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Abstract A statistical challenge in community ecology is

to identify segregated and aggregated pairs of species from

a binary presence–absence matrix, which often contains

hundreds or thousands of such potential pairs. A similar

challenge is found in genomics and proteomics, where the

expression of thousands of genes in microarrays must be

statistically analyzed. Here we adapt the empirical Bayes

method to identify statistically significant species pairs in a

binary presence–absence matrix. We evaluated the per-

formance of a simple confidence interval, a sequential

Bonferroni test, and two tests based on the mean and

the confidence interval of an empirical Bayes method.

Observed patterns were compared to patterns generated

from null model randomizations that preserved matrix row

and column totals. We evaluated these four methods with

random matrices and also with random matrices that had

been seeded with an additional segregated or aggregated

species pair. The Bayes methods and Bonferroni correc-

tions reduced the frequency of false-positive tests (type I

error) in random matrices, but did not always correctly

identify the non-random pair in a seeded matrix (type II

error). All of the methods were vulnerable to identifying

spurious secondary associations in the seeded matrices.

When applied to a set of 272 published presence–absence

matrices, even the most conservative tests indicated a

fourfold increase in the frequency of perfectly segregated

‘‘checkerboard’’ species pairs compared to the null

expectation, and a greater predominance of segregated

versus aggregated species pairs. The tests did not reveal a

large number of significant species pairs in the Vanuatu

bird matrix, but in the much smaller Galapagos bird matrix

they correctly identified a concentration of segregated

species pairs in the genus Geospiza. The Bayesian methods

provide for increased selectivity in identifying non-random

species pairs, but the analyses will be most powerful if

investigators can use a priori biological criteria to identify

potential sets of interacting species.

Keywords Biogeography � Null model � C score �
Presence–absence matrix � Statistical test

Introduction

A major research focus in community ecology and bioge-

ography has been the identification of non-random species

associations in binary presence–absence matrices (Simberloff

and Connor 1979; Gotelli and Graves 1996; Sfenthourakis

et al. 2006). In these matrices, each row represents a

species or taxon, each column represents a site or sample,

and the entries indicate the presence (1) or absence (0) of a

species in a site (McCoy and Heck 1987). There are pat-

terns in such matrices that can be summarized by a single

univariate metric, such as the nestedness of the matrix
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(Patterson and Atmar 1986), or the C score (Stone and

Roberts 1990), a measure of average pairwise species

segregation.

In null model analysis (Gotelli 2001), the observed

matrix is randomized or reshuffled, and the metric is

recalculated for the null assemblage. A large number of

null assemblages (typically 1,000) are created this way

(Manly 1991), and the tail probability for the observed

matrix is estimated in a classic frequentist test of the

P(observed data | null distribution).

The community metric, such as the number of species

pairs with exclusive distributions [checkerboard distribu-

tions of Diamond (1975)] or the C score (Stone and

Roberts 1990), is often an aggregate sum or an average of

an index that is calculated for each unique pair of species in

the matrix. However, there is great interest in identifying

particular pairs of species that contribute to the pattern of

non-randomness (Burns 2007), or perhaps in detecting a

few significant pairs that might be embedded in a matrix of

mostly random associations (Sfenthourakis et al. 2006;

Veech 2006).

In theory, the same null model methodology that is

applied to the entire matrix could be used to estimate the

statistical significance of each individual species pair. The

problem is that, with n species in the matrix, there are

(n)(n - 1)/2 such possible pairs. Thus, for a matrix with 50

species, there are 1,225 unique species pairs to be tested.

Many of these pairs may not be biologically or statistically

independent of one another. Exactly the same problem has

arisen in the fields of genomics and proteomics. With

microarrays, it is now possible to rapidly screen the

expression levels of thousands of different genes, at least

some of which are not independent of one another

(Kammenga et al. 2007). How do researchers decide which

of these gene products are ‘‘interesting’’ enough to warrant

further analysis? The empirical Bayes approach (Efron

2005) has been a very useful statistical tool for this pur-

pose. In a nutshell, the empirical Bayes approach uses a

bootstrapped or randomized distribution to estimate the

priors in a Bayesian analysis and control for false discovery

rates.

In this paper, we apply the empirical Bayes method to

the ecological problem of detecting non-random species

pairs in binary presence–absence matrices. Of course, any

such method imposes an arbitrary cut-point for recognizing

‘‘significant’’ or ‘‘interesting’’ cases from a large ranked list

of species pairs that range from strongly aggregated

through random to strongly segregated. However, by

comparing the results of different methods applied to

artificial matrices that have specified levels of structure or

randomness, we can assess their performance and make

useful interpretations of the results when they are applied

to published data sets.

We begin by describing four possible screening tests for

non-randomness, ranging from simple frequentist tests of

all possible species pairs, through a sequential Bonferroni

correction, to two variants of the empirical Bayes

approach. We apply these tests to two benchmark data sets

of 100 random matrices each that have been created by

stochastic sampling processes. We also apply the tests to

random matrices that have been supplemented with the

addition of a single pair of aggregated or segregated spe-

cies. We then analyze a set of 272 published matrices that

have been used in previous analyses of community-wide

co-occurrence (Gotelli and McCabe 2002) and nestedness

(Ulrich and Gotelli 2007a). Finally, we analyze in detail

data matrices for land birds of the Vanuatu Islands

(Diamond and Marshall 1976) and finches of the Galapagos

Islands (Sanderson 2000), both of which have figured

prominently in the species co-occurrence literature.

Materials and methods

We consider four methods that can be used to decide

whether a particular pair of species is aggregated, segre-

gated, or random in occurrence.

