
THE EMPEROR’S NEW RECURSIVENESS:
THE EPIGRAPH OF THE EXPONENTIAL FUNCTION

IN TWO MODELS OF COMPUTABILITY

VASCO BRATTKA

Theoretische Informatik 1, FernUniversität Hagen, D-58084 Hagen, Germany
E-mail: vasco.brattka@fernuni-hagen.de

In his book “The Emperor’s New Mind” Roger Penrose implicitly defines some
criteria which should be met by a reasonable notion of recursiveness for subsets of
Euclidean space. We discuss two such notions with regard to Penrose’s criteria:
one originated from computable analysis, and the one introduced by Blum, Shub
and Smale.

1 Introduction

In his book “The Emperor’s New Mind” Roger Penrose 1 raises the question
whether the famous Mandelbrot set M ⊆ R2 can be considered as recursive in
some well-defined sense. Throughout his discussion of this problem Penrose
uses an intuitive notion of recursiveness and he complains about the lack of a
mathematically precise meaning of this notion. On the one hand, he argues
that it is insufficient to define recursiveness of a set as decidability with respect
to computable points, since in this case even a simple set like the unit ball
B := {(x, y) ∈ R2 : x2 + y2 ≤ 1} does not become recursive. Since Penrose is
convinced that the unit ball should become recursive we are led to introduce
the following criterion.

Penrose’s first criterion. A reasonable notion of recursiveness for subsets
of Euclidean space should make the closed unit ball recursive.

Figure 1. The closed unit ball B
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On the other hand, Penrose argues that certain other ways to define
recursiveness are also inappropriate, especially, because they do not handle
the border of the sets under consideration in the right way. This aspect
is important since the complexity of sets is often inherent in their border,
as in case of Mandelbrot’s set. For instance, a definition of recursiveness
as decidability with respect to rational or algebraic numbers is insufficient,
since in this case sets like the closed epigraph of the exponential function
E := {(x, y) ∈ R2 : y ≥ ex} would not be handled appropriately. The border
of this set does not contain any algebraic point besides (0, 1) and thus the
border is irrelevant to a decision procedure which is restricted to algebraic
points. Of course, Penrose is convinced that a set, easily structured like
the closed epigraph of the exponential function, should be recursive. This
motivates the second criterion.

Penrose’s second criterion. A reasonable notion of recursiveness for
subsets of Euclidean space should make the closed epigraph of the exponential
function recursive.

Figure 2. The closed epigraph E of the exponential function

Apparently, there are several similar conditions and Penrose’s criteria are
by no means sufficient conditions for a reasonable notion of recursiveness.
They are just necessary conditions; a notion of recursiveness which does not
meet Penrose’s criteria would be highly suspicious since it could be doubted
whether it reflects algorithmic complexity in the right way. Since Penrose did
not present any notion which fulfills all his requirements, it seems as if there
exists no suitable notion of recursiveness.

The aim of this paper is to compare two existing notions of recursiveness
for subsets of Euclidean space and to find out which comes closest to Penrose’s
requirements. The first notion is based on computable analysis and has been
developed and investigated by several authors. The basic idea of recursive
analysis is to call a function f : Rn → R computable, if there exists a Turing
machine which transforms Cauchy sequences of rationals, rapidly converging
to an input x, into Cauchy sequences of rationals, rapidly converging to the
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output f(x). Moreover, a set A ⊆ Rn is called recursive, if its distance func-
tion dA : Rn → R is computable.a Here d denotes the Euclidean metric. This
notion of recursiveness straightforwardly generalizes the notion of recursive-
ness from classical computability theory (see Odifreddi 3): if we endow the
natural numbers N with the discrete metric, then the distance function of a
subset A ⊆ N is equal to its characteristic function and computability of the
characteristic function is equivalent to recursiveness of the set A. In Euclidean
space the distance function is a “continuous substitute” for the characteristic
function. Although recursiveness of subsets of Euclidean space in this sense
does not correspond to the intuition of “decidability”, it is a formal gener-
alization of the classical notion of recursiveness. Especially, a subset A ⊆ N
considered as a subset of R is recursive, if and only if it is classically decidable.
Finally, it is easy to prove that this notion of recursiveness meets Penrose’s
criteria.

