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Abstract—In the multicast network coding problem, a source
needs to deliver packets to a set of terminals over an under-
lying communication network . The nodes of the multicast net-
work can be broadly categorized into two groups. The first group
incudes encoding nodes, i.e., nodes that generate new packets by
combining data received from two or more incoming links. The
second group includes forwarding nodes that can only duplicate
and forward the incoming packets. Encoding nodes are, in general,
more expensive due to the need to equip them with encoding capa-
bilities. In addition, encoding nodes incur delay and increase the
overall complexity of the network.

Accordingly, in this paper, we study the design of multicast
coding networks with a limited number of encoding nodes. We
prove that in a directed acyclic coding network, the number of
encoding nodes required to achieve the capacity of the network is
bounded by 3 2. Namely, we present (efficiently constructible)
network codes that achieve capacity in which the total number
of encoding nodes is independent of the size of the network and
is bounded by 3 2. We show that the number of encoding
nodes may depend both on and by presenting acyclic coding
networks that require 
( 2 ) encoding nodes. In the general
case of coding networks with cycles, we show that the number of
encoding nodes is limited by the size of the minimum feedback
link set, i.e., the minimum number of links that must be removed
from the network in order to eliminate cycles. We prove that the
number of encoding nodes is bounded by (2 + 1) 3 2, where

is the minimum size of a feedback link set. Finally, we observe
that determining or even crudely approximating the minimum
number of required encoding nodes is an -hard problem.

Index Terms—Coding networks, encoding links, encoding nodes,
multicast, network coding.

I. INTRODUCTION

THE goal of communication networks is to transfer
information between source and destination nodes. Ac-

cordingly, the fundamental question that arises in network
design is how to increase the amount of information transferred
by the network. Recently, it has been shown that the ability
of the network to transfer information can be significantly
improved by employing the novel technique of network coding
[1]–[3]. The idea is to allow the intermediate network nodes
to combine data received over different incoming links. Nodes
with coding capabilities are referred to as encoding nodes, in
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contrast to forwarding nodes that can only forward and dupli-
cate incoming packets. The network coding approach extends
traditional routing schemes, which include only forwarding
nodes. The concept of network coding was introduced in a
seminal paper by Ahlswede et al. [1] and immediately attracted
significant attention from the research community. A large
body of research focused on the multicast network coding
problem where a source needs to deliver packets to a set
of terminals over an underlying communication network .
It was shown in [1] that the capacity of the network, i.e., the
maximum number of packets that can be sent between and ,
is bounded by the size of the minimum cut1 that separates the
source and a terminal . Namely, a source can transmit
at rate to a set of terminals only if the size of the minimum
cut separating and any one of the terminals is at least

. This combinatorial condition was shown to be sufficient by
Li, Yeung, and Cai [2], and achievable by using linear network
codes, i.e., codes in which each packet sent over the network
is a linear combination of the original packets. In a subsequent
work, Koetter and Médard [3] developed an algebraic frame-
work for network coding and investigated linear network codes
for directed graphs with cycles. This framework was used by
Ho et al. [4] to show that linear network codes can be efficiently
constructed by employing a randomized algorithm. Jaggi et
al. [5] proposed a deterministic polynomial-time algorithm for
finding feasible network codes for multicast networks.

Earlier work on network coding established a tight upper
bound on the capacity of multicast networks and provided tools
for constructing network codes that achieve capacity. However,
optimization issues in network coding have received little
attention from the research community. In general, the goal of
network optimization is to minimize the amount of resources
consumed by network connections. In this study, we focus on
minimizing the total number of encoding nodes in multicast
coding networks. More specifically, our goal is to find, for
a given instance of the network coding problem, a feasible
network code that requires as few encoding nodes as possible.

The problem of minimizing the number of encoding nodes is
important for both theoretical and practical reasons. First, en-
coding nodes are, in general, more expensive than forwarding
nodes, mostly because of the need to equip them with encoding
capabilities. In addition, encoding nodes incur delay and in-
crease the overall complexity of the network.

A. Contribution

The contribution of this paper can be summarized as fol-
lows. We prove the existence of efficiently constructible net-

1A cut (V ; V ) in graph G(V;E) is a partition of V into two subsets V and
V = V n V . The size of the cut is determined by the number of links that
leave a node in V and enter a node in V . We say that a cut (V ; V ) separates
nodes s and t if s 2 V and t 2 V .
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work codes in which the number of encoding nodes is indepen-
dent of the size of the underlying graph and depends only on
the number of packets and the number of terminals . Our al-
gorithm is simple and includes three basic steps: 1) Construct
an auxiliary network by substituting each internal node by a
“gadget” and removing all redundant links. The degree of any
internal node in the auxiliary network is bounded by ; 2) Find
a feasible network code for the auxiliary network; 3) Recon-
struct a network code for the original network. We show that
such a procedure yields a network code that requires only
encoding nodes. We also show that in the worst case, the number
of encoding nodes depends on both and . To that end, we
present, for any values of and , a coding network that re-
quires encoding nodes.

We also consider the general case of coding networks with
cycles. We show that in such networks, the number of encoding
nodes required to enable transmission at rate from a source

to terminals depends on the size of the minimum feedback
link set of the network, i.e., the minimum number of links that
must be removed from the network in order to eliminate cycles.
Specifically, we prove that the number of required encoding
nodes is bounded by , where is the minimum
size of a feedback link set. We also present coding networks
with cycles that require encoding nodes.

Finally, we observe that determining, or even crudely approx-
imating the minimum number of required encoding nodes is an

-hard problem.

