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Abstract. In the past two decades, striking examples of allegedly infe-
Ž .rior likelihood ratio tests LRT have appeared in the statistical litera-

ture. These examples, which arise in multiparameter hypothesis testing
problems, have several common features. In each case the null hypothe-
sis is composite, the size � LRT is not similar and hence biased, and
competing size � tests can be constructed that are less biased, or even
unbiased, and that dominate the LRT in the sense of being everywhere
more powerful. It is therefore asserted that in these examples and, by
implication, many other testing problems, the LR criterion produces
‘‘inferior,’’ ‘‘deficient,’’ ‘‘undesirable,’’ or ‘‘flawed’’ statistical procedures.

This message, which appears to be proliferating, is wrong. In each
example it is the allegedly superior test that is flawed, not the LRT. At
worst, the ‘‘superior’’ tests provide unwarranted and inappropriate in-
ferences and have been deemed scientifically unacceptable by applied
statisticians. This reinforces the well-documented but oft-neglected fact

Ž .that the Neyman�Pearson theory desideratum of a more or most
powerful size � test may be scientifically inappropriate; the same is
true for the criteria of unbiasedness and �-admissibility. Although the
LR criterion is not infallible, we believe that it remains a generally
reasonable first option for non-Bayesian parametric hypothesis-testing
problems.

Key words and phrases: Hypothesis test, significance test, likelihood
ratio test, power, size � test, unbiased test, �-admissibility, d-admissi-
bility, order-restricted hypotheses, multiple endpoints in clinical trials,
test for qualitative interactions, bioequivalence problem, multivariate
one-sided alternatives, Fisher�Neyman debate.

1. A STATISTICAL ALLEGORY

In a distant land, a wise and benign Emperor
ruled over his domain. Whenever decisions were to
be made, data were gathered and the imperial
statisticians applied long-accepted statistical proce-
dures to reach reasonable conclusions. The Em-
peror, having read Fisher, Neyman, Pearson, Wald,
Wilks and Bahadur, was particularly fond of the

Ž .likelihood ratio test LRT , for it seemed sensible,
reliable and generally robust. His subjects bene-
fitted from his wisdom and were happy and pros-
perous.
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One day a bright young statistician, while seek-
ing a Ph.D. dissertation topic that would hopefully
win him a position in the imperial court, noticed
that for some hypothesis-testing problems involving
two or more parameters, the size � LRT was not
similar on the boundary of the null hypothesis and
therefore biased. Furthermore, being an extremely
clever fellow, he was able to construct New Tests
that were also size � , more nearly similar and less

Ž .biased or, in some cases, actually unbiased and
that dominated the LRT in the sense of being ev-
erywhere more powerful! This was accomplished in
a deceptively simple manner: by carefully enlarging
the rejection region of the LRT in such a way as to
maintain the size at � . Once accomplished, this
trivially increased the power at all parameter
values.1

Excitedly, the young statistician wrote his disser-
tation, entitled ‘‘On the Inferiority of the Likelihood
Ratio Criterion’’ and published several papers in
the leading imperial statistical journals. As the
Emperor read these papers his eyes opened wider
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and wider, and he thought ‘‘I must be a poor em-
peror indeed to have clung so long to the obviously
inferior LRT.’’ The young statistician was appointed
to the Imperial Court as Creator of Better New
Tests for Multi-Parameter Hypothesis Testing
Problems. The Emperor was delighted that his en-
lightened support of basic research in mathemati-
cal statistics had led to such a marvelous advance
in statistical science.

But one day, as the young Creator presented
yet another example of an ‘‘inferior’’ LRT and a
cleverly constructed unbiased and everywhere more
powerful New Test, the Emperor became concerned.
The testing problem under discussion was that of
testing

Ž . � � � �1 H : � � 1 versus H : � � 10 1

2 Ž 2 .with � unknown, based on X � N �, � and
s2 � � 2� 2 with X and s2 independent, the suffi-n
cient statistics for a random sample from a univari-
ate normal distribution.

‘‘Do you mean to tell me,’’ the Emperor said,
‘‘that if I observe � � X � 0 and � 2 � s2�n � 1010,ˆ ˆ
then your New Test regards this as sufficiently
strong evidence to reject H in favor of the alterna-0
tive H ? With such a large estimated variance,1
certainly no one can distinguish between � � 1 and
� � �1, let alone between H and H .’’ ‘‘Yes, that0 1
is what my New Test declares,’’ the young Creator
replied. ‘‘I agree that this violates statistical intu-
ition and that the LRT would not make this obvi-
ously unwarranted assertion, but I assure you that
my New Test is indeed size 0.05, unbiased, and
everywhere more powerful than the size 0.05 LRT!’’

The Emperor pondered this for a while, then said
‘‘If that is the case, then your New Test is defective.

ŽTherefore the criteria of unbiasedness and more or
.most powerful size-� test must be inappropriate

for this problem and probably for the other prob-
lems that you have treated as well.’’ The Creator of
Better New Tests was dismissed, the New Tests
abandoned, and the LRT reinstated as the Test of
First Resort for Non-Bayesian Testing Problems.
The Emperor decreed that every statistics course
should include a lecture on ‘‘The Emperor’s New
Tests: the Case for Common Sense in Statistics.’’
Ž .We return to this example in Section 7.

2. COMMON FEATURES OF THE
NEW TESTS

This tale is not entirely fictional. In the past two
decades, such New Tests have proliferated in the
statistical literature. In Sections 4�8 we review a
series of five examples of multiparameter hypothe-

sis-testing problems with the following common
features:

1. The null hypothesis H is a noncompact compos-0
ite set.

2. The ‘‘least favorable’’ null distribution is not at-
tained in H but is only approached asymptoti-0

Žcally cf. Sasabuchi, 1980; Robertson, Wright and
.Dykstra, 1988, Chapter 2; Berger, 1989 .

3. The size � LRT is not similar on the boundary of
H , hence is biased.0

4. Competing size � tests can be constructed that
are more nearly or exactly similar, hence less
biased or unbiased, and that dominate the LRT
in the sense of being everywhere2 more power-
ful. These New Tests are constructed by care-
fully enlarging the rejection region to preserve

Žthe size at � again, approached only asymptoti-
.cally on H , which trivially implies their power0

dominance of the corresponding LRTs and there-
Žfore renders the LRTs �-inadmissible cf.

.Lehmann, 1986, Section 6.7 .
5. It is concluded that the LRT is inferior to the

New Tests.

We assert that this conclusion is wrong. As some
of their creators themselves admit, these New Tests
often are of no practical value, for they may fail to
properly assess the evidence provided by the data
for or against the scientific hypotheses under inves-
tigation. This leads to the realization that the Ney-

Ž .man�Pearson NP theory desiderata of unbiased-
Ž .ness and more or most powerful size � test, as

well as the related criterion of �-admissibility
Žwhich, on H , takes into account only the supre-0
mum of the power function, not its detailed behav-

.ior may lead to undesirable statistical procedures,
hence should not be regarded as sacrosanct for
hypothesis testing problems. When these critera
violate statistical common sense, it is they, not the
LR criterion, that should be abandoned.

These issues are far from new, having been raised
by Fisher in his celebrated debate with Neyman on
hypothesis testing and since revisited many times;
see Section 9.