Ninety-five percent confidence limit

(confidence limit criterion)

The simplest way to test whether two species are aggregated

or segregated in occurrence is to compare a co-occurrence

metric with either a theoretical or a simulated random dis-

tribution (the null model) that provides the necessary mean

and confidences limits (CL) to be used in frequentist infer-

ence (CL criterion). In the case of a species 9 sites matrix,

we would have to screen all species pairs for those with

scores above or below their respective 95% CL of the ran-

dom distribution (Sfenthourakis et al. 2004). The problem

with the CL criterion is that a certain number of species pairs

are expected to show significant patterns even if the matrix

as a whole is random. Using the traditional 95% CL

benchmark, a matrix with 30 species contains 30 9

29/2 = 435 pairs, of which 22 are expected to fall outside

95% CL just by chance. If there were three truly non-random

associations in the matrix, the false detection error rate

(FDER) would be (22)/(22 ? 3) = 88%. Sanderson (2004)

and Sfenthourakis et al. (2006) both advocate eliminating

the weakest 5% or 10% of the significant pairs to safeguard

against this problem.

A second problem with the CL criterion is that, even if the

individual pairs of species are biologically independent,

they might not be statistically independent in the null model

analysis. For co-occurrence and nestedness analyses, the

most commonly used randomization is the ‘‘fixed–fixed’’
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algorithm (Gotelli 2000), in which species occurrences are

randomized, but the row sums (=species incidences) and

column sums (=species richness per site) of the observed

matrix are preserved. In benchmark tests for community

metrics of nestedness (Ulrich and Gotelli 2007a) and

co-occurrence (Gotelli 2000), this algorithm correctly

identifies random matrices and structured matrices with

acceptable type I and type II error frequencies. However, the

constraint of fixed row and column totals introduces asso-

ciations between species and sites that might distort the

number of species pairs that fall outside the 95% CL (Ulrich

and Gotelli 2007a).

Sequential Bonferroni correction (Benjamini

and Yekutieli criterion)

The Bonferroni correction is a simple metric to reduce the

FDER by dividing the significance level a by the total

number of tests r. However in the case of pair-wise species

associations, the Bonferroni correction will often result in

much too conservative estimates because of the large

number of species pairs in a typical matrix. Moreover, the

Bonferroni method assumes the tests to be independent

(Gotelli and Ellison 2004) which is not generally true for

presence–absence matrices. Benjamini and Yekutieli

(2001) developed a less conservative sequential FDER

correction for dependent tests [Benjamini and Yekutieli

(BY) criterion]. This refinement modifies the test-wise H0

probability benchmark a from the ordered sequence (larg-

est to smallest) of H0 probabilities Pk to

P�k ¼ a
k

r

1
Pr

i¼1
1
i

ð1Þ

where the k = 1 to r probability values Pk are ordered from

largest to smallest, and is Pk
* the adjusted probability

benchmark. When a relatively small number of tests are

being conducted, as in most experimental and correlative

analyses in ecology, there are good philosophical and sta-

tistical reasons for avoiding corrections or adjustments to

P-values (Gotelli and Ellison 2004; Moran 2003). But for

the analysis of species pairs, there are typically hundreds

and thousands of comparisons being made, so some

adjustment of the standard P-value is prudent.

Empirical Bayes mean based (Bayes mean-based

criterion)

Another way to reduce FDERs is to use an empirical Bayes

approach (Efron 2005). Assume we have a species 9 sites

matrix with n species and m sites. We use an appropriate

metric for non-random species associations and compare

the scores for each species pair with those obtained for the

same species pair in randomized matrices. Instead of

comparing observed and expected scores of all n(n - 1)/2

species pairs directly, we first plotted the frequency dis-

tribution of pairwise scores generated by the null model.

This gives us an impression of how often certain scores are

expected by chance, irrespective of whether those scores

are statistically significant when analyzed by themselves.

We then compare the observed distribution of scores with

this null distribution.

For example, Fig. 1 shows a distribution of rescaled

C score values based on the occurrence matrix of 71

ground beetle species on 17 lake islands in northern Poland

(Ulrich and Zalewski 2006). The C score index was

rescaled on a 0.0–1.0 interval (0.0 = complete overlap,

1.0 = complete segregation), and the 2,485 pairwise score

values were grouped into 22 classes of evenly spaced bins

between 0.0 and 1.0. Within each bin, the scores were

ranked from smallest to largest. Next, the original matrix

was randomized according to a standard procedure in

which the row and column totals of the observed matrix

were preserved (Gotelli 2000). The randomization was

repeated 1,000 times, and the average number of species

pairs in each bin was calculated to generate a null distri-

bution of the frequencies of species pairs with different

scores. In bin A (see Fig. 1), 35 species pairs were

observed with a score between 0.35 and 0.40, whereas only

32.2 such pairs, on average, were generated in the 1,000

null matrices. In bin B, 24 species pairs were observed with

a score between 0.60 and 0.65, but only 20 (19.85) were

expected from the null distribution. If we were to retain all

of these pairs, the FDER would be 32.2/35 = 92% and

20/24 = 83%, regardless of whether the individual pairs

were statistically significant or not. Therefore, we consid-

ered only the largest scores within each bin that were above

this null expectation. These scores constituted 4 and 6% of

pairs, respectively, within each bin. Within this group of

species pairs, we retained only those for which the simple

null hypothesis was rejected by the standard randomization

procedure (i.e., the C score for that specific pair was larger

than 95% of the C scores generated for that same species

pair in the simulation). In this way, we substantially

reduced the number of false positives and the probability of

a type I error. We call this selection criterion mean-based

(Bayes M criterion) because it counts the number of spe-

cies pairs in each bin that are greater than the mean number

of simulated species pairs.

Empirical Bayes CL based (Bayes CL criterion)

As illustrated in bins C and D of Fig. 1, a more conser-

vative test would be to consider only that fraction of spe-

cies pairs beyond the upper 95% CL of the corresponding

null model score (the expected number of significant
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scores). In bin C, 32 species pairs had scores between 0.50

and 0.55, whereas 19.5 ± 4.0 (mean ± 95% CL) were

expected (26 pairs marks the upper 95% CL). In bin D, 13

species pairs were observed with scores between 0.70 and

0.75, but only 3.1 ± 1.9 pairs were expected (eight pairs

mark the upper 95% CL). The best candidate pairs for non-

random association are the 1–26/32 = 19% (bin C) and

1–8/13 = 38.5% (bin D) of species pairs that are the fur-

thest outside their respective CLs (Bayes CL criterion).

