ing from a user provided secret. If the password man-

ager supports credential encryption, we call the encryp-

tion key the user’s master key. For example, LastPass

uses JavaScript to decrypt/encrypt the user’s credential

database using a key derived from the user’s master user-

name and password.

Login Bookmarklets. As discussed above, password

managers typically rely on browser extensions to im-

plement auto-fill and auto-login functionality. Unfortu-

nately, users can only install these in a browser that sup-

ports extensions. With the popularity of mobile devices

whose browsers lack support for extension APIs (e.g.,

Mobile Safari or Internet Explorer), password managers

have adopted a more portable solution by providing a

bookmarklet. A bookmarklet is a snippet of JavaScript

code that installs as a bookmark, which, instead of navi-

gating to a URL when activated, runs the JavaScript snip-

pet in the (possibly malicious) context of the current page

(e.g., evil.com). This allows the password manager to

interact with a login form using widely supported book-

marking mechanisms.

2.3 Representative Password Manager Ap-

plications

To evaluate the security of modern password managers,

we studied a representative sample of five modern pass-

word managers supporting a diverse mix of features.

Table 1 provides an overview of their features. The

columns “Extension” and “Bookmarklet” indicate sup-

port for login automation through the particular mecha-

nism; “Website” indicates the presence of a web-based

account management interface; and “Credential Encryp-

tion” and “Collaboration” refer to the features described

3

B
o
o
k
m

ar
k
le

t

E
x
te

n
si

o
n

W
eb

si
te

Credential Encryption

C
o
ll

ab
o
ra

ti
o
n

Master Key Derivation Encrypted Fields

LastPass ✓ ✓ ✓ KDF(mp,mu,5000,32) usernames and passwords ✓

RoboForm ✓ ✓ ✓ × ×

My1login ✓ × ✓ MD5(pheven)+MD5(phodd) usernames and passwords ✓

PasswordBox × ✓ × KDF(mp,mu,10000,32) passwords only ✓

NeedMyPassword × × ✓ × ×

mu: master username mp: master password

ph: passphrase pheven(odd): characters at even (odd) positions of ph

KDF(p,s,c,l) is a key derivation function [25], which derives key of length l octets for the password p, the salt s, and the iteration count c.

Table 1: List of Password Managers Studied.

in Section 2.2. For password managers supporting cre-

dential encryption, Table 1 also lists their key derivation

function and the fields encrypted.

2.3.1 LastPass

LastPass [26] is a popular, award-winning password

manager available on phones, tablets, and desktops for

all the major operating systems and browsers. It is

the top-rated and Editors’ Choice password manager for

both PC Magazine [30] and CNET [11]. As of August

2013, LastPass had over one million users.

LastPass is one of the most full-featured password

manager applications available. It supports nearly all ma-

jor browsers and mobile/desktop platforms and includes

features such as bookmarklets, one-time passwords, and

two-factor authentication. LastPass users can access

their credentials using the LastPass extension, through

a bookmarklet, or directly through the LastPass website.

LastPass stores the credential database encrypted on the

LastPass servers and also allows users to share passwords

with each other.

2.3.2 RoboForm

RoboForm (Everywhere) [35] is another top-rated pass-

word manager [30].1 In RoboForm, each credential

(i.e., username, password, and entry point tuple) has

its own file named (by default) after the web applica-

tion’s domain. For example, RoboForm uses “drop-

box” as the default filename when saving credentials for

dropbox.com. The user can also choose arbitrary names

for the files. Unless the user creates a master password to

protect the files, these credential files are sent to Robo-

Form servers in the clear. The user can access her cre-

dential files directly through the RoboForm website or

1RoboForm (Desktop) is a version of RoboForm that only stores

credentials on a single computer and does not sync across devices us-

ing a web server. We focus only on the web-based RoboForm (Every-

where) software.

via the RoboForm extension or bookmarklet.

2.3.3 My1login

My1login is a web-based password manager, launched

in April 2012; it started a special business-targeted prod-

uct launched in May 2013. Our study was based on a

then-beta version of their consumer-facing service. For

maximum compatibility, My1login relies exclusively on

bookmarklets and does not provide any browser exten-

sions. Users can access credentials via a web appli-

cation. My1login also supports sharing of credentials

between two My1login accounts. My1login stores all

credentials encrypted at the server-side with a special

passphrase that the user sets up. In contrast to other

password managers, which use the standard PBKDF al-

gorithm, My1login concatenates the MD5 hash of odd

and even characters of the passphrase to generate a 256-

bit key. We do not comment on this further because

we found a simpler, more severe flaw in My1login (Sec-

tion 4.1.3) .

2.3.4 PasswordBox

PasswordBox [33], a web-based password manager that

launched in 2013, is highly rated by both PC Maga-

zine [30] and CNET [11]. Within three months of its

inception in May 2013, PasswordBox had attracted over

one million users [44]. PasswordBox, unlike other pass-

word managers discussed earlier, does not support book-

marklets; instead, it requires users to install a browser

extension. PasswordBox also allows sharing credentials

between users and encrypts all passwords using a 256-bit

key derived using 10000 iterations of PBKDF2 and the

PasswordBox username as the salt.

2.3.5 NeedMyPassword

Finally, we also studied a basic password manager

named NeedMyPassword [32]. NeedMyPassword lacks

common features such as auto-login, credential sharing,

4

and password generation. Instead, it provides only cre-

dential storage, accessible through the NeedMyPassword

website. User credentials are not encrypted before send-

ing to NeedMyPassword servers.

2.4 Threat Model

Our main threat model is the web attacker [2]. Briefly, a

web attacker controls one or more web servers and DNS

domains and can get a victim to visit domains controlled

by the attacker. We believe this is the key threat model

for web-based password managers that often run in the

browser. For our study, we extend this model a bit: the

user may create an account on the attacker’s web appli-

cation and use the password manager for managing the

credentials for the same. Our threat model allows the

victim to rely on the password manager’s extension, the

bookmarklet, and website as she sees fit. The attacker

can also create accounts in the password manager service

and make requests to the password manager directly.

The password manager’s code often runs in a web ap-

plication’s origin (via an extension or a bookmarklet).

We assume that the password manager’s code is not ma-

licious and does not steal sensitive data from web ap-

plications. We also assume that the password manager

does not share Alice’s credentials with user Bob, unless

asked to do so by Alice. Additionally, we assume that

the user uses a unique password for the password man-

ager and does not share it with other applications such as

evil.com.

2.5 Security Goal

At a high level, a password manager only has one key

security invariant: ensure that a stored password is ac-

cessed only by the authorized user(s) and the website the

password is for. We discuss how password managers (at-

tempt to) achieve this invariant by following four security

goals. A related taxonomy appears in Bonneau et al.’s

analysis of general web authentication schemes [10], but

ours is a bit different since we focus exclusively on web-

based password managers. Nonetheless, all our goals

map to goals mentioned in Bonneau et al.’s work. As

we present in Section 4, we found attacks that violate

all of the security goals identified below and range from

complete (password manager) account takeover to pri-

vacy violations.

Master Account Security. The first goal of password

manager application is the integrity of the master ac-

count. It should be impossible for an attacker to authen-

ticate as the user to the password manager. It is crucial

that the password manager maintain the security of the

master account and safeguard credentials such as mas-

ter password and cookies. In case of password managers

that encrypt credentials, the master key/password used to

encrypt the credential database should always remain at

the client-side.

Credential Database Security. The main responsi-

bility of a password manager is securely storing the list

of a user’s credentials. A password manager needs to

ensure the security—including confidentiality, integrity,

and availability—of the credential database. The at-

tacker, Eve, should not be able to learn Alice’s creden-

tials, which would allow Eve to log in as Alice; or modify

credentials, which would allow Eve to carry out a form of

login CSRF attacks; or delete credentials, which would

allow Eve to carry out a denial-of-service attack on Al-

ice.

Collaborator Integrity. The collaboration, or shar-

ing, feature in modern password managers complicates

credential databases. Now, each credential has an access-

control list identifying the list of users allowed to read-

/write the credential. A password manager must ensure

the security of this feature: e.g., flaws in this feature

could allow an attacker to learn a user’s credential. While

we realize that these goals are a subset of the broader

goal of credential database security (above), we sepa-

rated them out to highlight the security concerns of the

sharing credentials feature.

Unlinkability. The use of a password manager should

not allow colluding web applications to track a single

user across websites, possibly due to leaked identifiers.

We use the Bonneau et al.’s definition of unlinkabil-

ity [10]: a password manager violates unlinkability if

it allows tracking a user across web applications even

in the absence of other techniques like web fingerprint-

ing [16]. For example, a privacy-minded user could rely

on different browsers or computers to foil web browser

fingerprinting; a password manager should not add a re-

liable fingerprinting mechanism that makes that effort

moot. Such a fingerprinting mechanism would violate

the user’s privacy expectations. Equivalently, relying on

a password manager should not allow a web application

to link two accounts owned by the user with the (same)

web application.