B. Encoding Links

A more accurate estimation of the total amount of computa-
tion performed by a coding network can be obtained by counting
encoding links, rather than encoding nodes. A link , ,
is referred to as an encoding link if each packet sent on this
link is a combination of two or more packets received on the
incoming links of . Indeed, as the output degrees of nodes in

may vary, encoding nodes might have different computation
loads. In addition, only some of the outgoing links of a node may
be encoding, while others may only forward incoming packets.
Accordingly, we can consider the problem of finding a feasible
network code that minimizes the total number of encoding links.
It turns out that all upper and lower bounds on the minimum
number of encoding nodes presented in this paper, as well as
the inapproximability results, carry over to the problem of min-
imizing the number of encoding links. This follows from the
fact that our results are derived by analyzing auxiliary networks
in which the degree of any internal node is at most . In such
networks, the number of encoding links is equal to the number
of encoding nodes.

C. Related Work

The problem of minimizing the number of encoding nodes in
coding networks is partially addressed in the works of Fragouli
et al. [6], [7] and Tavory et al. [8]. The works of Fragouli et
al. study the special case of transmitting two packets over an
acyclic network (i.e., ). They show that in this special
case the number of encoding nodes is bounded by the number
of terminals . The proof techniques used in [6], [7] rely on a
certain combinatorial decomposition of the underlying network

and do not generalize to the case in which the number of packets
is larger than two.
The problem of minimizing the number of required encoding

nodes is also studied by Tavory et al. [8]. They obtain partial re-
sults of nature similar to those of [6] and [7], mentioned above.
Namely, they prove, for the case of , that the number of
required encoding nodes is independent of the size of the under-
lying graph . For general values of , [8] conjectures that the
number of encoding nodes required by an acyclic coding net-
work is independent of its size and depends only on the number
of packets and the number of terminals . In our study we
prove this conjecture.

Finally, the issue of encoding versus forwarding nodes in the
solution of network coding problems was also studied by Wu
et al. [9]. They show the existence (and efficient construction)
of network codes in which only nodes which are not directly
connected to a terminal perform encoding. The results in [9] do
not imply bounds on the number of required encoding nodes.

D. Organization

The rest of the paper is organized as follows. In Section II, we
present a formal definition of the network coding problem and
state our results in detail. In Section III, we define and motivate
the notion of a simple network. In that section, we also present
an algorithm for finding network codes that require a bounded
number of encoding nodes. In Section IV, we establish the
upper bound on the number of encoding nodes in acyclic net-
works. In Section V, we focus on general (cyclic) networks. In
Section VI, we present lower bounds for both acyclic and cyclic
networks, and show that determining (or even approximating)
the minimum number of encoding nodes is -hard. Finally,
in Section VII, we conclude with a few remarks and open prob-
lems.

II. MODEL

A communication network is modeled by a directed graph
where is the set of nodes in and is the

set of links. We assume that each link can transmit one
packet per time unit. In order to model links whose capacity
is higher than one unit, may include multiple parallel links.
A multicast network is a -tuple that includes a
graph , a source node , a set of terminals ,
and the number of packets that must be transmitted from the
source node to every terminal . We assume that each
packet is a symbol of some alphabet .

Definition 1 (Network Code ): A network code for a
multicast network is defined by encoding func-
tions . For links leaving the
source, . For other links ,

. Here, is the in-degree of node .

The function specifies the packet transmitted on link
for any possible combination of packets transmitted on

the incoming links of . For links leaving the source , takes
as input the packets available at .

Definition 2 (Encoding and Forwarding Links and Nodes):
Let be a network code, a network link, and
the encoding function of in . Link is referred to
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as an encoding link if depends on two variables or more.
Otherwise, is referred to as a forwarding link. We say that a
node , , is an encoding node if at least one of its outgoing
links is encoding. If all outgoing links of a node are
forwarding, the node is referred to as a forwarding node.

In general, there may be links whose encoding
functions do not depend on the incoming packets of (i.e.,

is constant). Such links transmit no information and can be
removed from the network. In addition, there may be links
for which the function depends on a single variable, but

. We refer to such links as forwarding nevertheless,
and do not count them as encoding links. It is easy to verify that
if includes links with corresponding functions that de-
pend on a single variable but are not the identity function, one
can construct a new network code without such functions
such that the number of encoding nodes in and are
equal.

A network code for a multicast network
is said to be feasible if it allows communication

at rate between and each terminal . We say that a net-
work code for an acyclic multicast network
allows communication at rate if each terminal can
compute the original packets available at the source from the
packets received via its incoming links. To define the notion of
rate for networks with cycles, we consider multiple rounds of
transmission, at each round the source sends packets over
the network. We say that the network code allows transmission
at rate if each terminal can reconstruct the packets sent
by the source, such that each packet is reconstructed after a fixed
number of rounds.

We are ready now to define the multicast network coding
problem.

Definition 3 (Multicast Network Coding Problem): Given a
multicast network , find a feasible network code

that allows communication a rate between source and
terminals .

We say that is a feasible muticast network if
there exists a feasible network code for . A multicast network

is feasible if and only if each cut that separates the
source node and a terminal contains at least links [2].

A. Statement of Results

As mentioned in the Introduction, our goal is to find fea-
sible network codes that require a minimum number of encoding
nodes. For a multicast network , we denote by

the minimum number of encoding nodes in any fea-
sible network code for .

We show that computing is an -hard problem.
Furthermore, it is -hard to approximate within any
multiplicative factor or within an additive2 factor significantly
less than . This result follows from the fact that it is -hard
to distinguish between networks in which and
networks in which .

2An estimate to Opt( ) which is within an �-multiplicative factor of
Opt( ) is referred to as an �-multiplicative approximation of Opt( ). An
estimate to Opt( ) which is within an �-additive value of Opt( ) is referred
to as an �-additive approximation of Opt( ).

Theorem 4: Let be any constant. Let be a
multicast network in which the underlying graph has nodes.
Approximating the value of within any multiplicative
factor or within an additive factor of is -hard.

