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Abstract. In the two-dimensional range minimum query problem an
input matrix A of dimension m× n, m ≤ n, has to be preprocessed into
a data structure such that given a query rectangle within the matrix, the
position of a minimum element within the query range can be reported.
We consider the space complexity of the encoding variant of the problem
where queries have access to the constructed data structure but can not
access the input matrix A, i.e. all information must be encoded in the
data structure. Previously it was known how to solve the problem with
space O(mnmin{m, log n}) bits (and with constant query time), but the
best lower bound was Ω(mn logm) bits, i.e. leaving a gap between the
upper and lower bounds for non-quadratic matrices. We show that this
space lower bound is optimal by presenting an encoding scheme using
O(mn logm) bits. We do not consider query time.

1 Introduction

We study the problem of preprocessing a two dimensional array (matrix) of
elements from a totally ordered set into a data structure that supports range
minimum queries (RMQs) asking for the position of the minimum element within
a range in the array. More formally, we design a data structure for a matrix
A[1..m]× [1..n] with N = mn elements, and each RMQ asks for the position of
the minimum element within a range [i1..i2]×[j1..j2]. We refer to this problem as
the 2D-RMQ problem, in contrast with the 1D-RMQ problem, where the input
array is one-dimensional.

Study of the 1D-RMQ and 2D-RMQ problems dates back to three decades
ago, when data structures of linear size were proposed for both of the problems
[8, 3]. Both problems have known applications including information retrieval,
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computational biology, and databases [4]. In this paper, we study the space-
efficiency of the 2D-RMQ data structures.

1.1 Previous work

There exists a long list of articles on the 1D-RMQ problem which resolve vari-
ous aspects of the problem including the space-efficiency of the data structures.
However, the literature of the 2D-RMQ problem is not so rich in space-efficient
data structures. In the following, we review the previous results on both of the
problems that deal with the space-efficiency of data structures.

1D-RMQs. Let A be an input array with n elements which we preprocess into a
data structure that supports 1D-RMQs on A. A standard approach to solve this
problem is to make the Cartesian tree of A, which is a binary tree with n nodes
defined as follows: the root of the Cartesian tree is labeled by i, where A[i] is
the minimum element in A; the left and right subtrees of the root are recursively
the Cartesian trees of A[1..i− 1] and A[i+ 1..n] respectively.

The property of the Cartesian tree is that the answer to a query with
range [i..j] is the label of the lowest common ancestor (LCA) of the nodes with
labels i and j. Indeed, the Cartesian tree stores a partial ordering between the el-
ements that is appropriate to answer 1D-RMQs. This property has been utilized
to design data structures that support 1D-RMQs in constant time [8, 9].

The space usage of the 1D-RMQ data structures that rely on Cartesian trees
is the amount of space required to represent a Cartesian tree plus the size of an
LCA data structure. There exists a one-to-one correspondence between the set
of Cartesian trees and the set of different arrays, where two arrays are different
iff there exists a 1D-RMQ with different answers on these two arrays. The total
number of binary trees with n nodes is

(

2n
n

)

/(n+ 1), and thus the logarithm of
this number yields an information-theoretic lower bound on the number of bits
required to store a 1D-RMQ data structure, which is 2n−Θ(log n) bits.

Storing the Cartesian tree using the standard pointer-based representation
and a linear-space LCA data structure takes O(n log n) bits. There have been
a number of attempts to design 1D-RMQ data structures of size close to the
lower bound. Sadakane [10] and then Fischer and Heun [7] improved the space
to 4n+ o(n) and 2n+ o(n) bits respectively by representing the Cartesian tree
using succinct encoding of the topology of the tree and utilizing the encoding to
support LCA queries (in fact, Fischer and Heun [7] proposed a representation
of another tree which is a transformed Cartesian tree [5]). Both of these data
structures support 1D-RMQs in O(1) time.

2D-RMQs. A standard two-level range tree along with a 1D-RMQ data structure
can be used to design a 2D-RMQ data structure. This method was used to give a
data structure of size O(N logN) that supports 2D-RMQs in O(logN) time [8].
The state of the art 1D-RMQ data structures can improve the space to O(N).

The literature contains a number of results that have advanced the perfor-
mance of 2D-RMQ data structures in terms of preprocessing and query times

2



[3, 1], which ended in a brilliant 2D-RMQ data structure of size O(N) (that is,
O(N logN) bits) which can be constructed in O(N) time and supports queries
in O(1) time [11].

Although the complexity of the preprocessing and query times of 2D-RMQ
data structures have been settled, the space complexity of 2D-RMQ data struc-
tures has been elusive.