3 Attack Surface

The key difference between web-based password man-

agers and “local” password managers is their need to

work in web browsers. Web-based password managers

store credentials in the cloud and a user logs on to the

manager to retrieve his/her credentials. Access to the

stored credentials is via extensions, a website, or even

bookmarklets—all of which run in the browser.

To guide our investigation, we identified four key con-

cerns for modern web-based password managers: book-

marklet vulnerabilities, classic web vulnerabilities, au-

thorization vulnerabilities, and UI vulnerabilities. We

discuss each in turn below. In the next section, we will

present representative vulnerabilities of each type.

5

3.1 Bookmarklet Vulnerabilities

JavaScript is a dynamic, extensible language with deep

support for meta-programming. The bookmarklet code,

running in the context of the attacker’s JavaScript con-

text cannot trust any of the APIs available to typical web

applications—an attacker could have replaced them with

malicious code. Relying too much on these APIs has cre-

ated a class of vulnerabilities unique to web-based pass-

word managers.

To fill in a password on (say) dropbox.com, a pass-

word manager needs to successfully authenticate a user,

download the (possibly encrypted) credential, decrypt it

(if necessary), authenticate the web application, and, fi-

nally, perform the login. Doing all this in an untrusted

website’s scripting environment (as a bookmarklet does)

is tricky. In fact, three of the five password managers we

studied (Table 1) provide full-fledged bookmarklet sup-

port, and all of them were vulnerable to attacks ranging

from credential theft to linkability attacks (Section 4).

Browser extensions, which modified the webpage,

faced a similar problem in the past. Currently, both Fire-

fox and Chrome instead provide native or isolated APIs

for browser extensions. Unfortunately, popular mobile

browsers, including Safari on iOS, Chrome on Android/i-

Phone, and the stock Android Browser, do not support

extensions. As a result, web-based password managers

often rely on bookmarklets instead.

3.2 Web Vulnerabilities

A password manager runs in a web browser, where

it must coexist with the web applications whose pass-

words it manages as well as other untrusted sites. Un-

fortunately, relying on the web platform for a security-

sensitive application such as password managers is

fraught with challenges.

Web-based password manager developers need to un-

derstand the security model of the web. For exam-

ple, browsers share authentication tokens such as cook-

ies across applications (including across applications and

extensions), leading to attacks such as cross-site request

forgery (CSRF). Applications running in the browser

runtime also need to sanitize all untrusted input before

inserting it into the document; insufficient sanitization

could lead to cross-site scripting attacks, which in the

web security model implies a complete compromise.

3.3 Authorization Vulnerabilities

Sharing credentials increases the complexity of securing

password managers. While previously, each credential

was only accessible by its owner, now each credential

needs an access control list. Any user could potentially

access a credential belonging to Alice, if Alice has autho-

rized it. A password manager needs to ensure that all ac-

tions related to sharing/updating credentials are fully au-

thorized. Confusing authentication for authorization is a

classic security vulnerability, one that we find even pass-

word managers make (Section 4). We separate out au-

thorization vulnerabilities from web vulnerabilities since

they are often due to a missing check at the server-side.

For example, all our authorization vulnerabilities involve

requests made by an attacker from his own browser, not

via Alice’s browser (when Alice visits evil.com).

3.4 User Interface Vulnerabilities

A major benefit of password managers is their ability to

mitigate phishing attacks. Users do not actually mem-

orize the password for a web application; instead, they

rely on the password manager to detect which applica-

tion is open and fill in the right password. The logic that

performs this is impervious to phishing attacks: it will

only look at the URL to determine which credential to

use.

These advantages are moot if the password manager

itself is vulnerable to phishing attacks. Even worse, in

the case of password managers, a single phishing attack

can expose all of a user’s credentials. Thus, we believe

it behooves password managers to take extra precau-

tions against phishing attacks. While it is possible that

password managers are susceptible to classic phishing

attacks, we focus on anti-patterns that make password

managers more vulnerable than the typical website.

For example, consider what happens when a user

clicks on a password manager’s bookmarklet while not

logged in to the password manager. A simple option

is asking the user to login in an iframe. Unfortunately,

this is trivial for the attacker to intercept and replace the

iframe with a fake dialog. Since users cannot see the

URL of an iframe, there is no way for a user to identify

whether a particular iframe actually belongs to the pass-

word manager and is not spoofed. We argue that this is

an anti-pattern that password managers should avoid.

4 Security Analysis of Web-based Pass-

word Managers

Next, we report the results of our security analysis of five

popular password managers. We organize our results per

the discussion in Section 3. Table 2 summarizes the vul-

nerabilities we found. Our discussion below highlights

the presence of different types of security vulnerabili-

ties in web-based password managers. We do not present

complete architectural details of each password manager;

instead, we only provide enough technical details to un-

derstand each vulnerability.

4.1 Bookmarklet Vulnerabilities

As discussed earlier, a bookmarklet allows a user of a

password manager to log in to web applications with-

out needing to install any extension, a particularly useful

6

evil.com

Bookmarklet Web Authorization User Interface

Vulnerabilities Vulnerabilities Vulnerabilities Vulnerabilities

LastPass ✓(§ 4.1.1) ✓(§ 4.2.1) ✓(§ 4.4)

RoboForm ✓(§ 4.1.2) ✓(§ 4.2.2) NA ✓(§ 4.4)

My1login ✓(§ 4.1.3) ✓(§ 4.3.1)

PasswordBox NA ✓(§ 4.3.2) NA

NeedMyPassword NA ✓(§ 4.2.3) NA NA

Table 2: Summary of Vulnerabilities Discovered. NA identifies vulnerabilities not applicable to the particular password

manager because it does not provide the relevant functionality.

feature with mobile browsers that lack extension support.

Three of the password managers we studied—LastPass,

RoboForm, and My1login—provide access to creden-

tials and auto-fill functionality using bookmarklets. In

fact, My1login only provides bookmarklet for auto-fill

support, advertising it as a feature (“No install needed”).

We found critical vulnerabilities in all three book-

marklets we studied. If a user clicks on the bookmarklet

on an attacker’s site, the attacker, in all three cases, learns

credentials for arbitrary websites. .

While in 2009 Adida et al. identified attacks on pass-

word manager bookmarklets [1], our study indicates that

these issues still plague password managers. This is par-

ticularly a cause of concern given the popularity of mo-

bile devices that lack full-fledged support for extensions.

4.1.1 Case Study: LastPass Bookmarklet

LastPass stores the credential database on the

lastpass.com servers encrypted with a master_key,

which is a 256-bit symmetric key derived from the user’s

master username and master password. The LastPass

client-side code never sends the master password or

master key to the LastPass servers.

Recall that a bookmarklet runs in the context of the

(possibly malicious) web application. At the same time,

due to LastPass’s credential encryption, the bookmarklet

needs to include the secret master_key (or a way to

get to it), to decrypt the credential database. Including

this secret in the bookmarklet, while still keeping it se-

cret from the web application, is tricky. LastPass also

provides the ability to revoke a previously created book-

marklet, further complicating this feature.

Installing a Bookmarklet. A user, Alice, wish-

ing to install a bookmarklet needs to create a special

link through her LastPass settings page. On Alice’s re-

quest, the LastPass page code creates a new random

value _LASTPASS_RAND and encrypts the master_key

with it, all within Alice’s browser. The LastPass

servers then store this encrypted master key (called

key_rand_encrypted) and an identifier h along with

Alice’s credential database. The page then creates a

JavaScript snippet containing _LASTPASS_RAND and h,

which Alice can save as a bookmark. This design al-

_LASTPASS_RAND

2
h|u

GET bml.php?v

3

4

ref|rh|h|u

ref|rh|h|u

GET bml.php?iframe

ref|rh|h|u

6
GET bml.php?payload

alice|d|
key_rand_encrypted

7

8
getrand

PostMessage

10
credential

iframe

u = dropbox.com

5

ref|rh|h|u

1. check cookies and h
2. extract d and
 key_rand_encrypted

extract the credential for u from d, alice,
_LASTPASS_RAND, and key_rand_encrypted

Alice

lastpass.com (iframe)

PostMessage

PostMessage

_LASTPASS_RAND|h
1

Bookmarklet Click

Alice dropbox.com

LastPass

9

Figure 3: LastPass: Automatic login using bookmarklet.

u is the domain on which Alice clicked on the book-

marklet.

lows Alice to revoke this bookmarklet in the future by

just deleting the corresponding h and encrypted master

key from the LastPass servers.

Using the Bookmarklet. Figure 3 illustrates how

Alice uses her LastPass bookmarklet to log in to

dropbox.com. At the Dropbox entry point, Alice clicks

on her LastPass bookmarklet, which includes the token

_LASTPASS_RAND and h. The bookmarklet code first

checks the current page’s domain and adds a script el-

ement to the page sourced from lastpass.com. The

request for the script element (Step 2 in Figure 3) sends

h and the web application domain dropbox.com as pa-

rameters h and u. LastPass checks h and if the parameter

is valid (i.e., Alice has not revoked the bookmarklet), re-

7

lastpass.com

2

alice|d|key_rand_encrypted
3

u = dropbox.com
ref = u

ref|rh|h|u

GET bml.php?payload
1. check cookies and h
2. extract d and

 key_rand_encrypted

extract the credential for u from d, alice,
_LASTPASS_RAND, and key_rand_encrypted

_LASTPASS_RAND|h
1

Bookmarklet Click

Alice

LastPass

evil.com

Mallory

Figure 4: Attack on LastPass bookmarklet based auto-

login. The rh,h values are random; u and ref identify

the Malloy’s target website.

sponds with a JavaScript file containing the additional

parameters ref and rh.