For many other score classes in Fig. 1, the number of

observed species pairs was less than expected, but our

interpretations are restricted to the positive deviations in

the different bins. Both of the Bayesian selection criteria

(mean-based and CLs) greatly reduce the number of

potential candidate pairs for non-randomness. Using our

Bayesian selection criteria reduced the number of pairs

that are the best candidates for non-random association to

62 (Bayes M criterion) and 16 (Bayes CL criterion). The

next step of analysis is to check whether the individual

scores of any of these 62 or 16 pairs deviated signifi-

cantly from the null distribution by the simple CL cri-

terion. In the present case the Bayes M criterion

identified 6 pairs and the Bayes CL criterion one pair as

being significantly segregated. For comparison, of the

2,485 species pairs, 42 were significant by the simple CL

criterion, and 15 after the Bonferroni sequential correc-

tion (BY criterion).

Note that pairs identified by the Bayes CL criterion (the

most conservative method) are a subset of those identified

by the Bayes M criterion, which are a subset of those

identified by the simple CL criterion (the most liberal

method). The species pairs identified by the BY criterion

are also a subset of those identified by the simple CL cri-

terion, although the same pairs are not necessarily identi-

fied by the Bayes’ criteria.

Summary of empirical Bayes methods

To summarize, the steps in the empirical Bayes methods

are:

1. Rescale the C score index to a range from 0 to 1.

2. Calculate the rescaled C score index for all n(n - 1)/2

species pairs and assign each score to a histogram bin.

3. Create 1,000 null assemblages (using the fixed–fixed

or other randomization algorithm) and calculate the

mean and confidence interval for the number of species

pairs that are within each bin.

4. Within each bin, order the species pairs by their scores

and retain the species pairs with the largest scores that

place them above the mean (Bayes M criterion) or

above the 95% confidence interval (Bayes CL crite-

rion) for the number of species pairs expected from the

simulated distribution.

5. Further reduce this set by retaining only those species

pairs that are statistically significant in an individual

test (simple CL criterion).

6. Classify each non-random species pair as segregated or

aggregated.

There are some points to note about our application of

the empirical Bayes approach. First, significant species

pairs are defined only as positive deviations from the null

distribution. Bins in which there is a deficit of species pairs

cannot be readily interpreted because we cannot directly

identify the ‘‘missing species pairs’’ that are responsible for

the deficit. However, because the total count of species

pairs in the observed and the average of the simulated

distribution is the same, deficits in some bins must be

compensated for by excesses in other bins. If those positive

deviations are concentrated in one or a small number of

bins, they will be scored as statistically significant.

Second, the results may be sensitive to the number and

size of bins used, as would be the case for any statistical

method that constructs a histogram of samples from a

continuous distribution. If too few bins are used, we cannot

distinguish between species pairs that exhibit strong versus

weak segregation or aggregation. If too many bins are used,

the precision of the estimate diminishes. There is also a risk

that, with many bins, some may show an excess of species

just by chance. However, this is less of a problem for the

Bayes CL method because the confidence intervals will

also become larger as the number of bins increases. In

general, effects of bin number will diminish as the sample

size increases. Fortunately, even modest numbers of
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Fig. 1 Observed (squares) and expected (bold lines) [error bars
denote the upper and lower 95% confidence limits (CL) of this

expectation] distribution of pairwise co-occurrence scores (normal-

ized within the range of 0–1) from a matrix of the occurrence of 71

ground beetle species on 17 lake islands in northern Poland (Ulrich

and Zalewski 2006). In bins A and B, the observed number of species

pairs exceeds the expected number calculated from the average of

1,000 null assemblages (Bayes M criterion). In bins C and D, the

observed number of species pairs is even higher than the upper 95%

CL (Bayes CL criterion)
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species generate many species pairs: with species numbers

from only 15–45, the resulting distribution will have

between 100 and 1,000 unique species pairs.

Third, the Bayes methods (and the standard confidence

interval methods) identify which species pairs are non-

random, but they do not specify whether the pattern is one

of segregation or aggregation. To classify species pairs as

aggregated or segregated, we compared the observed

C score with the mean of the simulated C scores for a

particular species pair. Segregated pairs are those for which

the observed C score was greater than the average simu-

lated C score, and aggregated pairs are those for which the

observed C score was less than the average simulated

C score. Naturally, the majority of the segregated species

pairs occur in the bins that are close to 1.0, and the majority

of the aggregated species pairs occur in bins that are close

to 0.0. These pairs represent cases of very strong segre-

gation (perfect or near perfect checkerboard distributions)

or very strong aggregation (complete or nearly complete

overlap). However, as seen in Fig. 3, there is also a col-

lection of aggregated and segregated species pairs that

occur over a range of bin values, with the weakest patterns

being for those bin values closest to 0.5. These represent

cases in which the rescaled overlap is approximately 50%,

but the observed C score is still more extreme than 95% of

the simulated values. These examples correspond to spe-

cies pairs exhibiting relatively weak, but statistically sig-

nificant, segregation or aggregation.

Finally, it might not be apparent to readers why these

methods are ‘‘Bayesian’’ since they appear to be based

on a frequentist computation of false discovery rates

(Benjamini and Hochberg 1995). However, Efron (2005)

notes that false discovery rate calculations have a good

Bayesian rationale. We assume that some proportion, p0,

of species pairs overlap randomly in occurrence, and the

rescaled C scores of these pairs follow a null distribution,

f0. The remaining species pairs do not overlap randomly

and follow a distribution f1. If we know p0, f0, and f1,

Bayes’ rule yields the probability that a pair is random or

non-random, given its rescaled C score value. With large

sample sizes, we can use the data to get a frequentist

estimate of the prior quantities, and then use these esti-

mates to approximate Bayes’ rule. This empirical Bayes

method turns out to give results that are very similar to the

false discovery rate calculations. See Efron (2005) for

further discussion.