ŽThe LR criterion, while not infallible see Section
.10 , is a readily understood and generally useful

tool for statistical inference. It should not be casu-
ally discarded, certainly not in a manner that
obscures the proper role of statistics in scientific
inquiry.3

Ž .Before introducing the likelihood ratio test LRT
criterion and embarking upon its defense, we em-
phasize that in most if not all scientific applica-
tions, the question to be addressed by a statistical

Ž .hypothesis test � significance test is the follow-
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ing: based on the observed data, does the family of
distributions represented by the alternative hy-

Ž .pothesis H fit or support, or explain the observed1
data significantly better than the family repre-
sented by the null hypothesis H ? Only if the fit is0
significantly better should we reject H in favor of0
H . The tests discussed in this paper are evaluated1

Ž .on the basis of this we believe generally accepted
criterion.4

3. THE GENERALIZED LIKELIHOOD RATIO
TEST CRITERION

Consider a parametric statistical model specified
� Ž . 4by a family p x � � � � of probability density�

functions, where x denotes the entire set of obser-
vations. The general hypothesis-testing problem has
the following form: based on a random observation
X, test

Ž .2 H : � � � versus H : � � � ,0 0 1 1

where � and � are disjoint subsets of �. The0 1
Ž . Ž .generalized likelihood ratio test LRT rejects H0

Ž .in favor of H if � X � c, where1

Ž .sup p x� � � � � �0 1Ž . Ž . Ž .3 � x � � 1Ž .sup p x� � � �0

and c � 1. Because we require significantly better
support for H in order to reject H , in fact we1 0
must take c � 1, a small but important distinction;

Ž .also see Solomon 1975 . The generalized LRT was
Ž .introduced by Neyman and Pearson 1928, 1933 ;

its asymptotic properties, including asymptotic op-
Ž .timality, have been developed by Wilks 1938, 1962 ,

Ž . Ž .Wald 1941a, b, 1943 , Bahadur 1967 and many
others.

In Sections 4�6 the statistical models are fami-
lies of p-variate normal distributions with un-
known mean vector � and known covariance ma-

Ž .trix equal to the identity matrix I p � 2 ; that is,p
Ž .X � N �, I . For such models it is easy to showp p

Ž .that the LRT statistic � X is an increasing func-
tion of

Ž . � � 2 � Ž . � 24 X � � � X � � � � ,0 0 1

the difference of the squared Euclidean distances
from X to � and � � � , respectively.0 0 1

4. TESTING A ONE-SIDED OR
ORDER-RESTRICTED ALTERNATIVE

We first examine the New Tests that have been
proposed for the following bivariate one-sided test-
ing problem; based on the bivariate normal random

vector,

Ž . Ž . Ž Ž . .5 X � X , X � N � � � , � , I ,1 2 2 1 2 2

where I denotes the 2 � 2 identity matrix, test2

H : � � 0 or � � 00 1 2

versus H : � � 0, � � 0.1 1 2

Ž .6

This problem, and its extensions to higher dimen-
sions and�or to alternatives given by convex cones
more general than the quadrant in H , occurs fre-1
quently in the applied literature; examples include
the problems of testing whether an identified treat-
ment is better than several controls, or of testing a
treatment in a clinical trial with multiple end-
points. For further discussion, see Pocock, Geller

Ž . Ž .and Tsiatis 1987 , Laska and Meisner 1989 , Tang,
Ž . Ž .Geller and Pocock 1993 , Tang 1998 , Perlman

Ž .and Wu 2000b .
Ž . Ž .By 4 , for 0 � � � 1�2 the size � LRT for 6

rejects H in favor of H if0 1

Ž . Ž 	 	.7 min X , X � z ,1 2 �

Ž .where x 	�max x, 0 and z is the upper � quan-�

tile of the standard normal distribution. The rejec-
Ž .tion region 7 is labelled as R in Figure 1. It is1

easy to see that the LRT is not similar on the
5 Ž .boundary of H , hence is biased for 6 :0


 Ž 	 	. �sup P min X , X � z� 1 2 �
��	 H0


 Ž . �� lim P min X , X � z � � ,Ž � , 0. 1 2 �1� �
1

Ž .8


 Ž 	 	. �inf P min X , X � z� 1 2 �
��	 H0


 Ž . � 2� P min X , X � z � � .Ž0, 0. 1 2 �

Ž .9

The bias is even more pronounced in p dimensions,
Ž . pwhere 9 becomes � , which approaches 0 as

p � 
.
Ž . Ž .Berger 1989 and Liu and Berger 1995 deemed

this bias a ‘‘deficiency’’ of the LRT.6
ŽBy modifying a construction of Lehmann 1952,

.pages 542 and 543 and Nomakuchi and Sakata
Ž . Ž .1987, page 492 , Berger 1989 constructed two
New Tests whose rejection regions properly contain

Žthe rejection region of the size � LRT see Figure 1
.for the forms of these enlarged rejection regions ,

Ž .yet which still have size � for 6 . Trivially, the
powers of these tests are strictly greater than that
of the size � LRT for every � � H � H � R2, yet0 1
they remain size � tests with smaller bias than the

Ž .LRT. Liu and Berger 1995 and McDermott and
Ž .Wang 2000 also construct New Tests with these

Ž .properties. Liu and Berger 1995 assert, therefore,
that ‘‘in a very general class of problems, the LRT
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Ž .FIG. 1. The rejection region for the LRT for testing problem 6 is R . The rejection regions for Berger ’s tests I and II are1
R � R � ��� � R and R � R � ��� � R , respectively.1 2 5 1 2 9

can be uniformly dominated.’’ Are we to abandon
the LR criterion?

Of course, the quoted statement does not hold in
the decision-theoretic sense, where ‘‘dominated’’
means that the risk function is inferior on both the
null and alternative, not just the alternative.7 Since
risk � 1 � power for parameter points in the null
hypothesis, the risk function of Liu and Berger’s
test is larger than that of the LRT everywhere on
the null hypothesis. In fact, it is well known that

Ž .the LRTs for problems such as 6 are d-admissible,
that is, admissible in the usual decision-theoretic

Žsense cf. Cohen, Gatsonis and Marden, 1983; No-
.makuchi and Sakata, 1987 , so cannot be domi-

nated when both Type I and Type II error probabil-
ities are considered.

Nonetheless, the existence of size � tests that
are more powerful than the size � LRT everywhere
on the alternative has been cited frequently as a
serious shortcoming of the LR criterion.8 We be-
lieve that this criticism is invalid.

A glance at Figure 1 shows that the rejection
region of Berger’s Test I includes sample points
Ž .x , x arbitrarily close to the origin, which is a1 2
member of the null hypothesis. That is, their test
would interpret such sample points as providing
significant evidence against the null hypothesis,

Ž .yet this is clearly inappropriate. Since x , x � �,ˆ1 2

the MLE of the true parameter value under H �0
Ž .H , an observation x , x very close to the null1 1 2

hypothesis clearly cannot provide significant sup-
port for the alternative hypothesis.9 The same criti-
cism applies to the tests proposed by Liu and Berger
Ž . Ž . 101995 and McDermott and Wang 2000 .

Because the rejection region of Berger’s Test II is
even larger than that of Test I, it is even more
powerful and can be shown to be even less biased.
However, this is achieved by including in the rejec-
tion region sample points for which the correspond-
ing MLEs are both negative, hence actually inside
the null hypothesis. Even more incredibly, the p-di-
mensional version of Test II would have us assert
that all p population means are positive for certain
outcomes for which all p sample means are nega-
tive!

