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Abstract: In a wider and wider range of research and engineering activities, 
there is a growing interest for full-field techniques, featuring nanometric 
sensitivities, and able to be addressed to dynamic behaviors 
characterization. Speckle interferometry (SI) techniques are acknowledged 
as good candidates to tackle this challenge. To get rid of the intrinsic 
correlation length limitation and simplify the unwrapping step, a 
straightforward approach lies in the pixel history analysis. The need of 
increasing performances in terms of accuracy and computation speed is 
permanently demanding new efficient processing techniques. We propose in 
this paper a fast implementation of the Empirical Mode Decomposition 
(EMD) to put the SI pixel signal in an appropriate shape for accurate phase 
computation. As one of the best way to perform it, the analytic method 
based on the Hilbert transform (HT) of the so-transformed signal will then 
be reviewed. For short evaluation, a zero-crossing technique which exploits 
directly the extrema finding step of the EMD will be presented. We propose 
moreover a technique to discard the under-modulated pixels which yield 
wrong phase evaluation. This work is actually an attempt to elaborate a 
phase extraction procedure which exploits all the reliable information in 3D, 
– two space and one time coordinates –, to endeavor to make the most of SI 
raw data. 
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1. Introduction 

In full-field techniques, each pixel of the photo-detector probes the surface as an independent 
sensor. For interferometric experiment, the phase is most likely to vary at a different rate 
along time from one pixel to another. Hence, the processing task consists in handling in 
parallel a large quantity of 1D non-stationary signals at a temporal sampling rate given by the 
frame frequency of the camera. To really take advantage of those 3D (2D space and 1D time) 
data, efficient signal processing procedures are absolutely mandatory. Although we focus here 
on SI signals - their large intensity and phase fluctuations making them the worst case to be 
treated - the method exposed here is not limited to SI signals analysis only. It is applicable to 
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any non-stationary fluctuating signal as soon as there are several oscillations in the whole data 
set. This method is thus well adapted to deal with any full-field technique signals, and also to 
any punctual transducer signals. 

Fringe analysis has been - and is still - the matter of many researches [1]. Phase-shifting 
techniques have been massively used and substantially improved [2]. But, though generally 
acknowledged as the choicest techniques in terms of measurement and spatial resolutions, 
they are not in essence good candidates for dynamic problems, despite attempts to adapt it to 
real time situations [3-4]. Resorting to single-frame based techniques is then the natural trend. 
The mainstream techniques are here the local interpolation of the intensity pattern using 
splines [5-6], the Fourier transform (FT) method combined with spatial carrier fringes [7-8], 
the spiral phase quadrature transform method [9], the latter being basically a convenient 2D 
isotropic Hilbert Transform (HT), and regularization based methods [10]. Most of the single-
frame techniques need a 2D unwrapping step [11], and the task is not trivial with noisy 
wrapped phase maps, even if iterative filtering techniques have proven to be efficient and easy 
to implement [12]. Besides the sign ambiguity that cannot be removed without a priori 
knowledge, single-image techniques depend on the quality of the correlation fringes. With 
standard apertures of usual systems, the correlation lengths are as small as a few tens of 
microns both in out-of-plane and in-plane measurements, and the fringes are not exploitable 
beyond this range. Leaving aside computational considerations for the moment, a fruitful 
approach lies in the pixel history analysis. It offers not only means to get rid of the intrinsic 
limit of correlation, but it reduces also greatly the complexity of the unwrapping step, as one 
deals from now on with 1D signals. The sign ambiguity is moreover easily cleared up by 
adding a temporal carrier, readily subtracted afterwards [4]. The methods devoted to solve the 
1D temporal problem include the Morlet wavelet transform [13] and the HT [14]. 