Construction of random benchmark matrices

To assess the utility of these four procedures (or of any null

model procedure), it is first necessary to benchmark their

performance with artificial matrices that contain pre-

determined amounts of randomness and structure (Gotelli

2001). Matrices that are constructed by random processes

should not yield an excessive number of non-random

species pairs (type I statistical error). Matrices that incor-

porate segregated or aggregated species pairs should not

yield random patterns for those species pairs (type II sta-

tistical error). Following the method of Ulrich and Gotelli

(2007a), we generated two types of random presence–

absence matrices (100 matrices each) to study the perfor-

mance of the four selection criteria. We created the first

type of presence–absence matrix (MN) by randomly sam-

pling individuals from a metacommunity in which popu-

lation sizes of the species were distributed according to a

lognormal species rank-order distribution:

S ¼ S0e½�aðR�R0Þ2� ð2Þ

in which S is the number of species, R is the abundance

octave, S0 is the number of species in the modal octave R0,

and a is the shape-generating parameter of the lognormal

distribution. Individuals were randomly sampled until a

specified number of species per sites was achieved. For each

matrix, the shape-generating parameter a was sampled

randomly from a uniform distribution between 0.1 and 2.0

(a canonical lognormal has a = 0.2; May 1975). Total

species numbers m and total sites numbers n per matrix were

also sampled from uniform distributions (10 B m B 100

and 10 B n B 100). This sampling protocol produced ran-

dom matrices with relatively high matrix fills that were

moderately to strongly nested due to passive sampling

(Higgins et al. 2006). In the second type of random matrix

(ME), species occurrences were sampled from a uniform

random distribution until a randomly chosen number of

species (again 10 B m B 100 and 10 B n B 100) and

matrix fill (0.1 \ fill \ 0.9) was reached. This sampling

protocol produced random matrices with relatively low

matrix fills that exhibited little or no nested structure.

Construction of seeded benchmark matrices

In three series of diagnostic tests, we modified our original

MN and ME matrices by adding to each matrix two

additional species to create a single non-random species

pair embedded in the matrix (‘‘seeded’’ matrices). This

additional ‘‘primary pair’’ of species contained 50%

(MNS50), 75% (MNS75), or 90% (MNS90) of the sites in a

perfectly segregated (checkerboard) pattern, or 50%

(MEA50), 75% (MEA75), or 90% (MEA90) of the sites in

a perfectly aggregated pattern (Fig. 2). Note that a per-

fectly aggregated pair in which both species occur in all

sites cannot be detected with the fixed–fixed null model

because this pair of species would also have the same

distribution in all of the null matrices. We counted how

many new statistically significant ‘‘secondary pairs’’ were

introduced through this manipulation and how the addition
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of the primary pair changed the C score of the entire

matrix. These secondary pairs represent associations

between one species in the original matrix and one of the

two new species added to the seeded matrix. We also

counted how often C score identified all pairs as being

non-random using the upper and lower 95% CLs of the

null model as benchmarks. The observed fraction of sig-

nificant scores at the 5% error level was then tested with

the Bayesian criteria (Bayes M and Bayes CL) to decide

which of these significant scores might be the best can-

didates for non-randomness. We also tested for correla-

tions between matrix properties (size, fill) and the

frequency of non-random species associations.

Published matrices

In addition to the analysis of artificial data matrices, we

also analyzed 272 published data matrices (with transposed

matrix rows and columns to match the format used here)

from the set of 294 matrices that were originally compiled

from the literature by Atmar and Patterson (1995). We

excluded 12 matrices from the Atmar and Patterson (1995)

compilation because three of them contained only one row

or one column, and nine others were overly constrained

because the matrix was either too full or too empty, so it

could not be effectively randomized with the fixed–fixed

algorithm.

Species associations

We used the C score (Stone and Roberts 1990) to measure

species co-occurrences. The C score measures the average

pairwise species segregation for the entire matrix (Gotelli

2000). To compare single species pairs with different

numbers of occurrences directly in the Bayesian analyses,

we normalized the C score (CS) for each species pair ij into

a range from 0 (perfect overlap) to 1 (no overlap):

CSij ¼
ðki � KÞðkj � KÞ

kikj
ð3Þ

where ki and kj denote the numbers of occurrences of

species i and j. K is the number of co-occurrences of both

species. The same normalization was used on all of the

species pairs in the null matrices.

We used the fixed row–fixed column randomization

algorithm that maintains both observed row and column

totals (Connor and Simberloff 1979; Gotelli 2000) to

generate randomized matrices that serve as null models to

obtain CLs for the C score. The biological justification for

this algorithm is that it preserves in the null matrices

observed differences among sites in species richness

(column totals) and observed differences among species

in their frequency of occurrence (row totals). Co-occur-

rence patterns are detected above and beyond those

introduced by these constraints. The performance of the

fixed–fixed algorithm is relatively insensitive to matrix

properties such as the size and fill of the matrix and the

frequency distribution of species occurrences (Gotelli

2000; Ulrich and Gotelli 2007a, b). We implemented this

null model with a variation of the ‘‘sequential swap

algorithm’’ (Manly 1995; Gotelli and Entsminger 2001),

in which we sequentially reshuffled 25,000 randomly

sampled 2 9 2 submatrices that have the same row and

column totals after their elements were swapped. Matrices

created this way have the same row and column totals as

the original matrix. Each subsequent matrix was created

with an additional 1,000 swaps. The sequential swap

algorithm does not sample all possible matrices with fixed

row and column totals with equal probability (Zaman and

Simberloff 2002; Miklós and Podani 2004). However, the

bias is small (Lehsten and Harmand 2006), and this

algorithm has performed well in numerous benchmark

tests (Stone and Roberts 1990; Gotelli 2000; Gotelli and

Entsminger 2001, 2003; Ulrich 2004; Ulrich and Gotelli

2007a).