Berger acknowledges that his Test II is ‘‘counter-
intuitive’’ and ‘‘may be primarily of theoretical in-
terest.’’ The logical conclusion should be, however,
that the goal of constructing tests that are less
biased and everywhere more powerful than the
LRT is without intrinsic merit. We agree with
Fisher that in scientific investigations, the purpose
of statistical hypothesis testing is to assess the evi-
dence that the data provide about the hypotheses,
not necessarily to optimize with respect to size, bias,

Ž .and�or power see Section 9 .
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Ž .Berger 1989, Section 6 also constructed New
Tests for the following related testing problem11

Ž .with a ‘‘two-sided’’ alternative: based on X in 5 ,
test

H : � � OO � �OO0

versus H : � � OO � �OO ,1

Ž .10

� 4where OO � � � � � 0, � � 0 is the positive or-1 2
thant in R2. Berger noted that this problem is
equivalent to a bivariate case of the problem of

Žtesting for qualitative interactions cf. Zelterman,
.1990; Russek-Cohen and Simon, 1993 . By carefully

enlarging the rejection region of the size � LRT,
both Berger and Zelterman again obtain size �
tests whose power functions are everywhere greater
than that of the LRT. Russek-Cohen and Simon
Ž .1993, page 467 state: ‘‘We believe that these tests
have some nonintuitive properties and would not be
accepted by nonstatisticians.’’ We urge statisticians
to share their skepticism.

Ž . Ž .Our assertion that the New Tests for 6 and 10
Ž .as well as their multivariate generalizations lead
to inappropriate inferences requires some clarifica-
tion. This assertion is valid unless one implicitly or
explicitly adopts a restrictive prior distribution that

Žassigns little or no mass to one or more possibly
.large open regions in the null hypothesis H . The0

corresponding Bayes test may assign sample points
in or near these regions to its rejection region, and
consequently its rejection and�or acceptance region
need not be monotone, convex, or even connected.
For example, the New Tests of Berger, Liu and
Berger, and McDermott and Wang possibly may be
Ž .approximately Bayes for prior distributions that,
under the null hypothesis, assign no mass to some
Ž . Ž .possibly large neighborhood of the origin 0, 0 .
Such prior distributions, however, are unlikely to
represent the views of the practitioners.

5. TESTING ‘‘OBLIQUE’’
ORDER-RESTRICTED HYPOTHESES

We next encounter New Tests in the problems
Ž .considered by Warrack and Robertson 1984 , Gut-

Ž . Ž .mann 1987 , Menendez and Salvador 1991 ,
Ž .Menendez, Rueda and Salvador 1992 and Muker-

Ž .jee and Tu 1995, page 721 , where both the null
and alternative hypotheses are determined by or-
der restrictions on the mean vector. The following
simplified two-dimensional example illustrates the

Ž .essential ideas: based on X as in 5 , test

Ž .11 H : � � C versus H : � � C � C ,0 0 1 1 0

where
� 4C � � � � � 0, � � � ,0 1 2 1

� 4C � � � � � 0, � � � ,1 1 2 1

Ž .12

respectively obtuse and acute, are the closed convex
cones depicted in Figure 2. Note that

Ž . � 413 C � C � � � � � � ,0 1 2 1

a closed half-space.
Ž .The rejection region of the size � LRT for 11 is

Ž .the open region cf. Figure 3

Ž . � � 2R � x � x , x � x � C� 1 2 0Ž .14
� Ž . � 2 2� x � C � C � z .40 1 �

This test is not similar on the boundary between C0
and C ; once again the least favorable distribution1
in H is not attained but is only approached by0

ŽŽ . .N 0, � , I as � � 
. Warrack and Robertson2 2 2 2

 � Ž .WR 1984 show that a less biased and more

Ž .powerful size � test for 11 can be obtained by
ignoring the information that � � � in both H1 2 0

Ž .and H . Specifically, for testing 11 they propose1
the LRT for the simpler problem

Ž . 	 	15 H : � � 0 versus H : � � 0.0 1 1 1

Ž .The rejection region of the size � LRT for 15 is
Ž .the open half-space cf. Figure 3

Ž . � 416 R � A � B � x � x � z .1 �

Ž .When used as a test for 11 , this test obviously
remains size � and, because R � A � B  R, is
less biased and everywhere more powerful than the

Ž . Ž .LRT for 11 itself. WR 1984, page 882 call this a
‘‘failure’’ of the LR criterion and wonder whether
the LR criterion generally ‘‘fails’’ in such problems,
that is, in testing problems where the null and
alternative hypotheses are ‘‘oblique’’ rather than

Ž .orthogonal cf. Figure 2 .
Ž .As Mukerjee and Tu 1995, page 721 note, how-
Ž . Ž .ever, using the LRT for 15 as a test for 11 would

create a ‘‘philosophical dilemma.’’ Its rejection re-
gion R � A � B contains all sample points of the

Ž .form x � z 	 � , b for �
 � b � 0, with � � 0˜b �

Ž .FIG. 2. The closed convex cones C and C in 12 .0 1
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Ž . Ž .FIG. 3. The rejection region R of the LRT for 11 . The rejection regions of the competing tests of Warrack and Robertson 1984 and
Ž . Ž .Mukerjee and Tu 1995 are R � A � B and R � A, respectively � � 0.05 .

Ž .sufficiently small and fixed cf. Figure 3 . For all
� �sufficiently large b , x actually lies closer to C˜b 0

than to C , yet WR’s recommended test would re-1
ject H in favor of H for such sample points.0 1
Clearly, such points cannot be interpreted as pro-
viding significant evidence in favor of the alterna-
tive H relative to H ; in fact, the opposite is true.1 0
Yet WR’s favored test is indeed less biased and
everywhere more powerful than the original LRT

Ž .for 11 .
Ž .Mukerjee and Tu 1995, page 421 propose a

modification of WR’s test that eases, but does not
resolve, their philosophical dilemma. The rejection

Ž .region of their modified test is R � A cf. Figure 3 ,
which does not contain sample points such as x̃b
that lie closer to C than to C . Like WR’s test,0 1
their test is less biased and everywhere more pow-

Ž .erful than the LRT for 11 . Nevertheless, sample
points such as x in Figure 3 lie in this modified˜
rejection region yet are almost equidistant from C0
and C , hence still should not be interpreted as1
providing significant evidence in favor of H .1

These ‘‘dilemmas’’ are again easy to resolve: we
must abandon secondary criteria such as unbiased-
ness and �-admissibility if these criteria conflict
with statistical common sense. The original LRT for
Ž .11 , although more biased and less powerful on the
alternative, does not ‘‘fail’’: it is not dominated by

WR’s test in the decision-theoretic sense and clearly
makes more appropriate decisions.12

6. TESTING A UNION OF
LINEAR SUBSPACES

Ž .Berger and Sinclair 1984 proposed a somewhat
less unreasonable class of New Tests for testing
problems of the following type: based on

Ž .X � X , X , X1 2 3Ž .17
Ž Ž . .� N � � � , � , � , I ,3 1 2 3 3

test

H : � � L � L0 1 23

3 Ž .versus H : � � R � L � L ,1 1 23

Ž .18

where

� 4L � � � � � � � 0 ,1 2 3

� 4L � � � � � 023 1

Ž .19

are orthogonal linear subspaces of dimensions 1
Ž .and 2, respectively. The size � LRT for 18 rejects

H iff0

� Ž . � 2X � L � L1 23Ž .20
Ž 2 2 2 . 2� min X , X 	 X � � ,1 2 3 2, �
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where � 2 is the upper � quantile of the � 2
2, � 2

distribution. This test is not similar on H ; the0
least favorable distribution in H is not attained0

ŽŽ . .but is only approached by N � , 0, 0 , I as �3 1 3 1
� 
.