Although the problem of finding the exact or approximate
value of is -hard, we establish upper bounds on

that hold for any multicast network . The
main contribution of this paper is an upper bound on
for acyclic networks which is independent of the size of the net-
work and depends only on and . Specifically, we show
that for any acyclic multicast network that
delivers packets to terminals. Our bound is constructive,
i.e., for any feasible network we present an ef-
ficient algorithm that constructs a network code with at most

encoding nodes. In what follows, an algorithm is said to
be efficient if its running time is polynomial in the size of the
underlying graph .

Theorem 5 (Upper Bound, Acyclic Networks): Let be an
acyclic graph and let be a feasible multicast net-
work. Then, one can efficiently find a feasible network code for

with at most encoding nodes, i.e., ,
where .

Theorem 6 (Lower Bound, Acyclic Networks): Let and
be arbitrary integers. Then, there exist multicast networks

such that , , the underlying
graph is acyclic, and .

Finally, we establish upper and lower bounds on the number
of encoding nodes in the general setting of communication net-
works with cycles. We show that the value of in a cyclic
network depends on the size of the minimum feedback link
set.

Definition 7 (Minimum Feedback Link Set [10]): Let
be a directed graph. A subset is referred to as

a feedback link set if the graph formed from by removing
all links in is acyclic. A feedback link set of minimum size is
referred to as the minimum feedback link set. Given a network

, we denote by the minimum size of a feedback
link set of its underlying graph .

Theorem 8 (Upper Bound, Cyclic Networks): Let
be a feasible multicast network. Then, one

can efficiently find a feasible network code for with at most
encoding nodes, i.e., ,

where .

Theorem 9 (Lower Bound, Cyclic Networks): Let and
be arbitrary integers. Then a) there exist multicast networks

such that , , and
; b) there exist multicast networks such

that , , and (here
is the set of nodes in ).

A couple of remarks are in place. First, note that Theorem 8
generalizes Theorem 5, as for acyclic networks the minimum
feedback link set is of size . Second, note that Theorem 9 es-
tablishes two lower bounds. The first complements the upper
bound of Theorem 8, while the second shows that in the case of
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cyclic networks the value of is not necessarily indepen-
dent of the size of the network and may depend linearly on the
number of nodes in .

III. “SIMPLE” MULTICAST NETWORKS

Let be a feasible multicast network. In order
to establish a constructive upper bound on the minimal number
of encoding nodes of we consider a special family
of feasible networks, referred to as simple networks. In what
follows, we define simple multicast networks, and show that
finding network codes with a bounded number of encoding
nodes for this family suffices to prove Theorems 5 and 8. We
start by defining feasible multicast networks which are minimal
with respect to link removal.

Definition 10 (Minimal Multicast Network): A feasible
multicast network is said to be minimal with
respect to link removal if any network formed
from by deleting a link from is no longer
feasible.

Definition 11 (Simple Multicast Network): A multicast net-
work is said to be simple if and only if a) is fea-
sible; b) is minimal with respect to link removal; c) the total
degree of each node in is at most (excluding the source and
terminal nodes); and d) the terminal nodes have no outgoing
links.

We now present our reduction between general and simple
networks.

A. Reduction to Simple Networks

Let be a feasible multicast network. We con-
struct a simple multicast network such that any
feasible network code for yields a network code for that
requires the same or a smaller number of encoding nodes. Our
construction is computationally efficient and includes the three
following steps.

Step 1—Replacing Terminals: For each terminal we
add a new node to and connect to by parallel links.
We denote the new set of terminals by , the re-
sulting graph by , and the resulting multicast network by

.
Step 2—Reducing Degrees: Let be the graph formed

from by replacing each node , , whose
degree is more than by a subgraph , constructed as follows.
Let

and

be the incoming and outgoing links of , respectively, where
and are the in- and out-degrees of . For each

incoming link of , we add to a node and a bi-
nary tree with root at and leaves .
Similarly, for each outgoing link of , we add to a
node and an inverted binary tree with root at and
leaves . Next, for each and

Fig. 1. A node v 2 G.

Fig. 2. The gadget � for v in Fig. 1.

we add a link to . Finally, we con-
nect to the rest of the network by adding links for

and for . Figs. 1 and 2
demonstrate the construction of the subgraph for a node
with . Note that for any two links
and there is a path in that connects and . The
resulting multicast network is denoted by .

Step 3—Removing Links: Let be any subgraph of
such that is minimal with respect to link removal.
The graph can be efficiently computed by employing the fol-
lowing greedy approach. For each link , in an arbitrary
order, we check whether removal of from would result
in a violation of the min-cut condition. The min-cut condition
can be easily checked by finding link-disjoint paths between

and each terminal (via max-flow techniques, e.g.,
[11]). All links whose removal does not result in a violation
of the min-cut condition are removed from . The resulting
network, denoted by , is the final outcome of our
reduction.

We proceed to analyze the properties of . First, we show
that is a simple network. Note that each step of our construc-
tion maintains the min-cut condition. Hence, the size of the min-
imum cut in between and any terminal is at least ,
which, in turn, implies, that is a feasible multicast network.
Due to Step 1, the terminals have no outgoing links. Finally,
Steps 2 and 3 ensure that the total degree of any node in ex-
cluding the source and terminals is at most and that is min-
imal with respect to link removal.

Second, we observe that the minimum size of a feedback link
set in is smaller or equal to that of . Indeed, it is easy to
verify that if is a feedback link set of , then the links of
that correspond to form a feedback link set.

Finally, we show that . That is, any fea-
sible network code for with encoding nodes can be used to
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efficiently construct a network code for that requires the same
number of encoding nodes.

Reconstruction of a Feasible Network Code for : Let
be a feasible network code for with encoding
nodes. A feasible network code for is con-
structed as follows. Let be a link in . Let be
the corresponding link between and in (recall that

was constructed at Step 2 above). If does not appear in
then no information is sent over the link in . If ap-

pears in , the code for is determined by the
codes of links that belong to . Specifically, let

be the incoming links of
where is the in-degree of in . The construction of
implies that the packet transmitted on the link is a function
of the packets transmitted on links . We use this function

as the encoding function for link in code . The fact
that the incoming links of in correspond to the links in
implies the feasibility of the resulting code .