For each of the published matrices, we compared the

observed number of non-random pairs identified by the

four methods with the expected numbers obtained from

100 randomized matrices (using the sequential swap

algorithm; number of swaps: 10 nm). Results were stable

and would not have differed qualitatively if we had used

1,000 instead of 100 randomized matrices.

Null models and co-occurrence indices were calculated

with the software applications Pairs and Matrix (Ulrich

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
A 1 0 1 1 0 1 0 1 A 1 0 1 1 0 1 0 1 A 1 0 1 1 0 1 0 1
B 0 1 1 1 0 0 1 1 B 0 1 1 1 0 0 1 1 B 0 1 1 1 0 0 1 1
C 1 1 0 0 0 0 0 0 C 1 1 0 0 0 0 0 0 C 1 1 0 0 0 0 0 0
D 0 0 1 1 0 1 0 1 D 0 0 1 1 0 1 0 1 D 0 0 1 1 0 1 0 1
E 1 1 1 1 0 1 0 1 E 1 1 1 1 0 1 0 1 E 1 1 1 1 0 1 0 1
F 0 1 1 0 0 1 0 1 F 0 1 1 0 0 1 0 1 F 0 1 1 0 0 1 0 1
G 1 0 1 1 0 0 1 0 G 1 0 1 1 0 0 1 0 G 1 0 1 1 0 0 1 0

001111111A001010101S
001111112A000101012S

Fig. 2 Adding a segregated species pair (left matrix) or an aggre-

gated species pair (right matrix) to an initially random matrix (center
matrix) can generate statistically significant secondary associations

with other species (Table 1). The seeded species pair was aggregated

or segregated in 75% of the sites (ME75; see text for details)
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2008). The online appendix provides a spreadsheet with the

original data matrix (Ulrich and Zalewski 2006) and fully

documented output from the Pairs analysis illustrated in

Fig. 1.

Results

Benchmark random matrices

Between 3.72 and 4.40% of the original MN and ME

matrices had significantly aggregated or segregated species

pairs as judged by the 95% CL benchmark (CL criterion) of

the fixed–fixed null model (Table 1). The BY criterion

reduced this fraction to 0.97% for the ME and 1.65% for the

MN matrices. The Bayes M criterion returned 0.58% sig-

nificant pairs for the ME and 1.67% for the MN matrices.

The more conservative Bayes CL criterion identified only

0.03% (ME) and 0.48% (MN) as being significant. That

means that for an ME random matrix of 50 species (1,225

species pairs) approximately 46 pairs are expected to be

significant at the 5% error benchmark from the CL crite-

rion, but only 11, seven, and no pairs, respectively, from

the BY, the Bayes M, and the Bayes CL criteria.

Irrespective of matrix type (MN or ME), for all four

diagnostic criteria, the proportion of statistically significant

pairs was correlated with the number of sites in the matrix,

but not with the percentage fill of the matrix (Table 2).

Surprisingly, the matrix-wide C score was only weakly

correlated with the number of significant pairs within the

matrix (r = 0.08–0.26).

Seeded matrices

The addition of one perfectly aggregated or segregated

species pair to our matrices caused associations with other

species of the matrix that C score identified as being not-

random (secondary pairs). Adding one aggregated pair to

the ME matrices added, on average, between five (MEA90)

and ten (MEA50) aggregated secondary pairs as detected

by the CL criterion. For the MN matrices, between three

(MNA90) and 22 (MNA50) significantly aggregated sec-

ondary species pairs emerged (Table 3). Adding a segre-

gated primary pair introduced between five (MES50) and

44 (MNS90) segregated secondary pairs according to the

CL criterion. The BY, Bayes M, and Bayes CL criteria

reduced these numbers significantly and identified between

0 (MES90) and 28 (MNS90) non-random secondary pairs.

More than ten secondary pairs appeared only for the

MNS90 matrices.

For matrices seeded with a segregated primary species

pair, the CL criterion correctly identified over 89%

(MNS50) of these species pairs as non-random (Table 4).

The Bayes M and Bayes CL criteria identified 41%

(MES50) to 93% (MNS90) and the BY criterion 59%

(MES50) to 100% (MES90) as being non-random. For

matrices seeded with an aggregated species pair, the Bayes

M and Bayes CL criteria were more conservative and

correctly identified for the ME matrices between 17%

(MEA90) and 79% (MEA50) of the added pairs as being

non-random. In the case of the MN matrices, the Bayes CL

criterion usually failed to recover the non-random primary

pair (\10% identified). The most liberal CL criterion

Table 1 Percentages of species pairs per matrix ranging outside the

95% confidence limit (CLs) of the fixed–fixed null model for a set of

random ME and MN matrices before and after the introduction of one

perfectly aggregated or segregated pair occurring on 50% (M50E),

75% (ME75), and 90% (ME90) of the sites

Percentage of significant pairs

Original

matrix (%)

Added

species pair

ME50 ME75 ME90

All pairs

(%)

Secondary

pairs only (%)

All pairs

(%)

Secondary

pairs only (%)

All pairs

(%)

Secondary

pairs only (%)

3.72 Aggregated 4.04 0.48 4.05 0.49 3.82 0.25

3.84 Segregated 3.97 0.30 4.00 0.34 3.95 0.29

Percentage of significant pairs

Original

matrix (%)

Added

species pair

MN50 MN75 MN90

All pairs

(%)

Secondary

pairs only (%)

All pairs

(%)

Secondary

pairs only (%)

All pairs

(%)

Secondary

pairs only (%)

4.14 Aggregated 5.24 1.29 4.81 0.86 4.13 0.18

4.40 Segregated 4.53 0.33 5.07 0.87 6.45 2.24

Secondary pairs Include one member of the new species pair and one of the original species
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performed best in recovering the non-random aggregated

seeded pair (Table 4) while the CL and the BY criterion

did equally well in recovering the segregated seeded pair.

In the seeded matrices, all of the non-random pairs

identified by the Bayes and BY criteria were (by definition)

a subset of those pairs identified by the CL criterion.