Ž .Berger and Sinclair 1984 recommended the New
Test that rejects H iff0

� � 2 � � 2X � L X � L1 23
min ,2 2ž /� �2, � 1, �Ž .21

X 2 	 X 2 X 2
2 3 1

� min , � 1.2 2ž /� �2, � 1, �

It is easy to see that this test is also size � and that
its rejection region properly contains that of the
size � LRT, hence is less biased and everywhere
more powerful. Nonetheless, although it does not
produce strikingly inappropriate decisions, the test
Ž .21 does not invalidate the LRT. As above, the risk

Ž .function of 21 is larger than that of the LRT
everywhere on H . Theorem 3.1 of Nomakuchi and0

Ž .Sakata 1987 can be extended to show that both
tests are d-admissible and therefore can be approx-

Ž .imated by Bayes tests. The LRT 20 can be approx-
imated by a Bayes test for a normal prior distribu-
tion that assigns equal dispersions over L and1

Ž .L , while the approximating prior for test 2123
would assign a larger dispersion over L .23

For example, when � � 0.05, then � 2 � 3.891, 0.05
and � 2 � 5.99. Thus the Berger�Sinclair test2, 0.05
Ž .21 would assign the same p-value 0.05 to the

' ' ' 'Ž . Žsample points 3.89 , 5.99 , 0 and 5.99 , 5.99 ,
.0 , even though the former point is closer to H0

than is the latter. By contrast, the LRT assigns the
p-values 0.14 and 0.05, respectively, to these two
points. In the absence of prior information assign-
ing unequal dispersions over L and L , the LRT1 23
yields the more appropriate inference.

7. THE BIOEQUIVALENCE PROBLEM

We now confront the New Tests that occur in the
Ž .Emperor’s testing problem 1 , a special case of the

so-called bioequivalence problem that has attracted
the attention of both statisticians and biologists.

Ž .The papers by Berger and Hsu 1996 and Brown,
Ž .Hwang and Munk 1997 nicely review the applied

Ž .and theoretical background. Wang 1997 , Munk
Ž . Ž .1999 and Wang, Hwang and Dasgupta 1999 are
recent papers on this topic.

Ž .The rejection region of the size � LRT for 1 is
the open triangle R given by

'Ž . Ž . � �22 R � X , s � X 	 t s� n � 1 ,� 4n , �

where t is the upper � quantile of the t distri-n, � n
Ž . 13bution cf. Figure 4 . It is straightforward to show

Ž .that the LRT given by 22 is not similar on the
boundary between H and H , hence is biased for0 1
Ž .1 :


 Ž . �sup P X , s � RŽ � , � .
Ž .� , � �	 H0


 Ž . �� lim P X , s � R � � ,Ž
1, � .
��0

Ž .23


 Ž . �inf P X , s � RŽ � , � .
Ž .� , � �	 H0


 Ž . �� lim P X , s � R � 0.Ž
1, � .
��


Ž .24

After declaring that the LRT ‘‘suffers from a lack
Ž .of power,’’ Berger and Hsu 1996 construct a New

Test that is also size � but less biased and every-
where more powerful than the LRT, improving upon
earlier such tests proposed by Anderson and Hauck
Ž . Ž . Ž .1983 , Patel and Gupta 1984 , and Rocke 1984 .

Ž .Brown, Hwang and Munk 1997 offer a further
refinement, constructing a New Test that is actu-

Ž .ally unbiased for 1 ; the form of its rejection region
R � Q is shown in Figure 4. Because R � Q  R,
once again the New Test trivially dominates the
LRT on H . The LR criterion appears to have failed1
yet again.

However, a glance at Figure 4 shows that the
unbiased New Test achieves its dominance by ex-
tending the rejection region to include arbitrarily
large values of s�n, the estimated standard devia-
tion. As the Emperor and any student of Imperial
Statistics 101 can see, for a fixed sample size, one
cannot hope to declare a significant difference be-
tween any two specified values of the mean � if the

FIG. 4. The triangle ABC is the rejection region R of the LRT
Ž . Ž .� TOST for the bioequivalence testing problem 1 . The rejec-
tion region for the unbiased, everywhere more powerful test of

Ž .Brown, Hwang and Munk 1997 is R � Q; note that Q is
unbounded in both x and s.
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standard deviation is unbounded. In fact, Theorem
Ž . Ž .5.2 b of Hoeffding and Wolfowitz 1958 guarantees

that no fixed-sample-size test can adequately dis-
tinguish between H and H 	 : � � 0, let alone be-0 1
tween H and H ; sequential sampling schemes0 1

Žsuch as Stein’s two-stage procedure cf. Lehmann,
. 141986, pages 258 and 259 are inherently required.

We are not the first to offer such criticism. In his
Ž .discussion accompanying Berger and Hsu 1996 ,

Schuirmann states: ‘‘In my personal opinion, this

property that the rejection region is unbounded in

�s renders all similar or approximately similar tests

Ž .� 15of the hypothesis 1 unacceptable.’’ Brown,
Ž .Hwang and Munk 1997, page 2348 acknowledge

Schuirmann’s criticism and a second as well. They

 �write: ‘‘If s is quite large, our proposed test can

thus leave the statistician in the embarrassing po-

 � � �sition of rejecting the null hypothesis that � � 1

while at the same time estimating a value � � xˆ

 � � �for which � � 1 ’’. Here, � is the MLE underˆ ˆ

H � H . They respond by proposing several modifi-0 1
cations of their test where Q, the addition to the
rejection region, is truncated either horizontally or
vertically or both.

The need for such mathematical acrobatics rein-
Ž .forces our contention that the quest for nearly

unbiased tests more powerful than the LRT is mis-
guided. As Schuirmann implies, the LRT � TOST
already makes perfectly appropriate inferences: if s

� �and�or x is too large, it correctly declares that the
evidence is insufficient to reject H in favor of H .0 1
If this is deemed unsatisfactory, then the solution
is very simple: more observations are needed, not
Better New Tests.16

8. COMPLETELY UNKNOWN COVARIANCE
MATRIX: Nostra Culpa

We have vigorously criticized those who espouse
the notion that the LRT is necessarily rendered
inferior if a New Test of the same size, smaller bias,
and everywhere greater power can be constructed.
We now confess that we have, very recently, com-
mitted the same sin ourselves.