We note that a node is an encoding node in if and
only if at least one of the nodes in performs encoding. On
the other hand, each encoding node in corresponds to at
most one encoding node in . This implies that the number
of encoding nodes in is at most and, in turn,

.
We summarize the above discussion by the following lemma:

Lemma 12: Let be a feasible multicast net-
work. Then, one can efficiently construct a simple network

for which a) , b) the size of the feed-
back link set of is less than or equal to that of , and c) any
feasible network code for with encoding nodes can be used
to efficiently construct a feasible network code for with at
most encoding nodes.

B. The Value of in Simple Networks

In what follows, we show that for simple networks
the value of is equal to the number

of nodes in (excluding the terminals) of in-degree .

Definition 13: Let be a simple multicast net-
work. We define to be the number of nodes in of
in-degree .

Lemma 14: Let be a simple multicast network.
Let be any feasible network code for . Then, a node

, , , is an encoding node in if and only
if the in-degree of is . Thus, .

Proof: Let be an encoding node in . Then, the
in-degree of must be larger than one, otherwise all coding
functions of the outgoing links of depend on a single
variable, which contradicts the fact that is an encoding node.
Furthermore, since the total degree of is at most three, and
since it has at least one outgoing link, it follows that the in-de-
gree of is .

Now let , , , be a node with in-degree , and
let be an outgoing link of (node must have an out-
going link, otherwise is not minimal). If is not an encoding
link, then is a function of a single variable, i.e., depends on

Fig. 3. Algorithm for finding a network code with a bounded number of
encoding nodes.

packets that arrive on one of the incoming links of . This im-
plies that the other incoming link can be omitted from (while
preserving the feasibility of ), which contradicts
the minimality of .

C. The Algorithm

Lemma 14 implies that for any given simple network
, any upper bound on is also an (efficiently

constructible) upper bound on . Accordingly, in Sec-
tions IV and V, we prove that is bounded by for
acyclic networks and for cyclic networks, where

is the size of the minimum feedback link set of and
.

This leads to the following efficient procedure for finding
a feasible network code with a bounded number of encoding
nodes (implied by Lemma 12). The procedure works for a gen-
eral (not necessarily simple) multicast network .
We begin by transforming into a simple network . Then,
we find a feasible network code for . Finally, we reconstruct
the corresponding network code for the original network . The
description of our procedure appears in Fig. 3.

IV. UPPER BOUND FOR ACYCLIC NETWORKS

In this section, we present the proof of Theorem 5. The proof
includes two steps. First, in Section IV-A, we analyze the special
case in which the multicast network has only two terminals (i.e.,

). Then, in Section IV-B, we address the general case in
which the number of terminals is arbitrary. In both cases, we
establish an upper bound on for simple acyclic networks

. By Lemmas 12 and 14, the upper bound on suffices to
prove Theorem 5.

A. Networks With Two Terminals

Throughout this section we will use the following theorem
implied by the results of [1] and [2] combined with Menger’s
theorem [12].

Theorem 15 ([12], [1], [2]): Let be a multicast
network. Then, there exists a feasible network code if and
only if for each terminal there exist link-disjoint paths
that connect and .

We begin by introducing the concept of residual graphs. The
residual graphs capture the minimality of the network at hand
with respect to link removal. In particular, the residual graphs
that correspond to minimal networks contain no cycles.



LANGBERG et al.: THE ENCODING COMPLEXITY OF NETWORK CODING 2391

Fig. 4. (a) A simple multicast network (G; s; T; h). (b) Red paths P and
P . (c) Blue paths P̂ and P̂ . (d) Residual graph G . (e) Residual Graph G .
(f) Auxiliary graph Ĝ and two green paths �P and �P .

Let be a simple (and therefore feasible) multi-
cast network with two terminals and . By Theorem 15, there
exist link-disjoint paths from to and link-disjoint paths
from to . Throughout this subsection, we fix a set of link
disjoint paths from to and refer to them as red paths. Simi-
larly, we fix a set of link-disjoint paths from to and refer
to them as blue paths. We refer to links that belong to red paths
as red links, and links that belong to blue paths as blue links. As
a link in can belong to a red path and to a blue path, it can be
both red and blue.

We observe that a simple network has the fol-
lowing properties. First, every link in belongs to either a blue
or a red path. Second, at most one red (blue) path may pass
through any node in which is not a terminal or the source.
Third, all links entering are exclusively red, and all links en-
tering are exclusively blue. Finally, the source node has no
incoming links. The first and final properties follow from the
minimality of . The second property follows from
the fact that the degree of each node which is not a terminal or
a source is at most . The third property follows from the fact
that the terminals have no outgoing links and the fact that the
red (blue) paths must terminate at .

A simple multicast network with corre-
sponding red and blue paths is depicted in Fig. 4(a)–(c). We are
ready now to define residual graphs and .

Definition 16 (Residual Graph ): Let be a
simple multicast network with two terminals (i.e., ). The
residual graph is formed from by reversing all links that
belong to red paths (including links that belong both to red and
blue paths).

Definition 17 (Residual Graph ): Let be a
simple multicast network with two terminals. The residual graph

is formed from by reversing all links that belong to red
paths only (not including links that belong both to red and blue
paths).

Examples of the residual graphs and are depicted in
Fig. 4(d) and (e), respectively,

Lemma 18: Let be a simple multicast network
with an acyclic graph . Then, the residual graphs and
are acyclic.