However, the Bayes and the BY criteria did not necessarily

identify the same secondary species pairs as being non-

random. The percentage of commonly identified pairs for

the ME matrices was only 15% (Bayes M–BY) and 5%

(Bayes CL–BY) and for the MN matrices 36% (Bayes

M–BY) and 19% (Bayes CL–BY). As a consequence, the

joint application of criteria reduced the fraction of signif-

icant pairs in the ME and MN matrices compared to the

single criterion by a factor of 2–3 (not shown). Detection

probabilities of the added pairs remained at the level of the

respective Bayes criteria.

The addition of one perfectly segregated or aggregated

pair generated segregated or aggregated secondary pairs

with even more extreme scores than those of the seeded

pair (Table 5). This effect was particularly strong for the

matrices with an aggregated pair added: 60 and 247 per-

fectly aggregated secondary pairs were then detected. For

the MNA90 matrices, the Bayes M and Bayes CL criteria

did not identify any of the primary pairs, but instead

identified 41 and 14, respectively, of the secondary pairs as

being non-random (Table 5). For matrices that were seeded

with a segregated primary pair, spurious detection of sig-

nificant secondary pairs was much weaker: The Bayes M

and Bayes CL criteria detected at most five species pairs

with scores higher than any of the scores of the added pairs.

The BY criterion performed worse and identified between

three and 11 such pairs.

Published matrices

The 272 published matrices contained a total of 463,768

unique species pairs. Of these, the simple CL criterion

identified 0.73% as segregated and 0.48% as aggregated.

By chance, approximately 5% should have been signifi-

cant. However, even the most stringent Bayes CL and BY

criteria identified significantly more segregated and

aggregated pairs than expected (Fig. 3). In particular, the

number of perfect checkerboard pairs exceeded the

expectation by a factor of more than fourfold for BY and

50-fold for Bayes CL. On the other hand, the total fre-

quency of significantly segregated and aggregated pairs

identified by the Bayes CL criterion was only 0.18%

(segregation) and 0.03% (aggregation), which was similar

in magnitude to the randomized matrices. Regardless of the

criterion used, consistently more segregated than aggre-

gated species pairs were detected. The overall C score of

the matrices was significantly positively correlated with the

number of segregated pairs per matrix (Bayes CL criterion:

Spearman’s r = 0.47; P \ 0.0001), but was also weakly

positively correlated with the number of aggregated pairs

(Spearman’s r = 0.35; P \ 0.0001). This seeming contra-

diction reflects the fact that a perfectly segregated primary

pair can also generate perfectly or partly aggregated sec-

ondary pairs. Numbers of aggregated and segregated pairs

per matrix were indeed positively correlated with one

another (Spearman’s r = 0.42; P \ 0.0001).

A detailed analysis of the matrices revealed that only 15

matrices (Table 6) accounted for more than 83.9% of all

identified segregated pairs. Ten matrices with significantly

higher numbers of aggregated pairs accounted for 83.6% of

all of these pairs (Table 6). In only 54 matrices did the

Table 2 Spearman’s rank order correlations between the proportion of significant non-random species pairs (both aggregated and segregated

pairs) and basic matrix properties

ME MN

CL

criterion

Bayes M

criterion

Bayes CL

criterion

BY

criterion

CL

criterion

Bayes M

criterion

Bayes CL

criterion

BY

criterion

Species 0.09 0.53*** 0.05 0.15 0.22* 0.04 0.38*** 0.21*

Sites 0.69*** 0.47*** 0.09 0.50*** 0.74*** 0.61*** 0.50*** 0.60***

Matrix fill 0.27** -0.09 -0.02 0.25* -0.08 -0.05 -0.15 -0.04

Matrix size 0.54*** -0.08 0.09 0.48*** 0.68*** 0.48*** 0.67*** 0.55***

Matrix shape -0.38*** -0.69*** -0.01 -0.22* -0.34*** -0.40*** 0.09 -0.28**

C score 0.19 0.08 0.26* 0.23* 0.24* 0.21* 0.08 0.24*

See text for details on matrix structure (ME and MN) and testing criteria [CL, Bayes mean-based (Bayes M), Bayes CL, Benjamini and Yekutieli

(BY)]

Matrix fill Percentage of matrix cells occupied, Matrix size number of species in the matrix (m) 9 number of sites in the matrix (n), Matrix
shape m/n, C score C score for entire matrix

* P \ 0.05, ** P \ 0.01, *** P \ 0.001
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number of aggregated or segregated species pairs exceed

the expected numbers (positive effect sizes). Hence for at

least 218 matrices we did not observe a significant trend

towards species segregation or aggregation when using a

species pair approach. However, in 107 matrices we did

find a significant matrix-wide C score (cf. Gotelli and

McCabe 2002), even when no individual cases of strongly

segregated species pairs could be detected.

Vanuatu and Galapagos matrix analyses

The Vanuatu bird matrix contains 56 species and 28 sites

(Diamond and Marshall 1976). As demonstrated in other

analyses (Stone and Roberts 1990; Gotelli and Entsminger

2001; Zaman and Simberloff 2002; Miklós and Podani

2004), this matrix is significantly segregated using

the matrix-wide C score and the fixed–fixed null model

(Z-score = 4.23, P \ 0.001). The simple CL criterion

identified 26 significantly segregated (1.7%) and 22 (1.4%)

significantly aggregated pairs. These results are roughly

comparable to those of Zaman and Simberloff (2002), who

used a corrected swap algorithm and a different statistical

method for their CL criterion.