Next, the newly fetched JavaScript file creates

an iframe to lastpass.com using four parame-

ters: ref,rh,h,u. This iframe includes a script

located at lastpass.com/bml.php?u=dropbox.com

that, when downloaded, includes the encrypted mas-

ter key key_rand_encrypted and the credential for

dropbox.com encrypted with the master key. The iframe

then receives the bookmarklet’s _LASTPASS_RAND value

via a postMessage call, decrypts the dropbox.com cre-

dential and sends them back.

Vulnerability. The resource at

bml.php?u=dropbox.com (Step 6 Figure 3) is at a pre-

dictable URI and contains sensitive information. It pro-

vides the encrypted master key key_rand_encrypted

and the credential for dropbox.com. The same-origin

policy allows an attacker to include a script from any

origin and execute it in the attacker’s webpage.

LastPass Bookmarklet Attack. Figure 4 illustrates

how a malicious web application evil.com can steal

Alice’s credential for dropbox.com. When Alice vis-

its the attacker’s site evil.com and clicks her LastPass

bookmarklet, the attacker uses any of a number of hijack

techniques [1, 8] (e.g., Function.toSource) and ex-

tracts both h and _LASTPASS_RAND. Then, the attacker

imitates Step 6 from Figure 3 (as Step 2 here) by writ-

ing a <script> tag with src set to lastpass.com/

bml.php?u=dropbox.com and adding the parameters

rh (any string of length 64), r (any number), and h (from

the bookmarklet).

The downloaded script, which runs on the at-

tacker’s page, includes all the information needed

to decrypt credential for dropbox.com (notably,

key_rand_encrypted). Again, the attacker uses the

JavaScript hijack technique to extract out the encrypted

credential and decrypts them with the _LASTPASS_RAND

value stolen earlier. The attacker can repeat the attack to

steal all of Alice’s credentials, violating the confidential-

ity of the credential database.

LastPass Linkability Attack. Finally, we note that

the h and _LASTPASS_RAND remain the same across

browsers but differ by user. As discussed above, any

website where the user clicks the bookmarklet can learn

these pseudo-identifiers h and _LASTPASS_RAND [1].

This allows colluding websites to track a user, violating

the user’s privacy expectations [10]. Additionally, this

also allows a single website to identify and link multiple

accounts belonging to the same user, which violates the

unlinkability goal.

4.1.2 Case Study: RoboForm Bookmarklet

RoboForm also implements a bookmarklet feature,

which allows a RoboForm user to log in to web appli-

cations without installing the RoboForm extension. At a

high level, the RoboForm bookmarklet adds an iframe to

the web application login page. If Alice is already au-

thenticated to RoboForm, the iframe just presents a list

of valid credentials (RoboForm files) that Alice can use

to log in to the web application.

1 javascript : (function (a, d, e) {
var c = function () {

3 return ” function”===typeof a.srf7&&(a.srf7(e)||!0)
}, f = function (a) {

5 ...
};

7 c() || f (a.document)
})(top. self ||window,”online.roboform.com/rfjs/main.js” ,

9 ”d147b223873cbfca22bc66768db512b1”)

Listing 1: RoboForm Bookmarklet code.

Technical Details. Figure 5 illustrates the RoboForm

protocol if Alice, already logged in to RoboForm, clicks

on the bookmarklet to log in to dropbox.com. When

Alice clicks the RoboForm bookmarklet, the JavaScript

snippet in Listing 1 executes in the current page. The

hexadecimal number d147... (Line 9) is unique to Al-

ice; we will refer to it as rf_uid. The bookmarklet

code downloads a RoboForm script that creates an iframe

to roboform.com/rfjs/authform.php (Step 2, Fig-

ure 5). The iframe URL also includes two GET param-

eters: rf_referrer_url, the URL of the web applica-

tion’s page, and rf_uid, Alice’s pseudo-identifier.

The RoboForm server authenticates Alice with

her cookies and, if Alice has valid session cook-

ies, the RoboForm server redirects the iframe to

passcards.php along with both rf_referer_url and

rf_uid. passcards.php loads a list of filenames as-

sociated (Step 5, Figure 5) with the rf_referer_url

(in this case, dropbox.com). Alice chooses a credential

(i.e., a filename) and clicks “Fill Forms,” sending the re-

quest in Step 6. Finally, RoboForm responds with Alice’s

credential (in the clear) in Step 7, and the iframe hands it

to dropbox.com via postMessage in Step 8.

Vulnerability. In Step 8, the RoboForm iframe uses

8

lastpass.com/bml.php?u=dropbox.com
lastpass.com/bml.php?u=dropbox.com
lastpass.com/bml.php?u=dropbox.com
roboform.com/rfjs/authform.php

rf_referrer_url|rf_uid

2

rf_uid|
rf_referrer_url

3

4

redirect
suppose that
Alice has logged
into the keeper

GET /rfjs/passcards.php

6

credential
7

8
credential

iframe

rf_referrer_url = dropbox.com/login

5

1. check cookies
and rf_uid
2. extract the
selected credential

rf_referrer_url|rf_uid
|rf_selected_passcard

GET /rfjs/passcards.php

click the “Fill Forms” button

name_list
get a list of file
names related to
rf_refererrer_url

rf_uid
1

Bookmarklet Click

Alice dropbox.com

Alice

roboform.com (iframe)

GET /rfjs/authform.php

PostMessage

RoboForm

Figure 5: RoboForm Bookmarklet login when Alice is

already logged in.

postMessage to send the credential without any origin

check (i.e., a * target origin). Additionally, the attacker

can modify the rf_referer_url parameter—used to

identify the web application Alice wants to log in to—

since the code runs in the context of the attacker’s page.

RoboForm Bookmarklet Attack. Once Alice

clicks on the bookmarklet on an attacker crafted web-

page, the attacker can steal Alice’s rf_uid and cre-

ate an iframe (Step 2, Figure 5) with this rf_uid

but rf_referer_url set to the target website (say,

dropbox.com). The protocol proceeds as shown in

Figure 5, except that the web application is actually

evil.com. The message in Step 8 ends up sending cre-

dentials for dropbox.com to evil.com.

One complication arises between Step 5 and Step 6

in Figure 5. In Step 5, RoboForm responds with a

list of possible credential files for the site identified by

rf_referer_url. The filename defaults to the domain

name the credential belongs to. This means that, for

our attack to succeed, Alice needs to click on a file

named dropbox while trying to log in to evil.com.

(Un)Fortunately, we found a CSRF flaw in RoboForm

that allows the attacker to rename the dropbox creden-

tial file to evil. To prevent later detection, the attacker

can change the filename back to dropbox after the at-

tack. We present full details of the CSRF flaw in Sec-

tion 4.2.2.

RoboForm Linkability Attack. The bookmarklet ex-

poses the value of rf_uid to dropbox.com as part of the

iframe’s src attribute. Colluding web applications can

compare rf_uid values to link all of Alice’s different

credentials to a single user.

4.1.3 Case Study: My1login Bookmarklet

Unlike other password managers that use bookmarklets,

My1login requires two steps for Alice to log in to

dropbox.com. First, Alice visits her My1login master

account page on my1login.com and clicks the link cor-

responding to Dropbox. This opens dropbox.com in a

new window. Next, Alice clicks on her My1login book-

marklet. The JavaScript code in the bookmarklet then

performs the automatic login. We informally call this

two-step authentication process “click-then-fill.”

Using a My1login bookmarklet. Figure 6 illustrates

the protocol flow of My1login’s “click-then-fill” authen-

tication. When Alice clicks the link to Dropbox on

my1login.com’s page, the page sends a POST request

to My1login’s server (Step 1) containing the credential

id (called webcardid by My1login) for dropbox.com,

the credential’s encrypted username alice and pass-

word hunter2, and the decryption key tmp_code. The

My1login server will hold the data for Alice to read in the

next step. The My1login page also opens a new window

to the entry point URL stored as part of the credential.

Next, when Alice clicks the My1login book-

marklet on the entry point window (Step 3), the

bookmarklet loads JavaScript code from the URL

my1login.com/bookmarklet/1click_bm.js.php?

url=dropbox.com. This JavaScript file contains the

credentials and decryption key saved in Step 1. The

bookmarklet extracts the credentials, decrypts them

using tmp_code, and fills in the login page with the

username/password for dropbox.com.

Vulnerability. The salient vulnerability in Figure 6

is sending the decryption key (Step 1) to the My1login

servers. Uploading the encrypted username and pass-

word to the My1login servers along with the decryption

keys defeats the whole purpose of client-side encryption.