Proof: We denote the red paths between and
by , and the blue paths between and by

. Since is simple (and thus minimal
with respect to link removal), every link in is either red,
blue, or both red and blue. Suppose that the residual graph
contains a cycle . Each link has a corresponding link
in which is either identical to or is the reverse of . In what
follows, the color of a link in is defined to be the color of
the corresponding link in .

First, we note that does not include terminals and
(because terminal has in-degree in and terminal has
out-degree in ). Second, we observe that contains at least
one link whose color is exclusively blue. Otherwise, the links
that belong to would form a cycle in the original graph con-
sisting exclusively of red links, which contradicts our assump-
tion that is acyclic.

Third, we prove that contains a link whose color is ex-
clusively red. Otherwise, consider the case in which all links that
belong to are either exclusively blue or red and blue. At least
one of them, e.g., , is exclusively blue (which implies that
the direction of in is the same as in ). We observe that

must include links that are not exclusively blue, otherwise,
there would be a cycle in . Thus, there are links in which
are both red and blue (which implies that they appear in oppo-
site directions in and ). Hence, there exist two links
and in , such that is exclusively blue and
is both red and blue. This implies that in the original graph
node has two input links, both of them belong to blue paths.
Since is not a terminal node, it must have two output links,
one for each blue path. Thus, the degree of this node in is
at least , in contradiction to our assumption that the degree of
each internal node in is at most .

We have shown that the cycle of includes a link
which is exclusively blue and a link which is exclusively red.
Let be the reverse link of . We now show that
can be removed from the original graph , which contradicts the
minimality of the network . To that end, we show
that there exist link-disjoint paths from to in

which do not include link .
Specifically, we use the techniques from the theory of net-

work flows [11]. Let be a set of links that belong to red paths,
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Fig. 5. (a) A non-minimal multicast network (G; s; T; h). (b) Red paths P
and P . (c) Blue paths P̂ and P̂ . (d) Residual graph G which has a cycle C .
(e) The new set of red paths (after augmentation along cycle C). (f) A minimal
network formed from (G; s; T; h) by removing links (a; d) and (c; b).

i.e., . The set represents
a flow between and of value . We observe that is a
residual graph with respect to this flow and is an augmenting
cycle in the residual graph . We now augment along
and denote the resulting flow by . Flow includes the fol-
lowing links: a) each link in whose reverse link

does not belong to , b) each link that belongs
to and whose reverse link does not belong to , i.e.,

and

and (1)

Note that does not include link . Also, it is easy to verify
that any cut that separates and in has at least links that
belong to . Indeed, for any cut , the number of links
of that cross in the forward direction is identical
to the number of links of that cross in the reverse
direction. This implies [12] that can be decomposed to
link-disjoint paths between and in . We note
that these paths do not include link . This implies that can
be removed from the , which contradicts the minimality of

.
Our proof is illustrated in Fig. 5. Fig. 5(a)–(c) depicts a mul-

ticast network with two terminals and , and

the initial sets of red and blue paths, and .
The corresponding residual graph is depicted in Fig. 5(d).
Note that has a cycle that includes two links
and which are exclusively red. Fig. 5(e) depicts a new set
of red paths in obtained by augmenting the flow
formed by red paths along cycle . Since links
and no longer belong to red paths, they can be removed
from the graph. A minimal network formed from
by removing links and is depicted on Fig. 5(f).

Using a similar argument, we can show that the same prop-
erty holds for the residual graph . Specifically, we consider
the graph formed from by reversing all its links, and re-
placing “red” with “blue” in the arguments above.

Up to this point, after fixing the red and blue paths of , we
have defined two residual graphs and . We now define an
additional (and final) graph and a set of green paths.

Definition 19 (Auxiliary Graph ): Let be a
simple multicast network with two terminals (i.e., ). Let

be a set of red paths and let be a set
of blue paths. Let be the graph formed from by a) deleting
links that belong to both a red path and a blue path in ; and b)
reversing links that belong to a red path and do not belong to a
blue path.

As in the case of and , the definition of depends on
the sets of red and blue path chosen above.

In the following lemma we prove that consists of link-
disjoint paths between and . We refer to these paths as green
paths. An example of an auxiliary graph with two green paths
is depicted in Fig. 4(f).

Lemma 20: Let be a simple multicast network.
Then, the corresponding graph consists of link-disjoint
paths between and ( may also include isolated vertices
of total degree ).

Proof: First we prove that each node , excluding the
terminals and the source node , has exactly one incoming
link and exactly one outgoing link. For each such node in the
original graph , one of the following holds.

Case 1: Node has one incoming link and one outgoing
link . In this case, either a blue path or a red path or both red
and blue paths (together) pass though . In the first two cases,
both links appear in , either in the original direction or in the
reverse direction, hence the node has one incoming link and
one outgoing link in the auxiliary graph . In the last case, both
links and do not appear in .

Case 2: Node has two incoming links , and one out-
going link . In this case, a red and a blue path enter node
through separate links and exit (together) through . Thus,
does not appear in and one of the incoming links ( or ) is
reversed. Thus, the node has one incoming link and one out-
going link in the auxiliary graph .

Case 3: Node has one incoming link and two outgoing
links and . In this case, a red and a blue path enter node

through link and exit through separate links and .
Thus, does not appear in and one of the outgoing links (
or ) is reversed. Thus, the node has one incoming link and
one outgoing link in the auxiliary graph .



LANGBERG et al.: THE ENCODING COMPLEXITY OF NETWORK CODING 2393

Next, we show that the in-degree and the out-degree of
the source node in the auxiliary graph are equal. Since

is minimal, has no incoming links and each
outgoing link of belongs to a blue path or a red path. Let be
the number of outgoing links of in that belong to red paths
and do not belong to blue paths. Note that is the in-degree of

in . Since the number of blue paths is equal to the number
of red paths, the number of outgoing links of in that belong
to blue paths and do not belong to red paths is also . Thus,
the out-degree of in is also .