In order to develop faster and more reliable methods, we proposed in [15] to implement 
the EMD algorithm for the purpose of reshaping the SI pixel signal to conduct accurate phase 
computation in conjunction with the HT. The EMD has been successfully used in several 
domains, dealing with strongly non-stationary signals [16-19], and has been introduced lately 
in SI [15, 20-21]. The main contribution of this work lies firstly in vindicating the use of the 
EMD in dynamic SI. A fast implementation of EMD will follow from this standpoint and will 
be shown to provide well-conditioned signals for an accurate subsequent phase computation, 
whichever computation method is actually chosen. Being a priori a good candidate for further 
processing the EMD-transformed signals, the analytic method will be reviewed. The EMD 
lends itself well also to the application of a zero-crossing search, providing an overall fast 
evaluation of the phase history. In a next to last section, we will present one way to manage 
the under-modulated pixels which lead to wrong phase computation. The purpose of this 
section is not to thoroughly study the behavior of singular pixels and their neighbors. It is 
rather to propose a solution which relies only on well-modulated pixels and discard the ones 
with a too low modulation depth, which surely be the scene of complex phenomena 
accompanied by large phase errors. To the best of our knowledge, this issue has been very 
seldom tackled [13] and it is definitely worth trying to use the data both in space and in time, 
to make the most of the huge quantity of readily available data. Some experimental results 
will conclude the paper. 

2. SI signals: an inappropriate form for straightforward phase computation 

SI signals obey the well-known 2-beam interference equation, whether it stands for spatially 
resolved or integrated regimes: 

                            ( ) ( ) ( ) ( ) ( )( )t,y,xt,y,xcost,y,xt,y,xt,y,xs opds ψ+ψ⋅β+α= ,                     (1) 

where α is the mean intensity, β the fringe modulation, ψs the speckle phase, ψopd the optical 
path difference phase, i.e. the quantity of interest, and x, y, t are respectively the spatial and 

temporal coordinates. α, β and ψs are random variables, and the pixel signals are thus strongly 
non-stationary, making the phase computation tricky. As an example, a genuine temporal SI 
signal is depicted in Fig. 1. 
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Fig. 1. A typical temporal pixel signal experimentally obtained in SI (gray levels in ordinate 
and time measured in frame number in abscissa). 

 
It is well-known that the three sine qua non conditions to achieve a meaningful phase 

extraction from a real-valued signal are [21-25]: i) the amplitude and phase modulations 
spectra have to be well separated, ii) the mean has to be locally zero and iii) the signal 
spectrum has to be narrow-band. In SI, the spectra separation and the narrow-band conditions 
are actually intrinsically fulfilled. As can be shown from Fig. 1, the modulation depth 

variations (the term  β in Eq.(1)) are much slower than the local period of the cosine term. 
Modulation depth variations are ruled by the statistical spatial properties of the speckle fields 
and decorrelation effects, while the phase variations depend on the sensitivity of the 
interferometer. With adequately selected system parameters (the aperture of the recording 
system, the pixel size, the interferometer sensitivity, the frame frequency, and the rate of 
phase change), pixel signals take ipso facto the form of a random, slowly varying modulation 
depth, enveloping the rapid oscillations of the cosine term. So, for the kind of signals we are 
focused on, accurate phase extraction is ensured as soon as the zero local mean condition is 
fulfilled. We will show in the next section in what ways the EMD is a neat candidate to clear 
up this issue. 

3. The Empirical Mode Decomposition 

3.1 Standard algorithm 

The EMD has been introduced by Huang et al in the late 90’s [16] to process non-stationary 
data. This technique actually decomposes any non-stationary signal s(t) into its intrinsic 
oscillation modes, acting basically like a filtering process from higher to lower frequencies, 
but with self-adaptive band-filters. The starting idea is to consider the signal constituted by a 
detail part (local high frequency) d(t), and a residue part (local low frequency) m(t). The 
detail part is sifted out from the raw signal by removing the mean envelope, whose 
computation is based on a cubic spline fitting between the signal extrema. The residue is then 
considered itself as a signal to process and thus split into a detail and a residue part as well. 
The modes, namely the intrinsic mode functions (IMF), that could be non-stationary too, have 
to satisfy two conditions: i) in the whole data set, the number of extrema and the number of 
zeros differ from each other at most by one, and ii) the mean envelope is zero. The final 
algorithm [27] is represented in Fig. 2. 

 

Fig. 2. Standard EMD algorithm. 

 
By construction, the IMFs have a well-behaved HT [16], and more generally they allow 

good phase extraction. We get in fine the following final decomposition at the rank K: 
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)t(m)t(d)t(s K
K

1k k +∑= = ,                                  (2) 

where the dk are the IMFs and mK is the final residue. 