In our analyses, none of the species pairs identified with

the CL criterion were significant with the BY criterion. The

Bayes M criterion identified three species pairs [Megapo-

dius freycinet layardi (scrubfowl)–Poliolimnas cinereus

tannensis (white-browed Crake); Clytorhynchus pachy-

cephaloides (southern shrikebill)–Porzana tabuensis

tabuensis (spotless crake); Lichmera incana flavotincta

(silver-eared honeyeater)–Dukula bakeri (Baker’s imperial

pigeon)] as being significantly segregated and another

three pairs [Anas superciliosa pelewensis (Pacific black

Table 5 Total numbers (out of 100 seeded matrices) of perfectly

segregated or aggregated secondary species pairs having a C score

higher than at least one of the primary segregated or aggregated

species pairs

Matrix CL

criterion

Bayes M

criterion

Bayes CL

criterion

BY

criterion

MEA50 60 28 3 11

MEA75 84 29 3 9

MEA90 95 6 0 5

MES50 9 5 1 5

MES75 8 3 0 8

MES90 5 3 0 8

MNA50 174 52 7 9

MNA75 247 13 3 12

MNA90 137 41 14 9

MNS50 3 1 0 3

MNS75 5 1 0 5

MNS90 4 1 1 4

For abbreviations, see Table 2

Fig. 3 Numbers of significant species pairs in 272 published data

matrices (in total 463,768 species pairs) identified by the Bayes CL

(a, b) and the Benjamini and Yekutieli (c, d) criterion for each class

of the rescaled C score. The rescaled C score ranges from 0.0

(complete aggregation) to 1.0 (complete segregation). a, c Significant

(P \ 0.05) segregation; b, d significant aggregation. Solid bars are

the number of species pairs (summed over all matrices) in each

C score class, open bars are the sum of the average number of species

pairs from 100 null assemblages created for each original matrix. The

vertical line represents 1 SD for each bin. Most of the segregated

distributions are pairs of species that are completely non-overlapping

(checkerboard distributions; rescaled C score = 1.0), and most of the

aggregated distributions are pairs of species that overlap completely

(rescaled C score = 0). However, there are also statistically signif-

icant species pairs from a range of bin values that show relatively

weak patterns of segregation or aggregation
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duck)–Aythya australis (hardhead); Aytyia australis

(hardhead)–Tachybaptus novaehollandiae leucosternos

(Australasian grebe); Coracina caledonica seiuncta (cuckoo-

shrike)–Halcyon farquhari (chestnut-bellied kingfisher)] as

being significantly aggregated. Using the more stringent

Bayes CL criterion the pair Lichmera incana flavotincta

(silver-eared honeyeater)–Dukula bakeri (Baker’s impe-

rial pigeon) remained significantly segregated and the

pair Coracina caledonica seiuncta (cuckoo-shrike)–Hal-

cyon farquhari (chestnut-bellied kingfisher) significantly

aggregated.

The Galapagos data set (13 species, 17 islands) also had

a highly significant matrix-wide C score (P \ 0.0001), but

neither the BY nor the Bayes CL criteria identified any of

the species pairs as being non-random. However, the

simple CL criterion and the Bayes M criterion both pointed

to nine and seven pairs, respectively, as being significantly

non-random (Table 7). All five of the segregated species

pairs are in the genus Geospiza. From the total number of

15 Geospiza pairs (six species) at most one is expected just

by chance at the 5% level. The matrix of 13 species con-

tains 78 species pairs, of which only 19 are congeneric

Table 6 Presence–absence matrices of the Atmar and Patterson (1995) data set with the greatest numbers of significant segregated (at least 16)

and aggregated (at least four) species pairs (Bayes CL criterion)

Matrix Species Sites Matrix

fill

Percentage

of pairs

Matrix-wide

C score

Reference

Segregated pairs

Amazonian bats 82 19 0.47 4.03 66.52 Patterson et al. (1996)

Amazonian bats (part) 82 19 0.34 3.67 55.31 Patterson et al. (1996)

Pacific shore fish 179 16 0.58 0.42 9.92 Springer (1982)

North American water birds 152 15 0.26 0.47 6.10 Hatt et al. (1948)

Australian island plants 147 49 0.08 0.46 7.99 Abbott and Black (1980)

Antillean trees (part) 61 11 0.49 2.57 31.37 Beard (1948)

Antillean trees (part) 112 14 0.64 0.74 25.31 Beard (1948)

Antillean trees (part) 102 12 0.43 0.83 10.81 Beard (1948)

Finnish island birds 82 16 0.39 0.87 15.10 Haila et al. (1980)

Andean butterflies 87 13 0.17 0.64 7.44 Descimon (1986)

North American prairie plants 39 102 0.38 3.24 12.31 Glass, unpublished data

Canary Island birds 78 7 0.51 0.80 16.94 Bacallado (1976)

New Zealand birds 57 31 0.26 1.44 3.28 Patterson (1987)

Canary Island birds (part) 61 7 0.66 1.04 15.47 Bacallado (1976)

New Zealand birds (part) 53 22 0.33 1.16 4.49 Patterson (1987)

Aggregated pairs

Amazonian bats 82 19 0.47 0.54 66.52 Patterson et al. (1996)

West Australian snails 35 55 0.22 2.18 0.99 Cameron (1992)

African ostracods 104 38 0.21 0.24 5.41 Cohen, unpublished data

North American weeds 128 26 0.25 0.14 5.66 Crowe (1979)

Antillean trees (part) 112 14 0.64 0.16 25.31 Beard (1948)

Antillean trees (part) 61 11 0.49 0.49 31.37 Beard 1948

North American desert mice 29 129 0.12 2.22 1.23 Brown and Kurzius (1987)

Amazonian bats (part) 82 19 0.34 0.24 55.31 Patterson et al. (1996)

North American prairie plants 39 102 0.38 1.08 12.31 Glass, unpublished data

Baja Islands herbaceous plants 84 48 0.08 0.23 3.48 Murphy (1983)

West Australian snails 20 55 0.11 4.21 9.24 Cameron (1992)

North American fish 78 48 0.06 0.17 1.42 Smith, unpublished data

North American fish 35 30 0.29 0.67 7.90 Hocutt et al. (1978)

North American subtidal invertebrates 37 18 0.40 0.60 -0.03 Sutherland and Karlson (1977)

North American desert rodents 14 48 0.19 2.20 5.03 Brown and Kurzius (1987)

The 15 segregated matrices accounted for 721 of the 859 identified segregated pairs within the entire data set of 272 matrices

The 15 aggregated matrices accounted for 128 of the 153 identified aggregated pairs
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(24%). In contrast, five of the seven significant segregated

pairs identified by the Bayes M criterion were congeners

(71%) (v2 contingency test: v2 = 3.03, P = 0.08).