Ž .Perlman 1969 derived the LRT for a testing
problem with a multivariate one-sided alternative
and completely unknown covariance matrix. This
problem takes the following canonical form: based

Ž . Ž .on X � N �,  and S � W n;  , respectively thep p
p-variate normal distribution and Wishart distribu-

Ž .tion with n degrees of freedom n � p , with X and
S independent and � and  both unknown, test

Ž . Ž . � 425 H : � � 0 versus H C : � � C � 0 ,0 1

where C � R p is a pointed17 closed convex cone of
Ž .full dimension p. Because  is unknown, 25 is

more accurately stated as

Ž . � 4H : � ,  � 0 � PP versus0

Ž . Ž . Ž � 4 .H C : � ,  � C � 0 � PP,1

Ž .26

where PP is the set of all p � p positive definite
matrices, so H is in fact composite.0

Ž .Perlman 1969 showed that the size � LRT for
Ž . Ž .25 � 26 rejects H if0

� Ž . � 2� X ; C SSŽ . Ž .27 U C � � c ,�2� Ž . �1 	 X � � X ; C SS

Ž .where � X; C , the projection of X onto C withS
� � 2 �1respect to the norm x � xS x�, is the MLE �̂S
Ž .of � under H � H C , where c � c satisfies0 1 � � , p, n

21 �p�1
� � P � c�22 �n�p	1

Ž .28
21 �p	 P � c�22 �n�p	1

and where the chi-square variates are independent.
Note that c does not depend on the cone C.�

Ž .Perlman 1969 noted that the LRT is not similar
on H ; in fact,0


 Ž . �inf P U C � c0,  �
�0

21 �1� P � c ,�22 �n�p	1

Ž .29

Ž .hence the LRT is biased for 25 and this bias
Žbecomes substantial as p increases cf. Table 1 of

.Perlman and Wu, 2000a . For this reason, the LRT
Ž . Žhas been considered inadequate for 25 cf. Robert-

.son, Wright and Dykstra, 1988, page 223 and for
other order-restricted testing problems when  is

Žcompletely unknown e.g., Laska, Tang and Meis-
. Ž .ner, 1992 . The recent papers of Tang 1994 , Wang


 � Ž .and McDermott WM 1998a and, we confess,

 � Ž .Perlman and Wu PW 2000a are predicated on

this viewpoint.
Ž . Ž .Tang 1994 and WM 1998a have constructed

Ž .New Tests for 25 that are actually similar size � ,
Ž .18apparently unbiased, and everywhere more

Ž .powerful than the size � LRT. Tang’s test for 25
is just the LRT for testing

Ž . Ž . � 430 H : � � 0 versus H D : � � D � 00 1

with  unknown, where D is any half-space in R p

Ž .that properly contains C. The size � LRT for 30
Ž . 
 Ž .� Ž .rejects H D and hence rejects H C if U D �1 1
Ž . Ž .c , where U D is given by 27 with C replaced by�

Ž .D and where c is again given by 28 . Because�

�1�2D is again a half-space for every , Tang’s
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test is similar size � on H . Furthermore, because0
Ž . Ž . Ž .U D � U C since D  C with strict inequality

holding when X � D � C, the rejection region of
Tang’s test properly contains the rejection region of
the LRT, hence trivially is everywhere more power-
ful than the LRT.

As in our previous examples, however, Tang’s
test does not dominate the LRT in the decision-the-

Ž .oretic sense. Furthermore, WM 1998a point out
that Tang’s test can reject H for certain sample0

Ž . Ž .points x, s such that the MLE � � � x; C � 0,ˆ s
clearly an inappropriate decision.

Ž .WM 1998a propose a New Test that is also
similar but does not share this deficiency. Their

19 Ž . Ž .‘‘conditional LRT’’ for 25 rejects H if U C �0
Ž . Ž .c V , where V � XX� 	 S and where c � �� �

Ž .c � satisfies� , p, n

Ž . 
 Ž . Ž . �31 P U C � c v � V � v � � ,0,  �

so their test has exact conditional size � , hence is
an unconditionally similar size � for H .0

Because V is a complete and sufficient statistic
for  under H and because Tang’s test is similar0
for H , WM note that Tang’s test must have Ney-0

Ž .man structure Lehmann, 1986, Theorem 4.2 ; that
is,

Ž . 
 Ž . �32 P U D � c � V � v � � .0,  �

Ž . Ž .Because U D � U C with strict inequality hold-
Ž . Ž .ing when X � D � C, it follows from 31 and 32

Ž .that c v � c for almost every v, hence the rejec-� �

tion region of WM’s test again properly contains
that of the unconditional LRT and is therefore ev-
erywhere more powerful. Furthermore, because
Ž . Ž .U C � 0 when the MLE � � � X; C � 0, WM’sˆ S

test does not reject H for such sample points.20
0

Although WM’s test does not have the same defi-
ciency as Tang’s test, once again it does not domi-
nate the unconditional LRT in the decision-theo-
retic sense and, we assert, achieves its increased
power at the expense of making possibly inappro-
priate decisions. To demonstrate this, we consider

Ž .the special case actually treated by WM 1998a ,
where C � OO, the nonnegative orthant in R p. In

Ž .this case 31 becomes


 Ž . Ž . �� � P U OO � c v � V � v0,  �

2p �k Ž .� P � c vÝ �2�n�p	1k�1


 ��P K � k � V � v0, 

Ž .33

2p �k Ž . 
 �� P � c v P K � � k ,Ý � 0, �v2�n�p	1k�1

Ž . Ž .where K � K X, S and K � � K � X,  denote the
Ž .number of positive components of � X; OO andS

Ž .� X; OO , respectively. The third equality follows

Ž .from Proposition 2.1 of WM 1998b . Whereas WM’s
Ž .test is based on the conditional distribution of U OO

given V, if we introduce a finer conditioning based
Ž .on both V and K � K X, S , the conditional distri-

Ž .bution of U OO can change considerably, and, condi-
tionally, WM’s test can become severely anticonser-
vative.

This effect is strongest when K � p, in which
Ž . � � 2case U OO � X . By arguments similar to thoseS

Ž .used in the proof of Proposition 2.1 of WM 1998b ,
� � 2 Ž �it can be shown that X is independent of V, KS

4.� p when � � 0, hence


 Ž . Ž . �P U OO � c v � V � v , K � p0,  �

2� � Ž .� P X � c vS �
Ž .34

2�p Ž .� P � c v .�2�n�p	1

Ž .It is shown in the Appendix that 34 is nearly 1,
rather than the nominal value � , if p is moderately
large and v has the form

Ž . Ž 	 .35 v � � I � � e e ,� , � p p p

Ž .Ž .'where e � 1� p 1, . . . , 1 is a unit vector alongp
the central ray in OO, � � 0 is fixed, and 0 � � � 1
with � �1. For such sample points, therefore, WM’s
test is indeed severely anticonservative.

Ž .For example, it follows from 55 that when � �
Ž .0.05, p � 10 and n � p 	 1 � 10, 34 is nearly

0.95 for such sample points, while for p � 10 and
n � p 	 1 � 60 it exceeds 0.999.