3.2 Assets and weaknesses of the method 

One of the main assets of the EMD is its sparseness: an arbitrary signal is decomposed in 
fewer components than with classical Fourier or even wavelet analysis. Another important 
asset is the completeness: by design, the algorithm guarantees a lossless decomposition. 
However, one of the main drawbacks is the non uniqueness of the final decomposition. It is 
indeed strongly dependent on the different algorithm parameters and choices, like the sifting 
ending criterion, the boundaries ending technique (signal continuation), the interpolation 
method, etc. Some details will be given on the sifting process and on the sampling influence 
in the coming subsections. The boundary ending is also a sensitive part of the mean 
estimation: an interpolation kernel is chosen to link the extrema with smooth curves, and the 
cubic spline fitting requires also extrapolation at the edges of the dataset [16, 28]. 

Bad choices for the aforementioned issues could lead to errors in the entire 
decomposition, like over-decomposition but also mode-mixing (for instance, higher 
frequencies oscillations are not caught locally by a given mode but by a successive one that 
should contain lower frequencies oscillations). It simply follows from the non uniqueness of 
the decomposition. From the mathematical point of view, this is the most annoying issue, but 
in practice the previous errors can be straightforwardly identified by simple visual check of 
the decomposition or by more involved means, as e.g. the quantification of the orthogonality 
between modes [15]. Some readjustments can then be brought to the algorithm, to avoid the 
errors or compensate them [15, 17-18]. At the end, a trade-off has to be found between 
imposing signal-dependent safeguards to give more robustness to the algorithm and 
preserving the self-adaptiveness of the method. The purpose is, here, to obtain the most sparse 
decomposition where each mode leads to an extracted phase with physical meaning. 

The outcome of a well-controlled EMD algorithm is actually multiple, ranging from 
signal detrending to specific features extraction. In addition of the centered signal on which 
phase extraction, estimation or tracking can be carried out, the location of the signal extrema 
can provide a rough estimation of the “instantaneous” phase – rather the mean of the 
instantaneous phase over every half-period. Moreover, the envelopes computation gives also 
the modulation depth which is helpful to appraise the reliability of the phase computation, and 
can also be of use to phase tracking techniques (for instance Digital Phase Lock Loop). 

3.3 Sampling considerations 

EMD outcomes depend strongly on sampling conditions [29-31]. The authors in [29] have 
shown that a slight misalignment of the extrema with the sampling points results in a wrong 
estimation of the amplitude and then in over-decomposition and mode leakage. The error is 
actually maximum when the extremum of the continuous time function is equally spaced from 
two samples. It emerges from this study that the amplitude difference between the continuous 
time signal and its sampled version becomes below 5% as soon as the signal is sampled 10 
times finer than required by the Shannon sampling theorem. Their criterion provides indeed 
an indication on the wrong estimation of the amplitude, but the connection with a possible 
error on the extracted phase has not been addressed. We might lose indeed, the orthogonality 
of the extracted modes, leading to an energy spreading over successive modes, but the key 
point for our application is definitely the phase conservation. In [30-31], the authors consider 
a single tone and define the error as the deviation of the EMD outcome from the original 
signal. Here, with an original signal defined in Eq. (3), we quantify the phase error due to 

sampling with the averaging over ϕ  (a uniform distribution of random phase pertaining to the 
speckle effect) of the standard deviation of the difference between the original phase and the 

phase φimf extracted from the 1
st
 IMF: 

[ ] ( )ϕ+⋅⋅π=ϕ kf2coskx s,sf ,                                                  (3) 
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( )( )
ϕ

=ϕφ ∑ ϕ−π−φ−ϕ−π−φ=σ
N

1k

2

Nsimfsimf kf2)k(kf2)k(
N

1
,               (4) 

fs is the signal frequency and (2πfsk+ϕ) is the theoretical phase. The phase extraction is 
carried out through the analytic method as explained in section 4. To reduce boundaries errors 
due to the discrete FT, a Gaussian window is used to pre-filter the dataset. Simulations have 

been conducted over 100 realizations of the signal xfs,ϕ in Eq. (3) and the dependence of the 

phase error with the signal frequency 2π/2
r
 (r being a real number) is shown in Fig. 3. 

 
Fig. 3. Standard deviation of the difference between the extracted phase from the 1st IMF and 
the theoretical phase with an upper bound. 