As a second notion of recursiveness we will investigate the notion which
has been developed by Blum, Shub and Smale.4,5 In their theory a function
f : Rn → R is computable (we will call it algebraically computable for the
following), if there exists a real random access machine which computes f .
Such a machine uses real number registers, arbitrary constants, arithmetic
operations, comparisons and equality tests. Moreover, a set A ⊆ Rn is called
recursive by Blum, Shub and Smale (we will call it algebraically recursive for
the following), if its characteristic function is algebraically computable. If we
restrict the class of constants appropriately (for instance to rational numbers),
then a set A ⊆ N considered as a subset of R is algebraically recursive, if
and only if it is classically decidable. In this sense the notion of algebraic
recursiveness is a second generalization of the classical notion of recursiveness.
Obviously, the unit ball is algebraically recursive and hence Penrose’s first
criterion is met. Blum and Smale 6 have proved that Mandelbrot’s set is not
algebraically recursive and hence it seems as if they have given an answer to
Penrose’s original question. But with a similar technique we will prove that
the closed epigraph of the exponential function is not algebraically recursive
and hence it is highly questionable whether Blum and Smale’s answer to
Penrose’s question is significant. If even a simple set like the epigraph of
the exponential function is not algebraically recursive, we can conclude that
algebraic non-recursiveness obviously does not reflect the intrinsic algorithmic
complexity of a set.

aThe idea of using distance functions to characterize “located” sets has first been used in
constructive analysis, see Bishop and Bridges.2
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2 Recursive and Recursively Enumerable Sets

In this section we give the precise definitions of several classes of recursively
enumerable and recursive sets and we will give a short survey on some ele-
mentary properties.

Let d : Rn×Rn → Rbe the Euclidean metric of Rn, defined by d(x, y) :=√∑n
i=1 |xi − yi|2 for all x, y ∈ Rn. By B(x, r) := {y ∈ Rn : d(x, y) < r} we

denote the open balls and by B(x, r) := {y ∈ Rn : d(x, y) ≤ r} the closed
balls with respect to d. For each set A ⊆ Rn we denote by dA : Rn → R the
distance function of A, defined by dA(x) := infa∈A d(x, a). Let α : N → Rn

be some standard enumeration with range(α) = Qn, defined for instance by
α〈〈i1, j1, k1〉, ..., 〈in, jn, kn〉〉 := ( i1−j1

k1+1 , ..., in−jn

kn+1 ). Here, 〈.〉 : N2 → N denotes
Cantor’s Pairing Function, defined by 〈i, j〉 := 1

2(i + j)(i + j + 1) + j, which
can inductively be extended to a function 〈.〉 : Nn → N. All these pairing
functions are bijective and computable, as well as their inverses.

We assume that the reader is familiar with the definition of computable
real functions (see, for instance, Weihrauch,7 Pour-El and Richards,8 Ko 9).
We briefly recall the ideas: a function f :⊆ Rn → R is called computable, if
there exists a Turing machine which transforms each Cauchy sequence (qi)i∈N
of rational numbers qi ∈ Qn (encoded with respect to α), which rapidly con-
verges to some x ∈ dom(f) into a Cauchy sequence (ri)i∈Nof rational num-
bers ri ∈ Q, which rapidly converges to f(x). Here, rapid convergence means
d(qi, qk) ≤ 2−k for all i > k (and correspondingly for (ri)i∈N). Of course,
a Turing machine which transforms an infinite sequence into an infinite se-
quence has to compute infinitely long, but in the long run the correct output
sequence has to be produced. It is reasonable to assume one-way output tapes
for such machines since otherwise the output after some finite time would be
useless (because it could be replaced later).

Functions, such as exp, sin, cos, ln and max are examples of computable
functions. One of the basic observations of computable analysis is that com-
putable functions are continuous. This is because approximations of the out-
put are computed from approximations of the input and therefore each ap-
proximation of the output has to depend on some approximation of the input.
Computable functions of type f : N → Rn can be defined similarly and are
called computable sequences.

Now we are prepared to define the notion of recursively enumerable
and recursive subsets in the sense of computable analysis (see Brattka and
Weihrauch 10 for a survey). These notions are explicitly defined for open or
closed sets, respectively.
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Definition 2.1 (Recursively enumerable open and closed sets)

1. An open subset A ⊆ Rn is called recursively enumerable, (r.e. for
short), if there is a computable function f : N → N2 such that
A =

⋃
(i,j)∈range(f) B(α(i), 2−j).

2. A closed subset A ⊆ Rn is called recursively enumerable, (r.e. for short),
if A = ∅ or there is a computable sequence f : N→ Rn such that range(f)
is dense in A.

3. An open (closed) set is called co-recursively enumerable (co-r.e. for short),
if its complement Ac is r.e.

4. An open (closed) set is called recursive, if it is r.e. and co-r.e.

Recursively enumerable open sets have first been introduced and investi-
gated by Lacombe.11 Equivalent definitions to the given ones have been in-
vestigated by several authors (see Weihrauch and Kreitz,12,13 Ko et al.,14,9,15

Ge and Nerode,16 Zhou,17 Zhong,18 Brattka 19). The following characteri-
zation gives an impression of the stability of the definition of r.e. sets. For
completeness we also mention the characterizations via semi-computable dis-
tance functions. These notions are not used any further in this paper and the
interested reader is refered to Brattka and Weihrauch 10 for the definitions
and proofs.

