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A new method for analysing nonlinear and non-stationary data has been devel-
oped. The key part of the method is the ‘empirical mode decomposition’ method
with which any complicated data set can be decomposed into a finite and often
small number of ‘intrinsic mode functions’ that admit well-behaved Hilbert trans-
forms. This decomposition method is adaptive, and, therefore, highly efficient. Since
the decomposition is based on the local characteristic time scale of the data, it is
applicable to nonlinear and non-stationary processes. With the Hilbert transform,
the ‘instrinic mode functions’ yield instantaneous frequencies as functions of time
that give sharp identifications of imbedded structures. The final presentation of the
results is an energy–frequency–time distribution, designated as the Hilbert spectrum.
In this method, the main conceptual innovations are the introduction of ‘intrinsic
mode functions’ based on local properties of the signal, which makes the instanta-
neous frequency meaningful; and the introduction of the instantaneous frequencies
for complicated data sets, which eliminate the need for spurious harmonics to rep-
resent nonlinear and non-stationary signals. Examples from the numerical results of
the classical nonlinear equation systems and data representing natural phenomena
are given to demonstrate the power of this new method. Classical nonlinear system
data are especially interesting, for they serve to illustrate the roles played by the
nonlinear and non-stationary effects in the energy–frequency–time distribution.
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1. Introduction

Data analysis is a necessary part in pure research and practical applications. Imper-
fect as some data might be, they represent the reality sensed by us; consequently,
data analysis serves two purposes: to determine the parameters needed to construct
the necessary model, and to confirm the model we constructed to represent the phe-
nomenon. Unfortunately, the data, whether from physical measurements or numerical
modelling, most likely will have one or more of the following problems: (a) the total
data span is too short; (b) the data are non-stationary; and (c) the data represent
nonlinear processes. Although each of the above problems can be real by itself, the
first two are related, for a data section shorter than the longest time scale of a sta-
tionary process can appear to be non-stationary. Facing such data, we have limited
options to use in the analysis.

Historically, Fourier spectral analysis has provided a general method for examin-
ing the global energy–frequency distributions. As a result, the term ‘spectrum’ has
become almost synonymous with the Fourier transform of the data. Partially because
of its prowess and partially because of its simplicity, Fourier analysis has dominated
the data analysis efforts since soon after its introduction, and has been applied to
all kinds of data. Although the Fourier transform is valid under extremely general
conditions (see, for example, Titchmarsh 1948), there are some crucial restrictions of
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