 
It appears clearly that the EMD behaves better when 2

r
 is an even integer greater than 3, 

and especially a power of 2. The largest error is made when 2
r
 is an odd integer. In the latter 

case the odd number of samples per period leads indeed to a detrimental asymmetry for the 
upper and lower envelopes computation. The maximum standard deviation is in average about 
one hundredth of period and an upper bound varying with the square of the signal frequency 
gives the global trend of the error (see Fig. 3). Finally, the sampling error is much lower than 
what we could have expected from the study in [29], and our results are actually closer to the 
ones presented in [30-31]. We end this section with the comforting conclusion that sampling 
has indeed an influence on the phase extraction but that we can neglect the error as long as the 
sampling frequency is at least 3 times higher than the Nyquist frequency. 

3.4 The sifting process influence 

Another key step of EMD algorithm is the sifting process and the criterion to stop it. The 
authors in [32] consider the following sum of two tones: 

( ) ( ) ( )ϕ+πν⋅α+π= t2cost2costx ,                                             (5) 

where α is a normalised amplitude ratio ranging from say 10
-2

 up to 10
2
, ν is a normalised 

frequency ratio ranging from say 10
-2

 to 1 and ϕ is a random phase uniformly distributed in  

[-π,π]. Their performance criterion measures the deviation of the outcome of the EMD 
algorithm for the 1

st
 IMF from the expected mode, i.e. the high frequency term in Eq.(5): 

( )
( ) ( )

( )
2l

2l

i
1

i
1

t2cos

t2cos,d

,,
ϕ+πν⋅α

π−να
=ϕναδ ,                                          (6) 

where d
i
1 stands for the 1

st
 IMF obtained after i iterations of sifting process, and || ||l2 stands 

for the l2 norm (square root of the sum of the square values). When the two tones frequencies 

are close to each other, i.e. ν≈1, we guess the separation will fail and the EMD outcome will 
be the signal itself leading to a performance criterion close to 1. However, if the two tones 

frequencies are well separated, i.e. ν<<1, the EMD will perform a perfect separation, and thus 

∝ fs
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lead to a criterion close to 0. For intermediate cases, the guess is not trivial. We report a result 

from [31] in Fig. 4-a, where the average criterion over 100 realisations of ϕ is mapped for 10 
iterations of sifting process. 

 
Fig. 4. (a) averaged criterion δ for 10 iterations of sifting process, (b) EMD filter model (cubic 
spline kernel) with simulations in solid line and predictions in dashed line. 

Those results actually provide a wealth of insights. We observe two very distinct areas 

basically for α < 1 and for α > 1. It has been shown [32] that the area where α <1 can be 

modelled by a filtering process with the kernel used for the interpolation − the cubic spline 
one being acknowledged to perform the best in most cases. However, the filter model is no 

longer appropriate for the area where α >1. It appears indeed that the sharp boundary between 
no separation at all and complete separation does not depend on the number of sifting process 
iterations. Before drawing any conclusion we must study the non-stationary case, but it is a 
good omen for a fast implementation for SI temporal signals. Indeed, as our signals have 
necessarily an amplitude ratio greater than 1 and well-separated spectra, we are most likely to 
be in an area where perfect separation will be achieved in one single iteration. As previously 
said, the signals we are interested in are strongly non-stationary, and it would be valuable to 
define a criterion similar to the one in Eq. (6) for SI signals defined in Eq. (1). To this aim, we 
simulate temporal SI signals with the model described in [33]. Our model actually lies on the 
convolution equation between a given impulse response and a complex field of random 
argument and unitary amplitude, according to both the diffraction theory in the Fresnel 
approximation and the mechanism of speckle formation. The statistics of the simulated 
interferometric signals in question are in close agreement with theory [26]. Our purpose here 
is to show that for SI signals, the separation is actually perfect between the AM-FM term and 
the varying bias in Eq. (1) after one single iteration. For each temporal signal we compute the 
following criterion: 

( )
21

refsp21
i
1i

1
II

cosII2d

+

ϕ−ϕ⋅⋅−
=δ                                             (7) 

A simulated signal is shown in Fig. 5, while the histograms of the criterion δ1
i
 computed for 

4096 temporal signals are depicted for i = 1,5 and 10 in Fig. 6. We impose a non-linear digital 

instantaneous frequency (IF) evolution distributed in the [2π/16, 2π/8] range. 
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Fig. 5. A simulated temporal SI signal. 