Sanderson (2000) and Sfenthourakis et al. (2006) reported

similar results for this data set using the CL criterion,

although Sanderson (2000) used a different null model

algorithm.

Discussion

Pairwise tests of species co-occurrence patterns invariably

reveal statistically significant associations in random

matrices using the simple 95% CL criterion (Table 1). The

sequential Bonferroni, Bayes M, and Bayes CL criteria

substantially reduce such occurrences, although they do not

entirely eliminate them from random matrices. However,

these analyses reveal the unavoidable trade-off between

type I and type II statistical errors. For random matrices

that were seeded with a non-random pair of species, the

simple CL criterion did the best job of recovering these

patterns, whereas the Bonferroni and Bayes methods did

not detect the non-random pair in a substantial number of

cases.

One difficulty is that all four of the methods detected

false ‘‘secondary pairs’’ of species associations that

emerged when a single non-random association was added

to the matrix (Table 1). This result probably reflects, in

part, the complex non-independence among all species

pairs when the null model preserves fixed row and column

totals. However, these statistically significant secondary

pairs were more of a problem for aggregated than segre-

gated distributions. Previous authors have discussed the

possibility of a ‘‘dilution effect’’ in null model analysis in

which significantly segregated species pairs are not detec-

ted because too many pairwise comparisons are made

between pairs of species that are not interacting (Diamond

and Gilpin 1982; Colwell and Winkler 1984). However,

our results suggest there may well be a ‘‘concentration

effect’’ because the addition of a single non-random spe-

cies pair to a random matrix may generate a number of

significant secondary pairs.

The analysis of the 272 published matrices revealed that

the majority of significant species pairs showed segregated,

rather than aggregated distributions. There was a strong

concentration of both highly segregated and highly aggre-

gated species pairs, but also a set of species pairs that

showed weaker, but still highly non-random, patterns of

overlap (Fig. 3). However, most of the significant pairs

were concentrated in a relatively small number of matrices

(Table 6). In many cases, the overall C score of the matrix

may be highly significant even though few or no individual

pairs of species show non-random patterns. This result

might reflect widespread, but weak species interactions

(‘‘diffuse competition’’; Diamond 1975), or mechanisms of

species segregation that are not related to species interac-

tions (Gotelli and McCabe 2002; Sfenthourakis et al.

2006).

It is noteworthy that six of the 15 most aggregated

matrices (40%) were for poikilotherm groups (snails,

ostracods, and fish), whereas only two of the 15 most

segregated matrices (13.3%) were for poikilotherms

(Table 6). These results are consistent with matrix-wide

patterns of species segregation (Gotelli and McCabe 2002),

which were much stronger for homeotherms (and ant and

plant matrices) than for poikilotherms (invertebrate,

amphibian, reptile, and fish matrices). Although all matri-

ces contain segregated, random, and aggregated species

pairs, the frequencies of these pairwise patterns are con-

sistent with the overall matrix score.

However, pairwise analyses may not always be con-

cordant with overall matrix scores. Both the Galapagos and

Table 7 Significant non-random species pairs (simple CL criterion) of Galapagos finches, numbers of occurrences on the 17 islands, numbers of

joint occurrences, and the probability levels for the null hypothesis of random association

Species1 Occurrences Species 2 Occurrences Joint occurrences P

Geospiza fulignosaa 14 Geospiza difficilisa 10 7 \0.0001

Geospiza fortisa 13 Geospiza difficilisa 10 7 \0.001

Geospiza fortisa 13 Geospiza conirostrisa 2 0 \0.0001

Geospiza scandensa 12 Geospiza difficilisa 10 6 \0.0001

Geospiza scandensa 12 Geospiza conirostrisa 2 0 \0.0001

Platyspiza crassirostris 11 Camarhynchus psittacula 10 10 \0.05

Platyspiza crassirostrisa 11 Geospiza conirostrisa 2 0 \0.0001

Camarhynchus parvulusa 10 Geospiza conirostrisa 2 0 \0.0001

Geospiza difficilis 10 Camarhynchus psittacula 10 6 \0.001

Except for the Platyspiza crassirostris–Camarhynchus psittacula pair, all species pairs are significantly segregated
a Pairs were identified by the Bayes M criterion
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Vanuatu bird matrices have significant matrix-wide segre-

gation, but the pairwise analysis of the Vanuatu matrix

revealed very few significant pairs of species, which are

ecologically and phylogenetically heterogeneous. In con-

trast, the Bayes M criterion identified seven significant

pairs in the much smaller Galapagos matrix (Table 7). Five

of these seven species pairs were concentrated within the

genus Geospiza, which is one of the few examples of a

competitively structured community that has been sup-

ported by extensive null model analysis (Simberloff and

Connor 1981; Schluter and Grant 1984; Sanderson 2000).

Although the Bayes criteria and the sequential Bonfer-

roni test do a better job of guarding against type I errors

than the simple CL criterion, all of the methods proposed

here must be used with caution. Even the most stringent

criteria still detected a small number of unusual pairs in a

large random matrix, and random matrices that were see-

ded with significant species pairs generated spurious sta-

tistical associations with other species in the matrix.

Perhaps it is asking too much of a statistical analysis to

reveal biologically meaningful pairwise associations with no

other information than a binary presence–absence matrix.

A similar limitation has emerged in regression analyses and

model selection. Whereas ecologists often use stepwise cri-

teria to select a subset of meaningful predictor variables,

these methods do not always identify the correct underlying

model. A more powerful approach is to specify a priori a set

of potential biological models, fit them to the data, and then

use model selection criteria to rank them or distinguish

between them (Burnham and Anderson 2002; Shipley 2002).

For presence–absence matrices, the best strategy might be to

identify ahead of time guilds or subsets of potentially inter-

acting species and restrict the analysis to these pairs.
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