Lemma 2.2 (Characterization of r.e. closed sets) Let A ⊆ Rn be a
closed set. Then the following equivalences hold:

1. A is recursively enumerable
⇐⇒ {(i, j) ∈ N2 : A ∩ B(α(i), 2−j) 6= ∅} is recursively enumerable
⇐⇒ dA : Rn → R is upper semi-computable,

2. A is co-recursively enumerable
⇐⇒ {(i, j) ∈ N2 : A ∩ B(α(i), 2−j) = ∅} is recursively enumerable
⇐⇒ dA : Rn → R is lower semi-computable
⇐⇒ A = f−1{0} for some computable function f : Rn → R,

3. A is recursive ⇐⇒ dA : Rn → R is computable.

Using these characterizations and the fact that the exponential function
is a computable function one can easily show that the notion of recursiveness
of computable analysis fulfills Penrose’s criteria.
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Proposition 2.3 (Recursive sets and Penrose’s criteria)

1. The closed unit ball B := {(x, y) ∈ R2 : x2 + y2 ≤ 1} is a recursive set.

2. The closed epigraph E := {(x, y) ∈ R2 : y ≥ ex} is a recursive set.

Proof.

1. We obtain dB(x, y) = max{0,
√

x2 + y2 − 1} for the distance function
dB : R2 → R. Thus, dB is computable and B is recursive.

2. There exists a computable function f : N → R2 such that range(f) =
{(x, ex + y) ∈ R2 : x, y ∈ Q, y ≥ 0}, since the exponential function is
computable. Since range(f) is dense in E it follows that E is an r.e.
closed set. The function g : R2 → R with g(x, y) := max{0, ex − y} is
computable and E = g−1{0}. Thus, E is a co-r.e. closed set. Altogether,
E is a recursive closed set. 2

More generally, the proof of 2. shows that the closed epigraph epi(f) =
{(x, y) ∈ R2 : y ≥ f(x)} of a computable function f : R→ R is a recursive
set.b It is worth noticing that the notion of computability and the notion
of recursiveness of computable analysis fit together very well: a continuous
function f : R→ R is computable, if and only if its graph is recursive as a
closed subset of R2 (see Weihrauch 20).

3 Algebraic Recursiveness

In this section we want to prove that the notion of algebraic recursiveness
does not meet Penrose’s second criterion. We start with the definition of al-
gebraically r.e. sets as halting sets of real random access machines, as they
have been used by Blum, Shub and Smale.4,5 These real random access ma-
chines use real number registers, arbitrary constants, arithmetic operations,
comparisons and equality tests. We assume that the reader is familiar with
the precise definitions. From the point of view of computable analysis espe-
cially the comparisons and equality tests are problematic. From the point of
view of classical computability theory also the constants are suspicious since
one can code an arbitrary function f : N→ N in such a constant.

bFor a general discussion of computability properties of the epigraph, see Zheng et al.20,21
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Definition 3.1 (Algebraically r.e. sets) Let A ⊆Rn.

1. A is called algebraically r.e., if A is the halting set of some real random
access machine.

2. A is called algebraically recursive, if A as well as its complement Ac is
algebraically r.e.

If A is the halting set of a real random access machine which does only use
rational constants, then we will say that A is algebraically r.e. with rational
constants. Obviously, the unit ball B := {(x, y) ∈ R2 : x2 + y2 ≤ 1} is
an algebraically recursive set, even with rational constants. We just have to
compute x2 + y2 and test x2 + y2 ≤ 1.

Proposition 3.2 The closed unit ball B := {(x, y) ∈ R2 : x2 + y2 ≤ 1} is
algebraically recursive with rational constants.

One can easily prove that the open epigraph of the exponential function
{(x, y) ∈ R2 : y > ex} is an r.e. open set and hence it is also algebraically
r.e. (as any other r.e. open set). On the other hand, we will show that the
closed epigraph E of the exponential function is not algebraically recursive.
Indeed, we will prove that it is not even algebraically r.e. The proof uses
some standard techniques of Blum, Shub and Smale’s theory, especially their
Path Decomposition Theorem, which states that each algebraically r.e. set is
a countable (disjoint) union of basic semi-algebraic sets (see Blum et al.5).