 

Fig. 6. Histograms of criterion defined in Eq. (10) for 4096 simulated SI temporal signals with 
1, 5 and 10 iterations of sifting process. 

 
It finally turns out from the simulations that whatever is the number of sifting process 
iterations the criterion defined in Eq. (7) is below 0.015: the similarity between the EMD-
processed temporal signal and the true sought-after AM-FM signal is better than 98.5%. We 
observe that the sifting process actually degrades rather than improves the components 
separation. It is likely to be due to the boundary choice and to the fact that the sifting process 
makes the boundaries errors propagating within the dataset. 

3.5 A fast and accurate implementation of EMD applied to SI 

For a pixel signal with enough modulation and as soon as the illumination is well adapted to 
the sensor dynamic, the relevant information is carried by the high frequency part of the signal 
(the cosine term in Eq. (1)). This information is thus contained in the 1

st
 IMF, and it becomes 

useless to proceed further in the modes extraction. We have moreover seen in details that the 
EMD is effective after one single iteration of the sifting process with non-stationary, narrow-
band signals containing two well-separated IF. We can extract the 1

st
 IMF (or pseudo-IMF for 

the sake of rigorousness) through a single iteration of the EMD algorithm. At this point, it is 
worth mentioning the method developed by Vikhagen [34] and improved by Carlsson and 
Wei [35] for deformation measurement in dynamic SI experiments. The phase evaluation 
method [34] consists in scanning the pixel history signal within a local oscillation to detect a 

maximum and a minimum value: (α+β) and (α-β) with the notations of Eq. (1). There is only 

one unknown left, the phase ψ that is finally easily computed modulo 2π at each instant using 
again Eq. (1). The improvement of the method [35] consists in a better evaluation of the initial 
speckle phase, i.e. before deformation, and in a least-squares estimation of the phase during 
the deformation allowing at the same time the resolution of the sign ambiguity. Even if the 
methods come from very different starting points, we arrive to a quite similar technique, likely 
to be nonetheless much faster in our case. Indeed, the EMD does not need to analyze the 
signal at the oscillation level. 
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4. Phase computation from the EMD-processed temporal signal 

In this section, we present two methods of phase computation: the analytic method based on 
the HT, and an extrema method, which is actually similar to the well-known zero-crossing 
technique. The key point is that once the temporal SI signal has been processed with the EMD 
technique, we have at our disposal a large bench of techniques to compute the phase, certainly 
not limited to the ones detailed below. 

4.1 The analytic method 

In order to extract the phase of a real-valued signal, a complex signal can be built, whose 
projection on real axis is the original signal. It is clear that this single condition does not allow 
to define an operator uniquely. It has been shown in [24], that the HT is the choicest operator 
to build the quadrature signal when considering some basic physical assumptions. As a 

reminder, ⊗ standing for the convolution product, the HT of a function u(t) is defined as 
follows, respectively in real and Fourier domain [22]: 

( )[ ] ( ) ( ) ( )[ ]{ } ( )
( )




<νν⋅−
>νν⋅

=⊗
π
−

=∫
−π

=
∞

∞− 0,Ui

0,Ui
 tuHTFT,tu

t

1
dx

xt

xu1
tuHT ,           (8) 

where ν is the frequency and U(ν) is the FT of u(t). The HT is thus equivalent to a filter which 

leaves the amplitude of the spectral components constant while it shifts their phase by ±π/2. 

The phase ϕ(t) is then extracted in the range [-π, π] with the arctan function, from the 
complex valued signal: 

( ) ( )[ ]
( ) 







 −
=ϕ

tu

tuHT
arctantas                                              (9) 

All the phases computed in this paper, whatever attached to simulated or experimental 
signals, are obtained by substituting for u(t) the 1

st
 single iteration IMF of the signal and by 

computing the HT in the Fourier domain. 
Another very common quantity is the IF usually defined by the time derivative of the 

instantaneous phase [25]: 

( ) )t(
dt

d
tf asas ϕ=                                                      (10) 

In practice, we deal with discrete time signals and the discrete IF may be defined as the 
convolution of the phase with a FIR (finite impulse response) filter. The obvious 
differentiating filter is the classical forward finite difference defined by: 

[ ] [ ] [ ]( )1nn
2

1
nf asasas −ϕ−ϕ

π
=                                                 (11) 

A thorough study of FIR differentiator filters is out of the scope of this paper, but it is worth 
mentioning that the classical differentiating operation enhances the high-frequency contain, 
i.e. noise, of the signal. Thus, if one is interested in the IF rather than in the phase, attention 
should be paid to the choice of the ad-hoc differentiator, or an IF estimation/tracking method 
could be preferable. 