Additionally, we found that the My1login server does not

check that the url value in Step 4 corresponds to the web

application the user clicked in Step 1 of Figure 6. In fact,

the My1login server just ignores the url parameter and

sends the username/password corresponding to the web

card (i.e., credential) that Alice recently clicked on.

“Click-then-fill” Attack. Figure 7 illustrates a sim-

ple attack. Since the My1login server disregards url in

Step 4, the attacker only needs to make a request, from

evil.com, to my1login.com/bookmarklet/1click_

bm.js.php after Alice clicked on Dropbox on her

My1login page. The returned script provides Dropbox

credentials to the attacker’s page at evil.com.

9

my1login.com/bookmarklet/1click_bm.js.php?url=dropbox.com
my1login.com/bookmarklet/1click_bm.js.php?url=dropbox.com
my1login.com/bookmarklet/1click_bm.js.php
my1login.com/bookmarklet/1click_bm.js.php

1

Ent_Click|webcardid
|username|password|tmp_code

ok
2

POST my1Login_REST_service.php

4

tmp_code|tmp_user|tmp_pass
5

GET /bookmarklet/1click_bm.js.php

cache the data:
tmp_user = username
tmp_pass = password
tmp_code

extract the credential
by decrypting tmp_user and tmp_pass using tmp_code

Alice

rf_uid
3

Bookmarklet Click

Alice

dropbox.com

click the link to dropbox.com

url url = dropbox.com

my1login.com/index-in.php

dropbox.com/login

check cookies

check cookies

My1login

Figure 6: My1login: “Click-then-fill” authentication

flow.

Two issues complicate the attack. First, since the re-

quest needs to happen from Alice’s browser, Mallory (the

attacker) must convince Alice to keep evil.com open

in a background tab while logging in to dropbox.com.

Second, the credentials stored at the My1login servers

expire 90 seconds after the upload. This means that

Step 3 in Figure 7 needs to happen no more than 90 sec-

onds after Step 1.

We believe the prevalence of mashups on the web to-

day means that this does not present a significant hur-

dle to Mallory. When Alice visit’s Mallory’s webpage

at evil.com, it asks Alice to authorize the applica-

tion via her Dropbox (or Twitter or Facebook) account.

While Alice opens her My1login page in a new tab,

the evil.com application (in the background) repeat-

edly requests 1click_bm.js.php. This request suc-

cessfully returns Alice’s dropbox credentials as soon as

Alice clicks on the Dropbox link on her My1login page.

Mallory’s cross-origin request from evil.com to steal

Alice’s credentials causes the temporary credentials on

the My1login server to expire. As a result, when Alice

actually clicks on the bookmarklet in the newly opened

Dropbox tab, the bookmarklet will ask Alice to open the

My1login window and run the login protocol all over

again. We believe that it is unlikely that this error will

warn Alice about the attack.

Nevertheless, Mallory can also hide this indicator.

Mallory can just “replay” the request in Step 1 with the

just-stolen credentials. Mallory does not know the right

webcardid, but we found that the My1login server-side

does not check it. A random webcardid with a tem-

porary username/password as well as the temporary de-

cryption key that Mallory just stole is sufficient to “reset”

1

Ent_Click|webcardid
|username|password|tmp_code

ok
2

POST my1Login_REST_service.php

3

tmp_code|tmp_user|tmp_pass
4

GET /bookmarklet/1click_bm.js.php

cache the data:
tmp_user = username
tmp_pass = password
tmp_code

extract the credential
by decrypting tmp_user and tmp_pass using tmp_code

Alice

Mallory

click the link to dropbox.com

my1login.com/index-in.php

evil.com

check cookies

check cookies

My1login

Figure 7: My1login: “Click-then-fill” attack

the state at the server-side. After this request, Alice’s lo-

gin proceeds as normal without any indication to Alice

about the credential theft. We stress that, while Mallory

guesses the webcardid, she uses Alice’s correct creden-

tials for Dropbox (which Mallory just stole). Alice’s lo-

gin flow proceeds as normal, logging her in to her Drop-

box account.

Linkability Attack. My1login is vulnerable to link-

ability attacks, like LastPass and RoboForm, due to

its bookmarklet implementation. In Figure 6 Step 4,

the My1login bookmarklet adds a <script> tag to the

page with its src set to my1login.com/bookmarklet/

1click_bm.js.php?my1bmid=<somevalue>, where

the my1bmid value is a pseudo-identifier of the user. We

did not present it in Figure 6 for clarity: the My1login

servers do not seem to use the parameter value; instead,

relying on cookies for identifying the user. Our “Click-

then-fill” attack works without a my1bmid parameter.

4.2 Web Vulnerabilities

Next, we study vulnerabilities in password managers

caused due to subtleties of the web platform. We focus

on CSRF and XSS vulnerabilities, which are common in

web applications. We find CSRF vulnerabilities in Last-

Pass, RoboForm, and NeedMyPassword as well as XSS

vulnerabilities in NeedMyPassword.

Our attacks are severe: XSS vulnerabilities in Need-

MyPassword allow for complete account takeover, while

the CSRF vulnerabilities in RoboForm allow an attacker

to update, delete, and add arbitrary credentials to a user’s

credential database.

10

dropbox.com
my1login.com/bookmarklet/1click_bm.js.php?my1bmid=<some value>
my1login.com/bookmarklet/1click_bm.js.php?my1bmid=<some value>

1
h|rand_encrypted_key

lastpass.com/otp.php

LastPass

save (email,h,rand_encrypted_key)
to the backend storage

validate user by checking cookies

ok
2

POST otp.php

locally generate an OTP otp

Alice

POST otp.php

Figure 8: LastPass OTP Creation. Note the absence of

any CSRF token in the request in Step 1.

POST otp.php

(a). OTP creation

1
email|h

lastpass.com/otp.php?forcelogin=1

rand_encrypted_key
2

type email and OTP otp

compute h = hash(hash(email|otp)|otp)

check if (email,h,rand_encrypted_key)
exists in the backend storage
for some rand_encrypted_key

Alice

extract local_key by decrypting rand_encrypted_key
using hash(email|otp)

POST otp.php

LastPass

Figure 9: Using the LastPass

OTP.rand encrypted key is the master key encrypted

with hash(alice|otp),

4.2.1 Case Study: LastPass One Time Password

One-Time password (OTP) is a feature of LastPass that

allows a user to generate an authentication code for the

master account that is only valid for one use. A user can

use a one-time password to prevent a physical observer

from gaining access to her LastPass account [10].

Generating an OTP. Before getting into the details,

we point out that Alice’s LastPass OTP must be able to

authenticate Alice to LastPass and allow Alice to recover

her master key; all without revealing anything extra (in-

cluding the OTP itself) to LastPass servers (since that

would defeat the credential encryption feature).

Figure 8 illustrates how Alice creates an OTP

otp. This starts with Alice creating a string otp

locally in her browser. Next, Alice computes

h = hash(hash(alice|otp)|otp) with her LastPass

username alice. LastPass will use h to authenti-

cate Alice, without having to know the exact value

of otp. Then, Alice encrypts her master key with

hash(alice|otp). Alice sends h and the encrypted

master key (rand_encrypted_key) to LastPass. No-

tice that the LastPass servers never see the generated

one-time password or Alice’s master key in the clear.

LastPass saves a record associating the values h and

rand_encrypted_key with Alice’s LastPass username.

Using the OTP. To sign in with her OTP (Fig-

ure 9), Alice recomputes h from her knowledge of

otp, and sends it to LastPass along with her LastPass

username. LastPass checks its records for a matching

username and h. It starts an authenticated session for

(i.e., sets session cookies identifying) Alice and sends

back her rand_encrypted_key. Alice then decrypts

rand_encrypted_key to recover her master key.

Vulnerability. We found that the request used to set

up the OTP (Step 1 Figure 8) is vulnerable to a classic

CSRF attack. The LastPass server authenticates Alice

(in Step 1) only with her cookies. Since LastPass does

not know the OTP or the master key, it cannot validate

that rand_encrypted_key actually corresponds to an

encrypted value of the master key. Fixing this vulnera-

bility involves adding a CSRF token to the OTP creation

form.

OTP Attack on LastPass. An attacker, Mallory, who

knows Alice’s LastPass username, can come up with

a string otp’ and using the same algorithm as above,

generate a forged value h’ and rand_fake_key with a

made-up master key. On submitting the CSRF POST re-

quest, LastPass will store h’ as authenticating Alice.

Mallory can then use otp’ to log-in to LastPass us-

ing otp’. Of course, decrypting the rand_fake_key

will not give Mallory Alice’s real master key. Nonethe-

less, using this CSRF attack, Mallory obtains Alice’s en-

crypted password database. We find this leads to three

attacks.

First, LastPass stores the list of web application en-

try points unencrypted, and Mallory can now read this

list. This is a breach of privacy: starting with just Al-

ice’s LastPass username, Mallory now knows all the web

applications Alice has accounts on.