We recall some basic definitions and facts from real algebraic geometry
(which can be found in Bochnak et al.22 and Marker et al.23). The class
of semi-algebraic subsets of Rn is the smallest class of subsets of Rn which
contains all sets {x ∈ Rn : p(x) > 0} with real polynomials p : Rn → R, and
which is closed under finite intersection, finite union and complement. Each
semi-algebraic set can be written as finite union of basic semi-algebraic sets,
which have the form

{x ∈ Rn : p1(x) = 0, ..., pi(x) = 0, q1(x) > 0, ..., qj(x) > 0},
where p1, ..., pi, q1, ..., qj : Rn → R are real polynomials. A (partial) function
f :⊆ Rn → R is called semi-algebraic, if its graph

graph(f) := {(x, y) ∈ Rn+1 : f(x) = y}
is a semi-algebraic set. Using the normal form given above, it is easy to
show that each semi-algebraic function is algebraic, i.e. there exists some real
polynomial p : Rn+1 → R, p 6= 0 such that p(x, f(x)) = 0 for all x ∈ dom(f).
By the Theorem of Tarski-Seidenberg semi-algebraic sets are closed under
projection and one can conclude that the interior A◦, the closure A and
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hence the border ∂A = A \ A◦ of a semi-algebraic set A is semi-algebraic too
(additionally, one uses the fact that the Euclidean metric is a semi-algebraic
function). Correspondingly, one can see that the lower border

A↓ := {(x, y) ∈ R2 : (x, y) ∈ A and (∀z ∈ R)((x, z) ∈ A =⇒ z ≥ y)}
is semi-algebraic if A ⊆ R2 is. By f |U we will denote the restriction of a
function f with dom(f |U ) = dom(f) ∩ U . Now we are prepared to prove the
following result.

Proposition 3.3 The closed epigraph E := {(x, y) ∈ R2 : y ≥ ex} of the
exponential function is not algebraically r.e.
Proof. Let E := {(x, y) ∈ R2 : y ≥ f(x)} be the closed epigraph of the
exponential function f : R → R. Let us assume that E is algebraically
r.e. Then, by the Path Decomposition Theorem, E is a countable union
of semi-algebraic sets Ai ⊆ R2, i.e. E =

⋃∞
i=0 Ai. Since the closure of a

semi-algebraic set is semi-algebraic too, we can assume w.l.o.g. that all sets Ai

are closed. Especially, we obtain ∂E =
⋃∞

i=0(∂E ∩ Ai) and since the border
∂E is a complete subspace of R2 it follows by Baire’s Category Theorem
that there is some i ∈ N and a non-empty open set U ⊆ R2 such that
∅ 6= ∂E ∩ U ⊆ Ai. Since ∂E = graph(f) and f is continuous, there are some
non-empty open intervals I, J ⊆ R such that f(I) ⊆ J and V := I × J ⊆ U .
Hence graph(f |I ) = ∂E ∩ V = A↓

i ∩ V is semi-algebraic, since A↓
i and V are

semi-algebraic. But using the Identity Theorem for real-analytic functions
and the power series expansion of the exponential function, one can prove
that f |I is not algebraic. Contradiction! 2

This proposition proves that algebraic recursiveness does not meet Pen-
rose’s second criterion. We will call a function f : R→ Reverywhere transcen-
dental, if f |U is not algebraic for each non-empty open set U ⊆ R. The proof
that the exponential function is everywhere transcendental can be found in
basic texts on analysis (see, for instance, Erwe 24). Besides the fact that the
exponential function is everywhere transcendental and continuous, we have
not used any specific properties of the exponential function in the previous
proof. By symmetry we obtain the following general result.

Theorem 3.4 If f : R→ R is an everywhere transcendental and continuous
function, then neither the closed epigraph, nor the closed hypograph, nor the
graph of f is algebraically r.e.

It is worth noticing that the notions of algebraic recursiveness and al-
gebraic computability do not fit together in the same sense as the notions
of recursiveness and computability of computable analysis. The square root
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function f :⊆ R→ R, x 7→ √
x is an example of a function which is not alge-

braically computable but whose graph is algebraically recursive. Hence, the
algebraic non-recursiveness of the graph of the exponential function cannot
simply be deduced from the fact that the exponential function is not alge-
braically computable.c

4 Conclusion

We have seen that the notion of algebraic recursiveness does not meet Pen-
rose’s criteria, while the notion of recursiveness from computable analysis
does. The latter notion describes recursiveness in terms of computability of
the distance function dA of a set A. In view of the fact that equality on the
real numbers is undecidable, recursiveness in this sense is the best what one
could expect. Recursiveness implies “decidability up to the equality test on
the real numbers”: if we only could decide whether dA(x) = 0, then we could
decide whether x ∈ A or not.

An essential question remains open. We do not know whether the Man-
delbrot set is a recursive closed set or not. It is easy to see that it is a co-r.e.
closed set but it is still a challenging open question to find out whether it is
also an r.e. closed set or not!
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