4.2 The extrema method 

From the extrema finding step, we can readily extract a useful knowledge, though of an 
approximate nature, on the IF and thus the phase. In continuous time domain with narrow-
band noise-free signal, if we consider a local maximum at t = t1 and a local minimum at t = 

t1+τ, a rough estimate of the IF in the range [t1,t1+τ] is simply: 

τ
=

2

1
f                                                                    (12) 
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With discrete time signals, especially in the non-stationary case, the extrema are very unlikely 
to be located at sampling points, adding thus some quantization noise to the computation. The 
higher the FM is, the better the temporal resolution will be, as usual to the detriment of the 
frequency resolution and, in corollary, of the quantization noise. Not withstanding the strong 
limitations of this method, we will use is as it is, either to provide a fast evaluation of the 
phase in long experiments for instance, or to provide an initial guess for phase tracking 
methods. 

5. How to discard pixels with low modulation: 3D piecewise processing (3DPP) 

Due to the intrinsic randomness of speckle, the temporal pixel signal will experience strong 
fluctuations of modulation depth. When this modulation depth drops to zero, the apparent IF 
does not reflect the underlying physical phenomenon with a possible frequency doubling. In 
addition, in the vicinity of those areas of null modulation depth, noise is preeminent and the 
EMD and, as a consequence, the phase extraction become very inaccurate, as any other 
method would be by the way. Due to the 1D unwrapping operation, the error will propagate 
and corrupt the whole phase dataset. For a long experiment (several correlation lengths), time 
intervals of low modulation will surely occur in the temporal history of each pixel. This new 
unavoidable issue can be overcome by using the spatial information contained in neighboring 
pixels. Between the areas where the pixel is classified as irrelevant, the phase will be obtained 
up to an additive constant, but the discrete IF will be valid. The basic idea is thus to identify 
the areas where the pixel signal has a modulation depth lower than a certain threshold 
empirically set (chosen equal to 30 gray levels on Fig. 7-a), discard the IF values within those 
areas (highlighted by gray hatching on Fig. 7-a and b; pixel validity indicator equal to 1), 
while keeping them unchanged outside (pixel validity indicator equal to 0). 

 

Fig. 7. (a) Pseudo-IMF obtained after fast EMD with areas identified as invalid (1) or valid (0) 
(gray levels in ordinate and sample number in abscissa), and (b) its discrete extracted IF. 

 
Each pixel being independent, when we gather again the temporal sets to form frames, we 

obtain arrays of discrete IF sampled on a fluctuating non-uniform grid. An interpolation step 
has to take place to obtain arrays of discrete IF uniformly sampled, which are summed up 
afterwards to recover the phase map at each instant. The interpolation method will not be 
detailed here but it is based on the Delaunay triangulation implemented using the Quickhull 
algorithm [36]. Due to the interpolation process, an unavoidable loss of spatial resolution is 
introduced. But at one point of the probed surface, the spatial resolution, or in other words the 
density of relevant pixels, changes at each frame and except for areas with almost no activity, 
a pixel always features enough modulation somewhere in its history to allow meaningful IF 
extraction. As for any interpolation process, some care has to be put near the dataset 
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boundaries. So, we simply make sure that the area of interest (AOI) is always surrounded by 
pixels referenced as valid with smooth values of IF (either imposed by a priori knowledge or 
computed by averaging the AOI border). We compare in the next section our technique with 
the median filter, which is acknowledged to remove efficiently “pepper and salt” noise and to 
be edge-preserving. We will see that our technique clearly outperforms the median filter. 