By contrast, for the unconditional LRT, the con-
Ž .ditional probability corresponding to 34 is, for

v � v ,�, �

Ž .P U OO � c � V � v , K � p0,  � � , �

2�p� P � c ,�2�n�p	1

Ž .36

which is much closer to the nominal value � . In
Ž .fact, 28 yields the bounds

2�p
� � P � c�2�n�p	1

Ž .37
2�p

� P � c ,p�1, �2�n�p	1
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where, for k � 1, . . . , p, c � c satisfiesk , � k , n�p, �

2�kŽ .38 � � P � c .k , �2�n�p	1

For example, when � � 0.05, p � 10 and n � p
Ž .	 1 � 10, the right-hand probability in 36 is 0.06,

while for p � 10 and n � p 	 1 � 60 it is 0.05.
For the special case C � OO considered by WM

Ž . Ž .1998a , PW 2000a also construct a competing test
Ž . Žthat is less biased than the LRT for 25 and based

. Žon simulations also more powerful in most but not
.all regions of the alternative. This test, which is

based on the conditional distribution of the LRT
Ž . Ž .statistic U OO given K, rejects H if U OO � c ,0 K , �

Ž .where c is given by 38 . For k � 1, . . . , p, PWK , �

show that this test is conditionally similar size �
given K � k, but, since it never rejects H when0
K � 0, its conditional size is 0 when k � 0. Thus
PW’s test is not unconditionally a similar size � on
H , but they advocate it nevertheless on the grounds0
that it is much more nearly similar than the uncon-
ditional LRT.

Ž .Unlike the New Tests of Tang 1994 and WM
Ž .1998a , the rejection region of PW’s test does not
strictly contain that of the LRT but nearly does so,
since

Ž .39 c � ��� � c � c � c1, � p�1, � � p , �

Ž .by 37 . Thus, the conditional rejection region of
PW’s test given K � k properly contains that of the
unconditional LRT for k � 1, . . . , p � 1 but is a
proper subset for k � p. In fact, for every v,

Ž .P U OO � c � V � v , K � p0,  p , �

2�p� P � c � � ,p , �2�n�p	1

Ž .40

so PW’s test does not exhibit the strongly anticon-
servative behavior noted for WM’s test.

Nonetheless, fairness compels us to apply the
same criticism to PW’s test that we have applied to
the other competitors to the LRT described in this
section. That is, PW’s test does not dominate the
LRT in the decision-theoretic sense, and the mere
fact of being less biased and often more powerful
does not necessarily render it superior to the LRT
in the sense of making appropriate inferences. We
now believe that the unconditional LRT remains

Ž . Ž .the preferred test for 25 � 26 .
Little is known about the d-admissibility of the

tests considered in this section. PW’s test is proba-
bly inadmissible due to the discontinuous nature of
the boundary of its acceptance and rejection re-
gions. See Section 10 for further comments.

9. THE FISHER – NEYMAN DEBATE ON
HYPOTHESIS TESTING

The issues raised in this paper echo the cele-
brated Fisher�Neyman debate concerning the
proper formulation of statistical hypothesis testing
Ž .cf. Lehmann, 1993; Royall, 1997 and, we believe,
strongly support Fisher’s position.

Three fundamental and generally accepted tenets
Ž .of the Neyman�Pearson NP testing theory are its

emphasis upon:

Ž .a Explicit formulation of both the null and alter-
native hypotheses.

Ž .b The role of the power function for evaluating
tests as decision rules.

Ž .c Use of the LR for constructing most powerful
size � tests for simple hypotheses and intu-
itively reasonable tests for composite hypo-
theses.

It is not surprising, therefore, that the NP school
came to focus its efforts on the quest for most
powerful tests size � tests and, when this proved
unattainable for composite hypotheses, introduced
secondary criteria such as unbiasedness in order to
obtain optimal tests within restricted classes.

Fisher, however, viewed hypothesis testing, or
significance testing, as a means of interpreting data
as evidence concerning a scientific hypothesis and
regarded such NP notions as a fixed significance
level, power and unbiasedness as ‘‘merely mathe-


 � Žmatical consideration s ’’ cf. Lehmann, 1993, pages
. Ž .1244 and 1245 . Dawid 1991, page 80 writes

For Fisher, inference involves the subtle teas-
ing from the data at hand of the information
that they contain . . . and any suggested method
of inference is to be judged on how well it
succeeds in extracting their secret. Fisher dis-
missed Neyman’s preoccupation with the be-
haviour of inference rules in repeated sampling
as being founded on a misguided analogy with
‘acceptance procedures,’ such as those used in
industry to control the quality of incoming ma-
terial, and as having no relevance to the task of
advancing scientific understanding.

Views similar to Fisher’s have been frequently ex-
pressed:

‘‘But this book, by its very excellence, its thor-
oughness, lucidity, and precision, intensifies my


 �growing feeling that nevertheless NP theory is
arbitrary, be it however ‘objective,’ and the prob-
lems it solves, however precisely it may solve them,
are not even simplified theoretical counterparts of

Žthe real problems to which it is applied.’’ Pratt,
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1961, page 164, reviewing the first edition of
.Lehmann’s Testing Statistical Hypotheses.

‘‘There is no statistical sense to significance lev-
Ž .els.’’ Rubin, in Cornfield, 1969, page 655

‘‘The difficulty is that the solution to this problem

 �finding the best rejection region of size � has no
relevance per se to the problems of applied statis-

Ž .tics . . . ’’ Kempthorne, in Kiefer, 1977, page 817
Ž‘‘I think that the attacks of the past 20 years or

actually 40 years, since R. A. Fisher should be
. 
 �included on the NP paradigm have been largely

Ž .successful.’’ Dempster, in Kiefer, 1977, page 815
‘‘ . . . the familiar optimality criteria of statistics

are in fact in conflict with scientific principles . . . ’’
Ž .Fraser and Reid, in Brown, 1990, page 503


 �‘‘ NP theory does not address the problem of
representing and interpreting statistical evidence,
and the decision rules derived from NP theory are
not appropriate tools for interpreting data as evi-

Ž .dence.’’ Royall, 1997, page 58
‘‘This points to the difference between statistics

as an effort to learn, to get at the truth, and
decision theory�a difference that was emphasized
by Fisher in some of his disputes with Neyman.’’
ŽLehmann, 1998, after noting the appropriateness
of the NP formulation in a hypothetical commercial

.application.

Such views are often supported by simple one-
parameter examples showing that a most powerful
size � test may be inappropriate even for the ele-
mentary problem of testing a simple hypothesis
versus a simple alternative. We briefly review two
familiar examples.

EXAMPLE 1.21 Based on a single observation X,
consider the problem of testing


 �H : X � Uniform 0, 10


 �versus H : X � Uniform 0.99, 1 .1

Ž .41


 �The test T with rejection region 0.95, 1 is a most
Ž .powerful size 0.05 test its power is 1 , but inappro-


 .priately interprets an observation X � 0.95, 0.99
as evidence supporting H over H . Furthermore,1 0
although its rejection region strictly contains the


 �rejection region 0.99, 1 of the size 0.01 LRT T*
Žand hence, like the New Tests, is more or at least

.as powerful on both H and H , T is d-inadmissi-1 0
ble: it is dominated by T*, which also has power 1.
Thus the most powerful size 0.05 test T fails both
the Fisherian requirement to appropriately inter-
pret the data as evidence for or against the hy-
potheses under consideration and the decision-theo-
retic requirement of admissibility.

EXAMPLE 2. A composite alternative. Based on

 �one observation X � Uniform � , � 	 1 , consider

the problem of testing

Ž .42 H : � � 0 versus H : � � 0.0 1


 �The test T with rejection region 0.95, 
 is the
uniformly most powerful size 0.05 test and is unbi-
ased and d-admissible, but wrongly interprets an


 �observation x � 0.95, 1 as supporting the alterna-
tive H more strongly than H . This interpretation1 0

Ž . Ž .is inappropriate because the LR p x �p x for� 0
such an observation never exceeds 1 for any � � 0.
Like the New Tests, the rejection region of T strictly

Ž �contains the rejection region 1, 
 of the LRT T*
Ž .hence is everywhere more or at least as powerful

Ž .than T*, yet T* also d-admissible does not make
inappropriate inferences.