Secondly, the encrypted password database is now

available to Mallory for offline guessing. Recall that the

LastPass uses a key derived from Alice’s master pass-

word, which Alice has to memorize. Unlike the pass-

words randomly generated by LastPass, this master pass-

word is likely vulnerable to guessing. It is instructive to

consider that, after a server breach, LastPass requires all

its users to reset their passwords [43].

Finally, we also find that this attack leads to a denial

of service attack. Mallory, logged in as Alice, can delete

any credential in Alice’s database, despite being unable

to decrypt the database. Since the username is part of

the credential, recovering all these credentials would be

tedious, or in some cases impossible.

4.2.2 Case Study: RoboForm Extension

RoboForm users can rely on a browser extension for

accessing RoboForm functionality integrated into their

browser. For example, an extension can automatically

detect the current page and offer to fill in passwords in-

stead of the user clicking on a bookmarklet. An ex-

11

tension has the additional advantage of running iso-

lated from the main page—via the isolated worlds [20]

in Google Chrome or native wrappers [31] in Firefox.

This precludes a number of JavaScript hijack attacks that

bookmarklets have to worry about.

While the RoboForm extension executes in a separate

world, it still needs to interact with the roboform.com

web servers. It still needs to worry about the typical

threats that plague web applications. We examined the

server APIs used by the RoboForm extension.

POST /requests/saveRFFile.php
Host: online.roboform.com
Origin: chrome-extension://kidhjpmgjfbkmcfpfakmdddd...

passcard name=dropbox
& rf referrer url =www.dropbox.com/
&passcard fields=#alice.dropbox@gmail.com#hunter2...

GET /requests/fileRename.php?...
&f=%2Fdropbox.rfp&t=%2Fdropboxrenamed.rfp

Host: online.roboform.com
Origin: chrome-extension://kidhjpmgjfbkmcfpfakmdddd...

GET /requests/fileDelete.php?...&f=%2Fdropbox.rfp
Host: online.roboform.com
Origin: chrome-extension://kidhjpmgjfbkmcfpfakmdddd...

Listing 2: RoboForm requests vulnerable to CSRF.

Credential Manipulation. RoboForm stores creden-

tials in text files on the roboform.com server. The

extension uses the APIs listed in Listing 2 to manipu-

late the text files on the server. When Alice modifies

a credential file and clicks the save button, the Robo-

Form extension POSTs to saveRFFile.php to save/up-

date a file for dropbox.com. passcard name is a

user-chosen filename, which defaults to “dropbox” for

dropbox.com, rf referrer url is Dropbox’s entry

point and passcard fields contains Alice’s username

and password.

Updating or deleting an existing file also involves

similar requests. We found that RoboForm uses GET

requests to update or delete credential files, contrary

to the intended semantics of the HTTP GET method.

fileRename.php renames a file, where f and t cor-

respond to the “from” and “to” filenames, respectively.

fileDelete.php deletes a file with filename f.

Vulnerability. None of the requests for deleting, up-

dating, or adding credentials included any CSRF tokens

to protect against CSRF attacks. An attacker can is-

sue these requests from her webpage and update/delete

existing credentials or add new credentials to Alice’s

database.

RoboForm CSRF Attack. Mallory can sim-

ply craft a webpage that makes the relevant re-

quests to the RoboForm servers and convince

Alice to visit the page. For example, if Al-

ice opens a webpage with <img src="https:

//online.roboform.com/requests/fileRename.

php?f=%2Fdropbox.rfp&t=evil.rfp"/>, Robo-

Form will rename her “dropbox” credential to “evil”.

Similarly, Mallory can use these CSRF vulnerabilities

to delete Alice’s credentials (violating the availability

goals). Mallory can also replace Alice’s credentials

with those under Mallory’s control, leading to a form of

login-CSRF attack.

Alice does not even need to use the RoboForm exten-

sion: these API endpoints work as long as Alice stays

logged on to roboform.com. One mitigation that Robo-

Form could apply is using the Origin header sent by

the Chrome extension. Unfortunately, no other browser

sends this header for all requests and as a result, a com-

plete solution requires a nonce-based CSRF defense.

These CSRF attacks do not disclose any sensitive in-

formation, but they violate the credential security, allow-

ing an attacker to modify or delete credentials in the cre-

dential database. Moreover, as we discussed earlier, ma-

nipulating filenames is useful to prevent a victim from

detecting a bookmarklet-based exploit.

4.2.3 Case Study: NeedMyPassword Website

As discussed earlier (Section 2.3), users access Need-

MyPassword through its website, which stores a list of

credentials that the user can update or view. While this

limited functionality also reduces NeedMyPassword’s

attack surface, NeedMyPassword still needs to protect

against standard web application security vulnerabilities

such as XSS and CSRF.

Reviewing the NeedMyPassword website, we

found that the NeedMyPassword webpage for dis-

playing passwords (www.needmypassword.com/

passwordPresenter.php) is vulnerable to reflected

XSS. An attacker can pass an arbitrary value for the

password parameter (?password=<script>) and take

over the user’s account. We also noticed that NeedMy-

Password does not employ the HttpOnly mitigation for

authentication cookies. This makes the attacker’s job

even easier: a call to document.cookie gives access to

the Alice’s session cookies, which Mallory can use to

log in as Alice.

We also found CSRF vulnerabilities in the NeedMy-

Password website. Listing 3 lists the HTTP requests to

create, modify, and delete credentials, all of which are

vulnerable to CSRF attacks. A number of attacks, sim-

ilar to the ones we presented for the RoboForm CSRF

vulnerabilities, are possible. For example, a CSRF attack

on the delete functionality allows an attacker to delete all

of Alice’s passwords, a form of denial-of-service attack.

4.3 Authorization Vulnerabilities

Looking beyond vulnerabilities stemming from the na-

ture of the web platform, we now discuss some vulnera-

12

https://online.roboform.com/requests/fileRename.php?f=%2Fdropbox.rfp&t=evil.rfp
https://online.roboform.com/requests/fileRename.php?f=%2Fdropbox.rfp&t=evil.rfp
https://online.roboform.com/requests/fileRename.php?f=%2Fdropbox.rfp&t=evil.rfp
www.needmypassword.com/passwordPresenter.php
www.needmypassword.com/passwordPresenter.php

POST /mypass.php
Host: needmypassword.com

system=dropbox&username=alice.dropbox@gmail.com
&password=hunter2&enter password=enter

POST /editpass.php?id=21856
Host: www.needmypassword.com

system=dropbox&username=alice.dropbox@gmail.com
&password=bobpwd&save=Save

POST /editpass.php?id=21856
Host: www.needmypassword.com

system=dropbox&username=alice.dropbox@gmail.com
&password=bobpwd&delete=Delete

Listing 3: CSRF Vulnerable NeedMyPassword requests

to set update and delete credentials.

1
Get_Public_Key|email|wcid

publickey|userid
2

3

wcid|send_to|username|
password|publickey

wcid|shareId|email|userid
4

POST checkSession.php

send_to = Bob

Alice
My1loginmy1login.com/index-in.php

POST my1Login_REST_service.php

check cookies

check cookies

POST my1Login_REST_service.php

(a). Sharing a web card

Figure 10: Sharing Credentials on My1login

bilities that come from logic errors in the password man-

ager. We found that two of the three password managers

that support credential sharing both mistake authentica-

tion for authorization. An attacker can create two fake

accounts, Eve and Mallory, in the password manager and

share Alice’s credentials with Mallory by sending a cor-

rectly crafted message from Eve’s account. Importantly,

the actual errors do not ever involve Alice or her browser

and thus the attacks work in the absence of Alice visiting

the attacker’s website.

4.3.1 Case Study: My1login Sharing Credentials

My1login relies on client-side encryption of the creden-

tial database. This complicates sharing: Alice and Bob

need to share credentials, through My1login as an un-

trusted channel. My1login relies on public-keys for both

Alice and Bob to share credentials: when Alice shares

a credential with Bob, My1login first encrypts it with

Bob’s public-key before sending it to Bob. This ensures

that only Bob can see the shared credentials.

Sharing My1login Credentials. Figure 10 illustrates

how Alice shares a credential with Bob in My1login.

In the first two steps, Alice obtains Bob’s public key

kb. Then, in Step 3, Alice (i.e., Alice’s My1login in-

stance) encrypts the credential with kb and sends the

encrypted username alice.dropbox@gmail.com and

password hunter2 to My1login.

Using the Shared Credential. Bob’s My1login in-

stance polls the My1login server for any updates. The

My1login server notifies Bob of the newly shared cre-

dential, sending him the information that Alice encrypted

with his public key. Bob decrypts the shared credentials

(username and password) for website url with his pri-

vate key. Once Alice shares a credential with Bob, he can

also update it. In such cases, My1login automatically up-

dates the credential globally by sharing the update with

collaborators on the web card (Alice, in this case). This

occurs through essentially the same request as Step 3 in

Figure 10, but this time Bob encrypts the credential with

Alice’s public-key.

Vulnerability. Our analysis revealed that My1login

only authenticates Alice before sharing a web card; it

does not check whether Alice owns or has the authority

to share the web card identified in the wcid (Step 3, Fig-

ure 10).