Finally, we observe that in the original graph , the in-degree
of each terminal is exactly . This follows from the fact
that any link entering is exclusively red (blue).

In summary, the auxiliary graph has the following proper-
ties. First, the out-degree of and in-degree of are equal to .
Second, the in-degree of is equal to its out-degree. Third, each
other node has in-degree and out-degree . Finally,
does not contain a cycle, otherwise, there would be a cycle in

(note that ), which contradicts the minimality of
. This implies that there exist link-disjoint paths

in that connect and . These paths are referred to as green
paths. It remains to show that each link in belongs to a green
path. Suppose, by way of contradiction, that there exists a link

that does not belong to a green path. By the
preceding analysis, one can extend this link into a path from
to . This path will consist of links that do not belong to the

green paths described above, implying that has in-degree
larger than , a contradiction.

We observe that since is a subgraph of the residual graphs
and , the green paths belong to and as well.

The proof of the following lemma follows directly from
Lemma 20 and the definitions of and .

Lemma 21: Let be a simple multicast network.
For each link exactly one of the following
conditions hold: a) belongs to a red and to a blue path in ,
b) belongs to a red path in and the reverse link of
belongs to a green path in , c) belongs to a blue path in
and to a green path in .

Proof: We consider three cases: 1) Link is both a red and
a blue link. In this case, satisfies property a). Since does not
appear in , properties b) and c) do not hold for . 2) Link
is an exclusively red link (not blue). Clearly, properties a) and
c) stated in the lemma do not hold for . Moreover, the reverse
of belongs to . Hence (by Lemma 20) belongs to a green
path and satisfies property b). 3) Link is an exclusively blue
link (not red). In this case, does not satisfy properties a) and
b). Since belongs to it belongs to a green path and hence
satisfies property c).

We are ready to establish the upper bound on for simple
multicast networks with two terminals. We begin with the
following lemma.

Lemma 22: Let be a simple multicast network
with two terminals. Fix a set of link-disjoint red paths in
from to and a set of link-disjoint blue paths in from

to . Let be the auxiliary graph, defined above, and let
be the set of green paths from to in . Let be a

red path, be a blue path, and be a green path.
Then, there exists at most one node that belongs to all
three paths , , and .

Proof: Let , be residual graphs of . We observe
that path belongs to both and . We also observe that
for each red path there exists a path formed
by reversing the links of . Suppose, by way of contradiction,
that there exist two nodes that belong to , , and . We de-
note these nodes by and , such that is a predecessor of

in . First, we note that must be a predecessor of node
in path . Indeed, if this does not hold, then there exists a

cycle in the residual graph formed by links that belong to
paths and , which, by Lemma 18, contradicts the mini-
mality of . Second, the node must be a prede-
cessor of node in , otherwise, there would be a cycle in
the residual graph that includes links that belong to paths
and , again contradicting the minimality of . We
conclude that node is a predecessor of node in , while

is a predecessor of node in . This, however, implies that
there exists a cycle in the original graph , which contradicts
the assumption that is acyclic.

We summarize our results by the following theorem.

Theorem 23: Let be a simple acyclic multicast
network with two terminals. Then, .

Proof: Fix a set of link-disjoint red paths in between
and and a set of link-disjoint blue paths in between
and . Let , , be auxiliary graphs and let be the

set of green paths between and in . We denote by the
set of nodes of that are not terminals and whose in-degree is

. Note that . Note also that each node
has two incoming links: one belongs to a blue path (only) and
one to a red path (only); and a single outgoing link that belongs
to a red and to a blue path (the above follows directly from the
fact that is a simple network). Thus, by Lemma 21, each such
node belongs to a red path , a blue path , and a
green path . Lemma 22 implies that at most one node
belongs to the same three paths of different colors. Since there
are exactly red paths, blue paths, and green paths, this
implies that the number of nodes in is at most .

B. Theorem 5: Networks With

In this subsection, we establish an upper bound on the size
of for simple acyclic multicast networks with an arbitrary
number of terminals. This suffices to prove Theorem 5, stated
in the Introduction.

Theorem 24: Let be a simple acyclic multicast
network. Then, , where .

Proof: We begin with the following observation. Let
be two terminals. By Theorem 15, there are

link-disjoint paths between and and link-disjoint paths
between and . Let be a subgraph of induced
by links that belong to these disjoint paths. We note that the
multicast network is feasible, but
not necessarily minimal. Let be a
minimal multicast network obtained from by repeatedly
removing redundant links. Note that is a simple network.
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We denote by and sets of link-disjoint paths in
, from to and from to , respectively. Consider the

set of nodes in that have in-degree , not including
the source and terminals. Note that and, by
Theorem 23, .

Assume, by way of contradiction, that exceeds .
Then, there exists at least one node with in-degree , ,

that does not belong to . Let and be
the incoming links of and let be the outgoing link of .

We show that remains feasible after the dele-
tion of either or , which contradicts the minimality of

. Note that for each terminal , there are several
possible sets of link-disjoint paths between

and . If for each terminal it holds that there exists
that does not include , then link can be omitted

from without violating its feasibility. Otherwise,
there exists a terminal such that link is included by all
sets . However, in this case it holds that all

sets do not include , which contradicts the

minimality of . Indeed, if belongs to some set , then
necessarily has degree in and thus belongs to .

V. UPPER BOUND FOR GENERAL (CYCLIC) NETWORKS

In this section, we establish an upper bound of
on the number of encoding nodes for multicast networks

with cycles (Theorem 8), where is the min-
imum size of a feedback link set of . The proof of the upper
bound for cyclic networks is very similar to that of Theorem
5. Specifically, we show that in a cyclic network, the value of

is bounded by . This fact, coupled with
Lemmas 12 and 14, is sufficient to prove the correctness of
Theorem 8. As we bound , our bounds on the number
of encoding nodes hold for both time-invariant (e.g., [2]) and
time-varying network codes.