The failures of the New Tests in the multiparam-
eter examples of Sections 4�8 demonstrate even
more dramatically that the NP criteria of unbiased-

Ž .ness and more or most powerful size � test can
lead to scientifically inappropriate statistical proce-
dures.

10. SOME INADMISSIBLE LIKELIHOOD
RATIO TESTS

We do know of a natural hypothesis-testing prob-
lem for normal means where the LRT is actually
d-inadmissible. This problem has the following

Ž .canonical form: based on X � N �,  and S �p
Ž .W n;  as in Section 8, testp

Ž .43 H : � � L versus H : � � L � L ,0 0 1 1 0

� 4 pwhere 0 � L � L are linear subspaces of R and0 1
where  is completely unknown. The size � LRT

Ž .for 43 rejects H if0

Ž .U L ; L0 1

� Ž . Ž . � 2� X ; L � � X ; L SS 1 S 0
� � c .�2� Ž . �1 	 X � � X ; L SS 1

Ž .44

The LRT is similar, unbiased, and conditionally
most powerful and admissible given the ancillary

� Ž .� 2statistic X � � X; L . Marden and PerlmanSS 1
Ž .1980 showed, however, that for the usual signifi-
cance levels, the LRT is unconditionally d-inadmis-

Žsible for this testing problem. The proof is noncon-
.structive; no test that dominates the LRT is known.

Ž .Brown 1990, page 489 , citing Fisher, Savage,
and Cox, notes, ‘‘It is widely held that statistical
inference should be carried out conditional on the

Žvalue of any ancillary statistic.’’ Gleser cf. Brown,
.1990, page 508 writes that ‘‘except for some very


 �specialized applications, unconditional d- admissi-
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bility is generally only of interest to a statistician
seeking to do well in many similar problems, but
not to users of the inference . . . presented by the

Žstatistician in any particular problem.’’ See Gleser’s
.convincing baseball example on page 512. Thus it

Ž .is arguable that the LRT 44 is appropriate despite

 �its unconditional d- inadmissibility.

Because of the similarity of the LRT statistics
Ž . Ž . Ž .U C and U OO in Section 8 to U L ; L here0 1

Ž � 4.consider especially the case L � 0 , we conjec-0
ture that each of the tests discussed in Section 8
Ž .the LRT and the tests of Tang, WM, and PW will

Ž .be unconditionally d-inadmissible for 25 . Again,
however, a case can be made for the LRT.

A well-known example22 due to Stein can be used
to exhibit a d-inadmissible LRT for normal covari-
ance matrices. Based on the independent bivariate
normal observations

Ž . Ž .X � X , X � N 0, 1 2 2Ž .45
Ž . Ž .and Y � Y , Y � N 0, �  ,1 2 2

where  is an unknown positive definite covariance
matrix and � is an unknown scalar, test

Ž .46 H : � � 1 versus H : � � 1.0 1

It is straightforward to show that the LRT statistic
is identically 1, so the size � LRT is the trivial
randomized test that ignores X, Y and accepts H0
with probability 1 � � and rejects H with proba-0
bility � . But Y 2�X 2 � �F , so the test that rejects1 1 1, 1
H if Y 2�X 2 � F has size � and power0 1 1 1, 1; 1��

strictly greater than � , hence dominates the LRT.
Another well-known example23 due to Stein

shows that the LRT may be not only d-inadmissi-
ble, but actually ‘‘worse than useless’’ in the sense
that its power may be strictly smaller than that of
the trivial randomized test with the same size. In a
simplified version of this example, a single observa-

� 4tion X with range 0, 1, 2 and corresponding prob-
abilities p , p , p is obtained, and it is desired to0 1 2
test H versus H � H � H , where0 1 2

H : p � 0.50, p � 0.25, p � 0.25,0 0 1 2

H : p � 0.60, p � 0.40, p � 0.00,1 0 1 2Ž .47

H : p � 0.60, p � 0.00, p � 0.40.2 0 1 2

The size � � 0.50 LRT, which rejects H in favor of0
H iff X � 1 or X � 2, has power 0.40 � 0.50, hence
is d-inadmissible and ‘‘worse than useless.’’ In fact,
the ‘‘reversed LRT,’’ which rejects H in favor of0
H iff X � 0, also has size alpha 0.50 but power
0.60 � 0.50.24

Ž .Aitken 1991, page 140 , responding to a similar
example of Goldstein, remarks that the ‘‘worse than
useless’’ behavior of the LRTs in such examples
disappears if two or more observations are taken

rather than one and notes a similarity to the well-
known difficulty encountered by likelihood methods
when attempting inference in a two-parameter fam-
ily with only one observation.

The examples noted in this section, not the New
Tests examined above, show that the LRT is not
universally satisfactory for hypothesis-testing prob-
lems. It would be of interest to characterize those
problems where the LRT is or is not successful. We
believe that the LR criterion remains a generally
reasonable first option for non-Bayesian parametric
hypothesis-testing problems.

11. A CAUTIONARY NOTE

In their criticism of the LRT and advocacy of the
New Tests for the bioequivalence problem, Berger

Ž .and Hsu 1996, page 292 make the following state-
ment: ‘‘We believe that notions of size, power, and
unbiasedness are more fundamental than ‘intui-
tion’ . . . ’’ In our opinion, such a statement places
the credibility of statistical science at serious risk
within the scientific community. If we are indeed
teaching our students to disregard intuition in sci-
entific inquiry, then a fundamental reassessment of
the mission of mathematical statistics is urgently
needed.

APPENDIX: VERIFICATION OF THE
( )ASSERTION FOLLOWING 34

As � �1,
Ž . �1 	48 � v � I � e e ,� , � p p p

Ž .a symmetric idempotent � projection matrix,
hence also
Ž . �1�2 1�2 	49 � v � I � e e .� , � p p p

It follows that there exist positive constants b ��, �

b such that as � �1,�, � , p

Ž . �1�2 	50 b v � e e ,� , � � , � p p

the projection matrix onto the one-dimensional sub-
space spanned by e . Thus, as � �1,p

Ž . �1�2 � 451 v OO � � e � 0 � � � 
 ,� , � p

the ray through e , hencep


 �P K � � k0, �v� ,�

1�2, if k � 0, 1,� ½ 0, if k � 2, . . . , p.

Ž .52

Ž .It follows from 33 that
Ž . Ž . 	53 c v � c as � �1,� � , � �

where c	 � c	 satisfies� � , n�p

21 �1 	Ž .54 � � P � c .�22 �n�p	1
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Ž . Ž .By 34 , therefore, for fixed � � 0 and � � � �
sufficiently near 1,

Ž . Ž .P U OO � c v � V � v , K � p0,  � � , � � , �

2�p 	� P � c .�2�n�p	1

Ž .55

Ž . Ž .By 54 , however, the right-hand expression in 55
Žapproaches 1 rather than � as p increases pro-

.vided that n also increases so that n � p 	 1 � 0 ,
Ž .as asserted after 34 .
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NOTES

1. ‘‘This does also increase the power everywhere
on the null hypothesis,’’ he thought, ‘‘thereby in-
creasing the probability of a Type I error, but as
long as the size is maintained at � , my new proce-
dures are valid competitors to the size � LRT.’’