My1login Share Attack. Since My1login does not

check wcid in Figure 10 Step 3, an attacker Mallory can

share any web card (given its id) to a collaborator Eve.

This vulnerability allows Mallory to steal any credential

whose ID she knows (perhaps because Eve shared it in

the past but revoked it later).

Worse, further analysis revealed that web card ids are

globally unique, auto-incrementing numbers. In Step 3,

Figure 10, Mallory can even use numbers referring to

cards not yet created.

Suppose that wcid refers to a web card that belongs

to (or will belong to) Alice. Mallory generates a dummy

username and password like “userabc” and “pwdabcm,”

encrypts it and shares it with Eve. Eve receives the

dummy credentials. While these credentials are useless,

notice that this registered Eve as a collaborator on this

web card, even if it belongs to Alice.

In the future, whenever Alice or any other collaborator

updates the web card, the My1login client automatically

re-encrypts the real credential and sends it to each col-

laborator, including Eve. It is trivial for Mallory to share

all web cards, current and future, to Eve, who awaits up-

dates to steal real credentials.

In the attack above, Eve learns Alice’s credentials only

if Alice updates them after the attack. Alternatively, Eve

can install new credentials to Alice’s database without

authorization from Alice. This allows Eve to execute a

form of login CSRF attack [5]. Alternatively, Eve can in-

stall wrong credentials to Alice’s database, which would

cause an error when Alice attempts to use them. It is

likely that Alice, in response, would update the web card

with her correct credentials and unknowingly share them

with Eve.

13

{ ” id ” : 4097211,
”member id”: 3751238,
”name”: ”Dropbox”,
” url ” : ”https :// www.dropbox.com/login”,
” login ” : ” alice .dropbox@gmail.com”,
”note”: {},
”created at” : ”2013−07−18T13:50:18−04:00”,
”updated at”: ”2013−07−18T13:50:18−04:00”,
”password k”: ”AAQsrfjgfcWj/4FsP64BTYTJpbgpBK4+yltal”,
” settings ” : ”{\”autologin\”:\”1\”, ...} ” ,
”member fullname”: ”Alice Gordon”,

}

Listing 4: Example PasswordBox asset

One concern is how to ethically verify the My1login

authorization flaw without sharing another user’s creden-

tial by mistake. We observed over multiple days that it is

rare that any other user creates a new web card between

2am - 3am PST. We then verified this vulnerability one

day between 2am and 3am without sharing another user’s

credential by mistake.

4.3.2 Case Study: PasswordBox Sharing Creden-

tials

PasswordBox stores a user’s credential for a web appli-

cation in a JSON-encoded asset file. Listing 4 presents

an example asset for Dropbox. We focus on two

salient properties: first, password_k is the encrypted

value of Alice’s password for dropbox.com and is the

only encrypted field in the asset. Other details such

as entry point URL, the name Alice used to register

(member_fullname) and so on, are all in cleartext.

Second, our analysis revealed that asset_id is an

auto-incrementing, unique (across all users) id for each

asset. Assuming asset_id started at 1, we can infer that

PasswordBox manages over 4 million assets, an assump-

tion anyone can verify with the flaw we discuss next. (We

did not, because of the obvious ethical concerns.)

Sharing Credentials. Figure 11 shows how a user

Alice shares one of her assets identified by asset_id

to a collaborator Bob. On clicking share, the Password-

Box extension on Alice’s browser makes a POST re-

quest to the passwordbox.com servers that includes the

contact_id, the contact to share credentials with (in

this case, Bob’s id); and asset_id, the id of the cre-

dential to share (as in Listing 4). In the future, whenever

Bob downloads the list of assets accessible to him, Pass-

wordBox includes Alice’s shared credential.

Vulnerability. The absence of a CSRF token sug-

gested the possibility of a CSRF flaw in the protocol.

Fortunately (or, unfortunately), we found that Password-

Box implemented a strong defense against CSRF at-

tacks: it checks the Referer header as well as includes

a special X-CSRF-Token in the headers of the HTTP

request. Instead, we found a far more serious logic

bug in the sharing assets functionality. In its sharing

1

asset_id|contact_id|created_at|...
2

1
GET /api/0/assets

Bob

[assets]

Alice
PasswordBoxpasswordbox.com

POST /api/0/secrets

check cookies

2

check cookies

passwordbox.com

(a). Sharing an asset

(b). Accessing a shared asset

shared|crypted_key|contact_id|asset_id

PasswordBox

Figure 11: PasswordBox: Sharing an asset. The under-

lined passwordbox.com on the left indicates that the

code making the request runs in the passwordbox.com

origin.

function share(asset id){
var xmlhttp = new XMLHttpRequest();
var jsn = ’{”shared”:true, ”crypted key:” ”ABC”, ”contact id ”: 123,

”asset id ”: ’ + asset id + ’}’ ;
xmlhttp.open(”POST”,”https://api0.passwordbox.com/api/0/secrets”,true);
xmlhttp.setRequestHeader(”Content−type”, ”application/json”);
xmlhttp.send(jsn);

}

Listing 5: JavaScript snippet to share a asset with Eve

logic, PasswordBox never checks whether Alice owns

the asset_id she is sharing. This allows Mallory to

share assets she does not own with Eve, similar to the

My1login attack (Section 4.3.1).

PasswordBox Share Attack. Similar to the “share-

and-update” attack on My1login, Mallory and Eve run

through the protocol in Figure 11. Mallory can share

any asset to Eve by simply setting asset_id. Since

asset_id is an auto increment number, Mallory can it-

erate through all possible asset_id and share all exist-

ing 4 million assets with Eve. Listing 5 is the JavaScript

snippet that Mallory used to share an arbitrary asset to

Eve, whose contact_id is assumed to be 123.

As we noted above, PasswordBox only encrypts the

password field in an asset; disclosure of every user’s full

name, usernames, web application URLs, and creation

times is a severe privacy breach.

4.4 User Interface Vulnerabilities

Earlier, discussing bookmarklet vulnerabilities (Sec-

tion 4.1), we focused on the behavior of a password man-

ager when the user is already authenticated to the pass-

word manager. If the user is not authenticated to the pass-

word manager, then the user needs to log in to her mas-

14

ter account. This provides a potential avenue for phish-

ing vulnerabilities and the password manager should not

train bookmarklet users towards insecure practices. The

ideal secure option in such a scenario is asking the user

open a new tab (manually) and logging in to the pass-

word manager.

We find that only the My1login bookmarklet defaults

to this secure behavior. Clicking on the My1login book-

marklet, when not logged in, results in a message asking

the user to open a new window and log in. We found that

both RoboForm and LastPass bookmarklets were vulner-

able to phishing attacks. We also have recorded video

demonstrations of these attacks online [4].

Case Study: RoboForm. Recall that when Alice

clicks her RoboForm bookmarklet, the bookmarklet cre-

ates an iframe in the current web application. If Alice has

not logged in to RoboForm, the iframe request redirects

to the RoboForm login page, displaying a login form in

the iframe. This design is insecure: it trains Alice to

fill in her RoboForm password even when the URL bar

(belonging to the surrounding web application) does not

point to roboform.com. An attacker can trivially block

the RoboForm iframe load and spoof an authentication

dialog that steals Alice’s RoboForm credentials. A se-

cure design would ask Alice to open a new tab to Robo-

Form and log in.

One concern with successfully carrying out this attack

is detecting whether Alice is already logged in to Robo-

Form. We found that the height of the RoboForm iframe

(the dialog) is greater than 200px if and only if Alice is

already logged-in. Using this side-channel, the attacker

can modify the spoofed iframe to make the attack con-

vincing.

Case Study: LastPass. In the case of LastPass book-

marklet, if Alice is not already logged in, the book-

marklet code shows a message asking the user to log in,

along with a link that opens the LastPass login page in a

popup. While this design at least allows the browser to

display the URL of the popup, quirks of the web platform

make even this design less secure than using a manually

opened window.

Recall that the attacker, Mallory, can subvert the Last-

Pass bookmarklet and show an attacker controlled mes-

sage to Alice. The key now is for Mallory to trick Al-

ice into entering her LastPass credentials on an attacker-

controlled page. We refer to an attack initially described

by Zalewski [45]. Mallory creates a link to the nor-

mal LastPass login page, and when Alice clicks on it,

a new window pops up at the LastPass login URL. Al-

ice can check the URL bar and verify that the location

is https://lastpass.com. Meanwhile, Mallory holds

on to a handle to the window and can navigate the win-

dow to a page from Mallory’s server. After an appropri-

ate delay for Alice to check the URL bar, Mallory navi-

gates the pop-up to a malicious page that looks identical

to the LastPass login page.

Normally, Alice would notice a navigation to evil.

com. Mallory can reduce the visibility of this naviga-

tion by navigating to a data: URI, which loads in-

stantly. Mallory can also use modern features such as

the prerender link directive to hide the navigation. The

data: URI needs to look the same as the LastPass lo-

gin page but with the login form submission target set to

evil.com. We found that this attack is especially effec-

tive on Firefox for Android, since it only shows the page

title and not the URL. Further, this is only an example

attack. A number of other phishing attacks are practi-

cal on mobile device; Felt and Wagner provide a detailed

discussion of the same [18].