In what follows we roughly outline the proof of Theorem 8
emphasizing only the changes required to extend the proof of
Theorem 5 to the case in which the given multicast network

includes cycles.

A. Residual Graphs and Link-Disjoint Paths

Let be a simple multicast network with two
terminals (i.e., ). As in Section IV,

is feasible, thus by Theorem 15 there exist
link-disjoint paths that connect and terminal
(referred to as red paths) and link-disjoint paths
between and (referred to as blue paths). We assume, without
loss of generality, that paths and do not
include cycles. Indeed, if the size of a minimum cut between

and a terminal is , then there exist link-disjoint paths
between and that do not include cycles [11]. Thus, Lemmas
18, 20, and 21 hold in the cyclic case as well. The proof of
Lemma 18 needs minor and straightforward modifications,
while Lemmas 20, and 21 carry over without modification.
We now prove an analog to Lemma 22, and state the resulting
analogs to Theorems 23 and 24.

Lemma 25: Let be a simple multicast network
with two terminals and let be the size of the minimum feed-
back link set in . Fix a set of link-disjoint red paths in
between and and a set of link-disjoint blue paths in
between and . Let be the auxiliary graph, as defined in
Section IV-A, and let be the set of green paths between
and in . Let be a red path, be a blue path,
and be a green path. Then, there exist at most
nodes in that belong to all three paths , , and .

Proof: Let , be residual graphs of , as defined in
Section IV-A. We observe that path belongs to and .
We also observe that for each red path there exists a
path formed by reversing the links of . Suppose, by
way of contradiction, that there exist nodes that belong to

, , and . We denote these nodes by such
that for to , is a predecessor of in .
First, we note that must be a predecessor of node in
path . Indeed, if this does not hold, then there exists a cycle
in the residual graph formed by links that belong to paths

and , which, by Lemma 18, contradicts the minimality of
. Second, must be a predecessor of in ,

otherwise, there would be a cycle in the residual graph that
includes links belonging to paths and , which contradicts
the minimality of .

We conclude that for each , is a predecessor of in ,
while is a predecessor of in . This implies that there
exist at least cycles in the subgraph of induced by
links that belong to and . We now show that the minimum
feedback link set of is at least , which contradicts
our assumption that the minimum feedback link set of is .
Consider a link in . If is exclusively red or blue, then
appears in only one of the cycles in . Otherwise, if
is both red and blue, it can appear in at most two cycles in .
Thus, the minimum feedback link set of is of size at least

.

B. Upper Bound

The following theorems establish the upper bound on the
number of encoding nodes in networks with cycles.

Theorem 26: Let be a simple multicast net-
work with two terminals. Then, .

Proof: The proof follows the same lines as that of The-
orem 23, using Lemma 25 instead of Lemma 22.

Theorem 27: Let be a simple multicast net-
work. Then, , where .

Proof: The proof follows the same lines as that of The-
orem 24, using Lemma 25 instead of Lemma 22.

Let be a general (not necessarily simple) mul-
ticast network. We observe that the bound on stated in
Theorem 8 may be strengthened by replacing the parameter
with the size of the minimum feedback link set in any simple
network obtained form by link removal.

In the following definition, denotes the minimum
size of a feedback link set of the underlying graph of

.
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Definition 28: Let be a feasible multicast net-
work. We define to be taken over all
feasible subnetworks obtained from
by removing links from the underlying graph (i.e., ).

Theorem 29 (Strong Upper Bound for Cyclic Networks): Let
be a feasible multicast network. Then there exists

a feasible network code for in which the number of encoding
nodes is at most , where .

Theorem 29 implies that given a multicast network
it is desirable to find a simple network

, such that and the size of the min-
imum feedback link set of is . However, in
Section VI-B we show that this task is -hard. Moreover, we
show that even finding a network with a feedback link set that
is somewhat close to being of size is -hard.

VI. NEGATIVE RESULTS

In this section we prove Theorems 4, 6, 9, and the -hard-
ness of computing or approximating (as defined in
Section V).

A. Theorem 4: Exact and Approximate Computation of

Proof (of Theorem 4): We present a reduction between
the link-disjoint path (LDP) problem in directed graphs and
the problem of computing the minimum number of encoding
nodes required by a multicast network . Given a directed graph

and two pairs of nodes in , , and
the LDP problem is the problem of finding two link-disjoint
paths in connecting to and to . This problem is
known to be -complete [13]. This reduction will imply the
hardness results stated in Theorem 4.3

In Fig. 6(a), we show how an instance of
problem LDP is reduced to an instance of the mul-
ticast network coding problem (where ). Suppose
that there exist two link-disjoint paths in connecting to

and to . This implies that there exist two link-disjoint
(Steiner) trees in with root and terminals and , such that
the first tree includes links , and
a path between and , while the second tree includes links

, and a path between and .
We conclude that .

Assume that has a network code with no encoding nodes.
This implies the existence of two link-disjoint (Steiner) trees
with as their root and terminals and . Our construction
implies that one of the trees includes a path between and

, while the other includes a path between and . Note
that paths and must be link-disjoint, which completes the
proof of our assertion.

To complete the proof of Theorem 4, let be the number of
nodes in the underlying graph of and let be any con-

3Independently, Cheriyan and Salavatipour [14] proposed a similar reduc-
tion when addressing the computational hardness of the Steiner tree packing
problem. Both reductions assume integral routing, i.e., each path or tree has in-
teger capacity. A more general case of fractional routing is out of the scope of
this paper.

Fig. 6. (a) Reduction from problem LDP to the problem of computing the
minimum number of encoding nodes. (b) Reduction from problem NDP to
the problem of computing Opt ( ). Network (G; s; T; h) includes two
terminals t̂ and t̂ and has h = 2.

stant. Due to the gap location of our reduction, it is clear that
cannot be efficiently approximated by any multiplica-

tive factor unless .
We now sketch the proof for the additive approximation gap.