2. Including H , where the power is the probabil-0
ity of Type I error; hence these tests do not domi-
nate the LRT in the decision-theoretic sense of
having everywhere smaller risk function.

3. The LR criterion has recently been criticized
for allegedly anomalous behavior of a different sort
in parametric testing problems with one-sided or

Žorder-restricted alternatives cf. Cohen and Sack-
rowitz, 1998 and Cohen, Kemperman and Sack-

. Ž .rowitz, 1997 . Perlman and Wu 2000b assert that
this criticism is also unwarranted.

Ž .4. See, for example, Hacking 1965 , Edwards
Ž . Ž .1972 , Dempster 1997, page 250 and Royall
Ž .1997 , especially their discussions of the interpre-
tation of data as evidence and support for statisti-
cal hypotheses.

5. It should be noted, however, that no nontriv-
Žial unbiased tests exist for problems of this type cf.

Lehmann, 1952, Section 3; Nomakuchi and Sakata,
.1987, Section 2 .

Ž .6. We disagree. By 9 , the least favorable distri-
butions in H are not attained but are approached0

Ž . Ž . Ž .by N �, I with � � � , 0 or 0, � as � � 
2 2 1 2 1
Ž .or � � 
 cf. Sasabuchi, 1980 . These are the dis-2

tributions in H that are the most difficult to dis-0
Ž .tinguish from H . Because � � 0, 0 is easier to1

distinguish from H , it is entirely appropriate that1
the power of the LRT, that is, the probability of a

Ž .Type I error, be less than � at � � 0, 0 . This
reasoning is incontrovertible in the classical uni-
variate problem of testing a one-sided hypothesis
about a normal mean � with known variance: H :0
� � 0 versus H : � � 0. Here � � 0 determines the1
least favorable distribution in H and the power of0
the LRT is less than � whenever � � 0.

Ž .7. Berger 1989 uses ‘‘dominated’’ in the deci-
sion-theoretic sense in the first column on page
193, noting that the LRT is not dominated, but
reverts to the quoted usage in the second column on
page 193.

Ž8. This renders the LRT �-inadmissible Leh-
.mann, 1986, Section 6.7 , a serious-sounding indict-

ment. However, our defense of the LRT suggests
that the guilt lies with the criterion of �-admissibil-
ity itself.

9. This is incontrovertible in the classical one-
dimensional testing problem in Note 6. Exactly the
same reasoning applies in the multivariate prob-
lems discussed here.

10. Furthermore, each of these allegedly superior
tests has acceptance and rejection regions that are
neither convex, monotone, nor, in some cases, con-

Žnected. Laska and Meisner 1989, pages 1140 and
.1141 make a convincing case that the acceptance

and rejection regions be monotone. Note, however,
that their argument is implicitly predicated on the
assumption that, in Bayesian terminology, substan-
tial prior mass is assigned to the vicinity of the

Ž .origin 0, 0 within the null hypothesis H . If this is0
Ž .not the case, then the corresponding optimal Bayes

test need not be monotone.
Ž .11. Berger’s results for 10 also apply to the

Ž .multivariate extension of the bivariate problem 10 ,
and both Berger’s and Zelterman’s results should
extend to the case where OO is replaced by any
proper convex cone CC in R p, as well as the problem
where H and H are interchanged. Our criticism0 1
applies to these cases as well.

12. Once again we are assuming a nonBayesian
framework. WR’s test does arise as a Bayes test for
restrictive priors, for example, for a prior that con-
centrates its mass on any horizontal line above the

Ž .� -axis, hence is d-admissible for 11 . We conjec-1
ture that the LRT is also d-admissible and is ap-
proximately Bayes for some prior that spreads its
mass more uniformly on C � C .0 1
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13. This is often called the ‘‘two one-sided tests’’
Ž . Ž� TOST procedure. See Berger and Hsu 1996,

.Sections 3 and 4 for a simple proof that it has size
Ž .� for 1 .

14. The same criticism applies to the New Tests
Ž .proposed by Anderson and Hauck 1983 , Patel and

Ž . Ž .Gupta 1984 , Rocke 1984 and Berger and Hsu
Ž .1996 .

Ž .15. Berger and Hsu’s rebuttal 1996, page 317 is
off the point. They deflect Schuirmann’s criticism
by discussing a different testing problem; namely,
the paired difference problem. Here, unlike the

Ž .bioequivalence problem 1 , the distance from the
alternative hypothesis H : � � � to the null hy-1 1 2
pothesis H : � � � , measured in standard units,0 1 2
is unbounded, so it is not unreasonable that a
rejection region be unbounded in s.

16. Our assertion that these New Tests make
inappropriate inferences again rests on the implicit
assumption that no unusual prior information is
available. If, for example, one assumes a prior dis-
tribution over H under which � � 0 and which1
assigns all its mass to the unbounded interval � �
Ž .b, 
 on the �-axis according to some heavy-tailed
density, then for sufficiently large b, the Bayes test
might be approximated by a test more nearly re-
sembling the unbiased test of Brown, Hwang and

Ž .Munk 1997 .
17. A closed convex cone is pointed if it contains

no nonzero linear subspace.
Ž .18. The proof of Proposition 5.1 in WM 1998a ,

asserting the unbiasedness of their New Test, is
incorrect; the inequality ���1� � 0 on page 385,0
column 1, does not hold.

19. Their test is based on the conditional distri-
Ž .bution of the unconditional LRT statistic U C given

V, hence is not the actual conditional LRT. The
latter would be obtained from the conditional distri-

Ž .bution of X, S given V, which seems difficult to
obtain.

20. Nor, for that matter, does the unconditional
LRT.

21. Similar examples have been frequently noted
Že.g., Dempster, 1997, pages 249 and 250; Berger
and Wolpert, 1988, Example 4a, page 8; Aitken,

.1991, page 112; Royall, 1997, pages 16 and 17 .
Ž .22. See Cox and Hinkley 1974, Example 5.22 ;

Ž .Lehmann 1986, Examples 6.11 and 9.9 ; Eaton
Ž .1989, Example 6.5 .

Ž . Ž23. See Lehmann 1950, page 2 ; Lehmann 1986,
. Ž .Problem 6.18 ; Hacking 1965, pages 97�99 . Also

Ž .see Basu 1975, page 34 .
Ž .24. Hacking 1965, pages 98 and 99 argues on

Fisherian grounds that the LRT, although ‘‘worse
than useless,’’ is actually more appropriate as a

measure of evidence than the reversed LRT, but we
do not find his argument convincing.

25. To address Berger’s uncertainty about our
use of ‘‘distance’’ and ‘‘fit,’’ ‘‘close’’ refers to the
information metric which, for normal distributions
with known covariance, is the same as the covari-
ance metric.

26. Not even Neyman himself. Erich Lehmann
Ž .has written to us that for problem 6 of Section 4,

‘‘I believe Neyman would have preferred the LRT,
as I do.’’

27. Neither does the LRT, but as we shall see, it
exhibits unreasonable behavior of a different sort.

28. This example suggests a partial answer to
the question that we posed about the LR criterion
at the end of Section 10; in general the LRT is
unsuccessful for a null hypothesis consisting of sev-
eral regions of differing dimensionalities. The same
is true of the Wald and Rao score tests.
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