6. Experimental results 

A SI setup with an in-plane sensitivity (Leendertz configuration) has been built to follow the 
rotation of a diffusing metallic plate. The object is illuminated by two divergent laser beams 

of equal intensity, each of them making an angle θ with the normal to the object surface. The 
smooth in-plane rotation of 0.25° is achieved through the use of a DC motor. During the 

motion, 4640 images (1000×1000 encoded on 10 bits) are taken at a rate of 48 fps, and 
processed by blocks of 1024 frames with an overlapping of 100 frames between them to 
reduce the boundaries errors. In Fig. 8, S1 and S2 designate the two unit vectors of the 
illumination directions, while the observation direction coincides with the object surface 
normal. The overall phase change between the two arms when a displacement L occurs is 
given by: 

( ) x21 LS
2

⋅=⋅−
λ
π

=ϕ∆ LSS ,                                          (13) 

where S and Lx are respectively the sensitivity of the interferometer and the projection of the 
motion on the x-axis. Due to its symmetry, the sensitivity is actually simply related to the 
physical parameters of the setup by the following relation: 

θ⋅
λ
π

= sin
4

S                                                            (14) 

In our experiment, the sensitivity S is equal to 8.5 rad/µm. For off-axis points, due to the 
divergence of the illumination beams, the interferometer has slight sensitivity to Ly, and Lz. 
Those sensitivities are more than one order of magnitude lower than S, and will be thus 
neglected. The divergent illumination leads also to variations of the sensitivity S within the 
field that appear to be negligible (less than 0,2 %). 

Fig. 8. In-plane SI experiment. 

 
We limit the AOI to the half the rotating plate (see Fig. 8). In this experiment, we do not 

use an optical temporal carrier – mandatory to find out the direction of the deformation – to 
have the largest measurement bandwidth, which otherwise would have to be shared with the 
carrier frequency. It is thus enough to process the temporal pixels of half the plate. 
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In Fig. 9(a), the movie of the phase computed through the use of the fast EMD followed 
by the analytic method is shown. The result is very noisy and very quickly unexploitable for 
pixels experiencing less and less fringes of displacement (toward the central part of the plate). 
This area is denoted as the “blindness” area as the algorithm does not allow measuring 
accurately what happens inside. There are actually two main cases to distinguish: the case 
where there are few fringes of displacement and the case where there is almost none. The 
latter one corresponds to the very central part of the metal plate and cannot be solved without 
a temporal carrier. When there is very low activity during the pixel history, the presence of 
noise and the sparsity of fringe extrema make the extrema finding step very inaccurate. The 
outcome of the EMD algorithm contains then long areas of only noise. Applying the analytic 
method to such signals leads to a result where the useful phase information is overwhelmed by 

large and meaningless phase values. Filtering the raw phase maps with a box 5×5 median filter 
leads to the result shown in Fig. 9-b, while the phase coming from the 3DPP is shown in Fig. 
9(c). The benefit of this latter technique is obvious and greatly extends the measurement 
bandwidth. The cross sections of the total final phase map in each case are compared in Fig. 
10. 

 

Fig. 9. Phase extraction results: (a) (Media 1) of the raw phase, (b) (Media 2) the raw phase 

filtered with a 5×5 median filter and (c) (Media 3)  the phase resulting from the 3DPP. 

 

Fig. 10. Cross-sections of the total computed displacement in each case depicted in Fig. 9. 
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Not surprisingly, errors exist even when the pixel experienced a lot of activity. The pixel size 

in the object plane is 70×70 µm
2
, i.e. the fourth of the largest displacement on the metal plate. 

So decorrelation will surely occur for all pixels outside a circle four times smaller than the 
plate. The good point is that with the 3DPP technique, only a strip of 5 mm wide in the center 
of the plate cannot be characterized. This “blindness” strip is 4 times wider with the fast-EMD 

& HT technique and still 3 times wider after the filtering step with a 5×5 median filter. 
Adding optically a temporal carrier would suppress this blind zone, at the expense of a 
reduction of the measurement bandwidth as said before. 

7. Conclusion and outlooks 

This paper proposed a new efficient and flexible processing tool to handle SI and more 
generally any full-field technique signals in dynamic regimes. We have shown that the 
combination of the EMD, the HT and the 3DPP is perfectly able to tackle the challenge of 
dynamic behaviours characterization even for displacements and/or deformations beyond the 
classical limit of the correlation length. 
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