We use a slightly different reduction which guarantees an addi-
tive gap of . Namely, we define an new multicast network

The new underlying graph contains copies of the pre-
vious graph used above. A single source node is con-
nected by two links to node in each copy of , and two new
nodes and are added with two links connecting each
terminal in each copy of to . We also set

and . It is not hard to verify that
if and only if there exist two link-disjoint paths,

one between and and the second between and in
. Moreover, if then it must be the case that

(one encoding node per each copy of ),
which suffices to prove our assertion.

B. Finding Feasible Subgraphs With Small Feedback Link Set

Theorem 30: Let be any constant. Let be
a multicast network in which the underlying graph has links.
Approximating the value of within any multiplica-
tive factor or within an additive factor of is -hard.

Proof: Our proof is very similar in nature to that presented
in Section VI-A. Namely, we start by presenting a reduction be-
tween the node-disjoint path (NDP) problem in directed graphs
and the problem of computing . Given a directed
graph and two pairs of nodes in , , and

the NDP problem is the problem of finding two node-
disjoint paths in connecting to and to . This problem
is known to be -hard (this can be seen by a simple reduction
from problem LDP).

In Fig. 6(b), we show how an instance of
problem NDP is reduced to an instance of the net-
work coding problem (where ). In this reduction, it
is not hard to verify that there exist node-disjoint paths between

and and between and if and only if
(i.e., there exists a feasible acyclic network in
which ). This shows that it is -hard to distinguish
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Fig. 7. Lower bound on the number of encoding nodes for h = 5.

between networks in which and networks
in which .

To obtain our inapproximability results, we follow the line
of proof given in Section VI-A, and use multiple copies of the
reduction above. The detailed proof is omitted.

C. Theorem 6: Global Lower Bound on

In this subsection, we establish a lower bound on the number
of encoding nodes required by an acyclic multicast network
(Theorem 6). We start by presenting a lower bound for multi-
cast networks with two terminals . We then generalize
our bound for arbitrary values of . We start by proving the fol-
lowing lemma.

Lemma 31: Let be any integer larger than . There exist
multicast networks with that require
at least encoding nodes.

Proof: For any value of , we present a multicast
network that requires encoding nodes. An example
of the network for is depicted in Fig. 7. The net-
work includes the following nodes: The source node and
two terminals and ; intermediate -nodes ,

, , and ; and intermediate
-nodes , , , and

. The links of the network are defined as follows: is
connected by a link to each of the nodes ; each
node , is connected by a link to ; each node

, is connected by a link to ; each node
, , is connected by a link

to ; each node , ,
is connected by a link to ; each node is connected to

. In the multicast network , the source node transmits
packets to terminals and .

We now analyze the properties of . It is not hard to verify
that is acyclic, and satisfies the degree constraints specified
in Definition 11. We observe that is feasible and minimal
with respect to link removal. Indeed, the underlying graph
of contains link-disjoint paths from to each terminal and
removal of any link in will result in a violation of the min-cut

Fig. 8. Lower bound on the number of encoding nodes for k > 2.

condition. This implies that is simple and that
(recall that is the number of nodes in of in-degree

, excluding the terminals). It is not hard to verify that there are
such nodes (marked as ).

To prove Theorem 6, we extend Lemma 31 to capture the
general case in which . This is done by concatenating
many multicast networks presented above.

Proof: (of Theorem 6): We build a network
by using the network defined in

the proof of Lemma 31 as a basic building block. Let be the
underlying network of . Network has one source node

, and terminals to , and is defined by
copies of the graph (which we denote ) as
follows. The source coincides with the source of .
For , the node of copy coincides with the
source node of copy . For , node of

coincides with the terminal . Finally, node of
coincides with the terminal .

The construction of is demonstrated in Fig. 8. As in
Lemma 31, it can be shown that the removal of any link from

will result in a violation of the min-cut condition, im-
plying that each and every link of must be used in a net-
work code that transfers all packets from to the terminals
of . This implies that all -nodes in each copy of must
be encoding nodes, which, in turn, completes our proof.

D. Theorem 9: Lower Bound for Cyclic Networks

In this subsection, we study multicast networks in which
the underlying graph is cyclic, and sketch the proof of The-
orem 9.

Proof (of Theorem 9): The multicast network
we suggest is depicted in Fig. 9 (for the case

) and is defined as follows. The underlying graph
has a source , and two terminals and . There are
links leaving toward the right, and a single link leaving
toward the left. Call the links going right regular links and
the remaining link leaving special link. The terminal is
connected to via paths that start at regular links, and a
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Fig. 9. Lower bound for Opt( ) in cyclic networks.

single path that starts in the special link. The same holds for .
The graph is constructed such that the path from to starting
at the special link, intersects the paths from to starting at
regular links (in a systematic manner, as depicted in Fig. 9).
Let be the size of the minimum feedback link set in . It is
not hard to verify that a) the graph is minimal with respect
to link removal (every link appears in a minimum cut of size

), and b) the number of encoding nodes in is
. This proves the first assertion. For

the second assertion, set and notice that the number of
nodes in is , while
the number of encoding nodes is .

VII. CONCLUSION

We consider the design of network codes which enable the
source to transmit at rate to terminals and include a bounded
number of encoding nodes. For acyclic networks, we present
an efficient and simple procedure which finds a network code
in which the number of encoding nodes is independent of the
size of the network and is bounded by . We show that our
bound on the number of required encoding nodes may depend

both on and as we present networks in which any feasible
network code has at least encoding nodes. The gap of
between our lower and upper bounds remains an open problem.

For general (cyclic) networks we present results of similar
nature. Namely, we present an upper bound of ,
which depends on the size of the minimum feedback link
set of the network. We also present a lower bound of

, where is the total number of
nodes in the network.
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