5 Lessons and Mitigations

We now attempt to distill the lessons learnt from our

study and provide guidance to password managers on

closing the vulnerabilities we found and mitigating fu-

ture ones. Our focus here is on concrete guidance and

defense-in-depth. We identify improvements in architec-

tures and protocols to mitigate vulnerabilities as well as

the use of browser mitigations like CSP. We also iden-

tify anti-patterns that developers of password managers

should avoid. Security reviewers and users can also rely

on the patterns and (absence of) the mitigations we dis-

cuss as indicators of the security of a password manager.

5.1 Bookmarklet Vulnerabilities

All the bookmarklets we studied were vulnerable. The

root cause of these vulnerabilities is that the bookmarklet

code executes in the untrusted context of the webpage.

The web browser guarantees a secure, isolated execu-

tion environment for iframes and we advocate an iframe-

based architecture for securing password manager book-

marklets. Modern features such as credential encryption,

which requires secure client-side code execution, makes

the use of defenses proposed in previous work impracti-

cal [1].

Recommendation. We recommend password-

managers rely on the design proposed by Bhargavan et

al. [8]. When the user clicks the bookmarklet, the book-

marklet code loads the password manager code in an

iframe, running in the password manager’s origin. The

browser’s same-origin policy isolates code executing in

the iframe from the web application page and guarantees

integrity of DOM APIs.

The password manager’s iframe uses postMessage

for communicating with the application page and main-

tains a simple invariant: a message carrying a creden-

tial for dropbox.com has a target origin of https://

www.dropbox.com. The browser guarantees that only

the Dropbox page receives the message. The only se-

15

https://lastpass.com
evil.com
evil.com
https://www.dropbox.com
https://www.dropbox.com

cret in the bookmarklet code is an HMAC function (pro-

tected by DJS [8]) that the password manager iframe can

use to provide click authentication (i.e., the user actually

clicked the bookmarklet). Unfortunately, the presence of

the secret in the bookmarklet allows linkability attacks.

For unlinkability, we recommend password managers

do not rely on such a secret and HMAC function. Dis-

abling this secret loses the “click authentication” prop-

erty. Since password manager browser extensions typi-

cally include “auto fill” functionality, we believe the loss

of click authentication is acceptable. If needed, the code

in the password manager iframe could draw a dialog to

ask for user confirmation before sharing credentials with

the website. Such a design is vulnerable to clickjacking

and we also recommend the use of upcoming mitigations

for UI security [41].

Instead, password managers could rely on asking the

user for permission to share credentials in the iframe cre-

ated.

The core issue behind bookmarklet vulnerabilities is

the absence of secure (or “isolated”) DOM APIs for

bookmarklets. An alternative possibility is for browser

vendors to provide bookmarklets with secure access

to these DOM APIs, similar to the access granted to

Chrome/Firefox extensions.

5.2 Web Vulnerabilities

We found a number of “classic” web application vulner-

abilities in password managers. Based on the critical and

sensitive nature of data handled by password managers,

we recommend defense-in-depth features such as CSP

and identify anti-patterns that developers should beware

of.

XSS. XSS is a well-studied problem and we will not

recapitulate all the defenses for the same here. We rec-

ommend that web applications, in addition to validating

input and sanitizing outputs, should also turn on Con-

tent Security Policy to provide a second layer of defense

against XSS. The absence of a strong CSP policy in a

password manager should raise red flags for users and

reviewers. In the applications we studied, only Last-

Pass shipped with a Content-Security-Policy header, al-

beit with an unsafe policy that allows eval and inline

scripts.

CSRF. The prevalence of CSRF vulnerabilities in

password managers surprised us. We recommend pass-

word managers should include CSRF protection (via to-

kens) for all their pages and forms. For defense in depth,

these applications should also check the Referer and Ori-

gin headers for all requests. While not a reliable de-

fense, these headers provide a useful secondary layer of

defense.

One concern with CSRF tokens is the need to create

and maintain state at the server-side. This could be cum-

bersome for password managers that provide an interface

through a browser extension: it is infeasible to request a

new token before rendering every form. Instead, these

applications can rely on special headers (e.g., X-CSRF-

Token) for CSRF defense. The web security model dis-

allows evil.com from setting headers for a cross-origin

request.2

Secrets in JavaScript files. An anti-pattern we no-

ticed was the presence of secret values—based off of

tokens in the request URI or cookies in the request—

in script files. Unfortunately, the web platform does

not provide strong isolation guarantees for scripts: any

(untrusted) origin can include scripts from the password

manager’s website. We recommend password managers

serve all secret values in HTML or separate JSON files.

This requirement is easy to check: the scripts used by the

password managers should be the same across all users of

the password manager. Serving user-specific JavaScript

files based on tokens in the URI is a clear anti-pattern.

An alternative is Defensive JavaScript [8], which pro-

vides a principled defense to ensure secrecy of values in

JavaScript code.

5.3 Authorization Vulnerabilities

The web application vulnerabilities discussed above

stemmed from quirks of the web platform (e.g., ambi-

ent authentication with cookies). Worryingly, we found

a number of logic flaws in password managers classified

under two broad categories. The first category, insuf-

ficient authorization, creates vulnerabilities exacerbated

by the second category, predictable identifiers. We iden-

tify an anti-pattern, predictable identifiers, and the core

security vulnerability, insufficient authorization, below

and discuss mitigations.

Insufficient Authorization. Confusing authentication

with authorization is a classic security vulnerability. Out

of the three password managers that support collabora-

tion, we found insufficient authorization vulnerabilities

in two of them. Unfortunately, these are logic flaws,

and a simple mitigation is difficult. One possibility is

for password managers to use a simpler sharing model.

For example, let each credential have only one owner—

only the credential’s owner can change it or its collabo-

rator list. A simple model eases authorization checks and

could make insufficient authorization stand out.

Predictable Identifier. Both our attacks on logic

vulnerabilities rely on predictable identifiers (e.g., con-

secutive integers). We recommend password managers

switch to cryptographically secure random numbers for

identifiers—this adds defense in depth, even if the server

is careful to check authorization. The use of predictable

identifiers should be rare and any use should be a cause

2Unless explicitly whitelisted by the receiving server via Access-

Control-* headers.

16

for a security review. As we discussed earlier, the nature

of the data handled by password managers warrants such

a default-secure posture.

5.4 User Interface Vulnerabilities

Our proposed solution of relying on iframes and storing

tokens in localStorage/cookies works seamlessly only if

the user is already logged in. If this is not true, the iframe

needs to ask the user to log in. As our attacks demon-

strated, the only secure way to do this is asking the user

to manually open a new tab and login. My1login is the

only password manager relying on this design and we

recommend other password managers adopt a similar de-

sign. Cautious users can protect themselves against such

an attack by always logging in using a new tab instead of

trusting a popup or iframe.

6 Related Work

A number of researchers have investigated security of

web-based password managers. Bhargavan et al. did a

study on five password managers, along with a num-

ber of other web services that provide encrypted stor-

age of data in the cloud, and presented a number of

web attacks that could violate the intended security of

the products [7]. This work inspired a redesign of the

LastPass bookmarklet to decrypt a user’s credentials in-

side LastPass’s iframe, making it harder for an attacker

to steal the master key. Adida et al. provide a compre-

hensive overview of a number of attacks on password

manager bookmarklets; we reuse some of the ideas but

find that, with modern password managers relying on

encrypted credentials, a new defense based on iframes

is needed [1]. Belenko et al. studied the cryptographic

properties of password managers for mobile devices and

their vulnerability to brute force attacks [6].

In concurrent work, Blanchou and Youn [9] as well as

Silver et al. [37] found a number of serious flaws in the

auto-fill functionality in password managers. In contrast,

we analyze a broader range of functionality but focus on

third-party web-based password managers only.

Bonneau et al. [10] presented a framework for eval-

uating alternatives to passwords in terms of usability,

deployability, and security. This framework highlights

advantages of an idealized password manager, but our

work demonstrates that, in practice, password managers

have flaws in their implementations that critically under-

mine their security. Similarly, recent work found imple-

mentation flaws in other password alternatives such as

SSOs [42, 40].

The common web attack vectors we considered, such

as CSRF and XSS, have seen a lot of work in the past

decade. For attacks and defenses, we defer to prior litera-

ture for comprehensive surveys on CSRF [46], XSS [19],

and server-side defenses for both [28]. Recent work also

focused on logic flaws and insufficient authorization in

web applications [17, 39, 38].

The security of mutually distrusting JavaScript run-

ning in the same origin (an important consideration in

bookmarklet code) has not been a concern in the design

of the web platform. Bhargavan et al. identified a number

of flaws in bookmarklets and proposed a new subset of

JavaScript called Defensive JavaScript to mitigate them,

which we discussed in depth in Section 5.1. Defensive

JavaScript [8] is the only work we are aware of that aims

to protect a JavaScript gadget from the host webpage. A

large body of work exists for the converse goal of pro-

tecting a host webpage from third party JavaScript code

(such as code that draws a gadget) [24, 3, 13, 29]; a sur-

vey compares these approaches [15].

7 Conclusions

We presented a systematic security analysis of five web-

based password managers. We found critical vulnerabil-

ities in all the password managers and in four password

managers, an attacker could steal arbitrary credentials

from a user’s account. Our work is a wake-up call for

developers of web-based password managers. The wide

spectrum of discovered vulnerabilities, however, makes

a single solution unlikely. Instead, we believe devel-

oping a secure web-based password manager entails a

systematic, defense-in-depth approach. To help such an

effort, we provided guidance and mitigations based on

our analysis. Since our analysis was manual, it is pos-

sible that other vulnerabilities lie undiscovered. Future

work includes creating tools to automatically identify

such vulnerabilities and developing a principled, secure-

by-construction password manager.

Acknowledgements

We thank the anonymous reviews for their valuable

feedback. We also thank Karthikeyan Bhargavan,

David Wagner, Weichao Wang, Paul Youn, Chris Grier,

Kurt Thomas, Matthew Finifter, Joel Weinberger, Chris

Thompson, Suman Jana, and Nicholas Carlini for their

valuable feedback and comments. This research was

supported by Intel through the ISTC for Secure Com-

puting; by the Air Force Office of Scientific Research

(AFOSR) under MURI award FA9550-09-1-0539; by

the Office of Naval Research (ONR) under MURI Grant

N000140911081; and by the National Science Founda-

tion (NSF) under grant 0831501CT-L. Any opinions,

findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not nec-

essarily reflect the views of the NSF, the AFOSR, the

ONR, or Intel.

References

[1] B. Adida, A. Barth, and C. Jackson. Rootkits for javascript envi-

ronments. In Proc. of WOOT 2009, 2009.

17

[2] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. To-

wards a formal foundation of web security. In Proceedings of the

23rd IEEE Computer Security Foundations Symposium, 2010.

[3] D. Akhawe, P. Saxena, and D. Song. Privilege separation in

html5 applications. In Proc. the 21st USENIX Security sympo-

sium, 2012.

[4] Ui attacks demos, 2013. https://sites.google.com/site/

webpwdmgr/.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for

cross-site request forgery. In Proc. of ACM Conference on Com-

puter and Communications Security, 2008.

[6] A. Belenko and D. Sklyarov. “secure password managers” and

“military-grade encryption” on smartphones: Oh, really?, 2012.

[7] K. Bhargavan and A. Delignat-Lavaud. Web-based attacks on

host-proof encrypted storage. In Proc. of WOOT, 2012.

[8] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-

based defenses against untrusted browser origins. In USENIX

Security Symp., 2013.

[9] M. Blanchou and P. Youn. Password managers: Exposing pass-

words everywhere, Nov 2013. https://www.isecpartners.

com/media/106983/password_managers_nov13.pdf.

[10] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest

to replace passwords: A framework for comparative evaluation of

web authentication schemes. In Proc. of IEEE Symp. on Security

and Privacy, 2012.

[11] CNET. Editor’s rating of password managers. http:

//download.cnet.com/windows/password-managers/

?&sort=editorsRating+asc.

[12] O. Connelly. WordPress 3 Ultimate Security. Packt Publishing

Ltd, 2011.

[13] D. Crockford. Adsafe. adsafe.org, 2011.

[14] Content security policy: W3c editor’s draft, 2013.

https://dvcs.w3.org/hg/content-security-policy/

raw-file/tip/csp-specification.dev.html.

[15] P. De Ryck, M. Decat, L. Desmet, F. Piessens, and W. Joosen.

Security of web mashups: a survey, 2011.

[16] P. Eckersley. How unique is your web browser? In Privacy

Enhancing Technologies, pages 1–18. Springer, 2010.

[17] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward

automated detection of logic vulnerabilities in web applications.

In USENIX Security Symposium, 2010.

[18] A. P. Felt and D. Wagner. Phishing on mobile devices. University

of California, Berkeley, 2011.

[19] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov.

XSS Attacks: Cross Site Scripting Exploits and Defense. Syn-

gress, 2011.

[20] Google. Content scripts, 2013.

[21] E. Grosse and M. Upadhyay. Authentication at scale. Security

Privacy, IEEE, 11(1):15–22, Jan 2013.

[22] C. Herley. So long, and no thanks for the externalities: the ra-

tional rejection of security advice by users. In Proc. of NSPW,

2009.

[23] A. Huth, M. Orlando, and L. Pesante. Password security, pro-

tection, and management. United States Computer Emergency

Readiness Team, 2012.

[24] G. Inc. Google caja—google developers. https://

developers.google.com/caja/.

[25] B. Kaliski. PKCS #5: Password-Based Cryptography Specifica-

tion Version 2.0. RFC 2898 (Informational).

[26] Lastpass. https://lastpass.com.

[27] LastPass. Lastpass one million user give-

away. http://blog.lastpass.com/2011/01/

lastpass-one-million-user-giveaway.html.

[28] X. Li and Y. Xue. A survey on server-side approaches to securing

web applications. ACM Computing Surveys, 46(4), 2014.

[29] S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and isola-

tion of untrusted web applications. In Security and Privacy (SP),

2010 IEEE Symposium on, pages 125–140, 2010.

[30] P. Magazine”. Editor’s rating of password managers. http://

www.pcmag.com/products/28042?sort=er+desc.

[31] Mozilla Developer Network. Xpconnect wrappers, 2013.

[32] Needmypassword. http://www.needmypassword.com.

[33] Passwordbox. https://www.passwordbox.com.

[34] D. Pogue. Remember all those passwords? no need. http:

//nyti.ms/10ZhXgq, 2013.

[35] Roboform everywhere. http://www.roboform.com/

everywhere.

[36] M. Rochkind. Security, forms, and error handling. In Expert PHP

and MySQL, pages 191–247. Springer, 2013.

[37] D. Silver, S. Jana, E. Chen, C. Jackson, and D. Boneh. Pass-

word managers: Attacks and defenses. In Proceedings of the

23rd Usenix Security Symposium, 2014.

[38] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding

missing security checks when you do not know what checks are.

In ACM SIGPLAN Notices, volume 46, pages 1069–1084. ACM,

2011.

[39] F. Sun, L. Xu, and Z. Su. Static detection of access control vul-

nerabilities in web applications. In USENIX Security Symposium,

2011.

[40] S.-T. Sun and K. Beznosov. The devil is in the (implementation)

details: an empirical analysis of oauth sso systems. In Proceed-

ings of ACM conference on Computer and communications secu-

rity, 2012.

[41] W3C. User interface safety directives for content security policy,

2012. http://www.w3.org/TR/UISafety/.

[42] R. Wang, S. Chen, and X. Wang. Signing me onto your accounts

through facebook and google: A traffic-guided security study of

commercially deployed single-sign-on web services. In Security

and Privacy (SP), 2012 IEEE Symposium on, pages 365–379,

2012.

[43] C. Warren. Master passwords at risk in lastpass security breach.

http://mashable.com/2011/05/05/last-pass-breach/.

[44] R. Woodbridge. ”how passwordbox passed gmail as the

#1 productivity app on their way to over 1m downloads”.

http://untether.tv/2013/episode-467, 2013.

[45] M. Zalewski. On designing uis for non-robots.

http://lcamtuf.blogspot.com/2010/08/

on-designing-uis-for-non-robots.html, 2010.

[46] W. Zeller and E. W. Felten. Cross-site request forgeries: Ex-

ploitation and prevention. Technical report, Princeton University,

2008.

18

https://sites.google.com/site/webpwdmgr/
https://sites.google.com/site/webpwdmgr/
https://www.isecpartners.com/media/106983/password_managers_nov13.pdf
https://www.isecpartners.com/media/106983/password_managers_nov13.pdf
http://download.cnet.com/windows/password-managers/?&sort=editorsRating+asc
http://download.cnet.com/windows/password-managers/?&sort=editorsRating+asc
http://download.cnet.com/windows/password-managers/?&sort=editorsRating+asc
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://developers.google.com/caja/
https://developers.google.com/caja/
https://lastpass.com
http://blog.lastpass.com/2011/01/lastpass-one-million-user-giveaway.html
http://blog.lastpass.com/2011/01/lastpass-one-million-user-giveaway.html
http://www.pcmag.com/products/28042?sort=er+desc
http://www.pcmag.com/products/28042?sort=er+desc
http://www.needmypassword.com
https://www.passwordbox.com
http://nyti.ms/10ZhXgq
http://nyti.ms/10ZhXgq
http://www.roboform.com/everywhere
http://www.roboform.com/everywhere
http://www.w3.org/TR/UISafety/
http://mashable.com/2011/05/05/last-pass-breach/
http://lcamtuf.blogspot.com/2010/08/on-designing-uis-for-non-robots.html
http://lcamtuf.blogspot.com/2010/08/on-designing-uis-for-non-robots.html