In contrast with 1D-RMQs where the partial ordering of elements can be
encoded in linear number of bits using Cartesian trees, it has been shown that
encoding partial ordering of elements for 2D-RMQs would require super-linear
number of bits (there is no “Cartesian tree-like” data structure for 2D-RMQs)
[6]. The number of different n × n matrices is Ω((n4 !)

n/4), where two matrices
are different if there exists a 2D-RMQ with different answers on the two matrices
[6]. This counting argument implies the lower bound Ω(N logN) on the number
of bits required to store a 2D-RMQ data structure on an n × n matrix with
N = n2 elements.

The above counting argument was later extended to rectangular m× n ma-
trices where m ≤ n, yielding the information-theoretic lower bound Ω(N logm)
bits on the space of 2D-RMQ data structures [2]. This lower bound raised the
question of encoding partial ordering of elements for 2D-RMQs using space close
to the lower bound. In other words, the new question shifted the focus from de-
signing 2D-RMQ data structures with efficient queries to designing encoding
data structures, which we simply call encodings, that support 2D-RMQs dis-
regarding the efficiency of queries. In fact, the fundamental problem here is to
discover whether the partial ordering of elements for 2D-RMQs can be encoded
in O(N logm) bits.

There exist simple answers to the above question which do not really sat-
isfy an enthusiastic mind. On the one hand, we can ensure that each element
in A takes O(logN) bits in the encoding data structure by sorting the elements
and replacing each element with its rank (recall that a query looks for the posi-
tion of minimum rather than its value). This provides a simple encoding of size
O(N logN) bits, while this upper bound was already achieved by all the linear
space 2D-RMQ data structures [3, 1, 11]. On the other hand, we can make a data
structure of size O(Nm) bits which improves the size of the first encoding for
m = o(log n). This latter encoding is achieved by taking the multi-row between
every two rows i and j; making an array R[1..n] out of each multi-row by as-
signing the minimum of the k-th column of the multi-row to R[k]; encoding R
using a 1D-RMQ data structure of size O(n) bits; and making a 1D-RMQ data
structure of size O(m) bits for each column of A. A 2D-RMQ can be answered by
finding the appropriate multi-row, computing the column of the multi-row with
minimum element, and computing the minimum element in the column within
the query range [2].

1.2 Our results

The 2D-RMQ encodings mentioned above leave a gap between the lower bound
Ω(N logm) and the upper bound O(N ·min{logN,m}) on the number of bits
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stored in a 2D-RMQ encoding. A quick comparison between the encoding com-
plexity of 1D-RMQ and 2D-RMQ data structures can convince the reader that
the optimal number of bits per element stored in an encoding should be a func-
tion of m, at least for small enough m. For example, we should not look for
functions such as O(N log logN) as the encoding complexity of the problem.
While the upper bound O(N ·min{logN,m}) would provide such a characteris-
tic, it is often hard to believe the minimum of two functions as the complexity
of a problem. In this work, we prove that the encoding complexity of 2D-RMQ
data structures is Θ(N logm) bits. As previously mentioned, we only consider
the encoding complexity of the problem, and a problem that remains open from
this paper is how to actually support queries efficiently, ideally in O(1) time.

We describe our solution in three steps, incrementally improving the space.
First we present a solution using space O(N(logm+log log n)) bits, introducing
the notion of components. We then improve this to an O(N logm log∗ n) bit
solution by bootstrapping our first solution and building an O(log∗ n) depth
hierarchical partitioning of our components. Finally, we arrive at an O(N logm)
bit solution using a more elaborate representation of a hierarchical decomposition
of components of depth O(log n).

1.3 Preliminaries

We formally define the problem and then we introduce the notation used in the
paper. The input is assumed to be an m × n matrix A, where m ≤ n. We let
N = m · n. The j-th entry in row i of A is denoted by A[i, j], where 1 ≤ i ≤ m
and 1 ≤ j ≤ n. For a query range q = [i1, i2]× [j1, j2], the query RMQ(q) reports
the index (i, j) of A containing the minimum value in rows i1..i2 and columns
j1..j2, i.e.

RMQ(q) = argmin(i,j)∈qA[i, j] .

For two cells c1 and c2 we define Rect[c1, c2] to be the minimal rectangle con-
taining c1 and c2, i.e. c1 and c2 are at the opposite corners of Rect[c1, c2].

We assume all values of a matrix to be distinct, such that RMQ(q) is always
a unique index into A. This can e.g. be achieved by ordering identical matrix
values by the lexicographical ordering of the indexes of the corresponding cells.

2 Tree representation

The basic approach in all of our solutions is that we convert our problem on
the matrix A into a tree representation problem, where the goal is to find a tree
representation that can be represented within small space.

For a given input matrix A, we build a left-to-right ordered tree T with N
leaves, where each leaf of T corresponds to a unique cell of A and each internal
node of T has at least two children. Furthermore, the tree should satisfy the
following crucial property:

4



Requirement 1 For any rectangular query q, consider the leaves of T corre-

sponding to the cells contained in q. The answer to the query q must be the

rightmost of these leaves.

Trivial solution. The most trivial solution is to build a tree of depth one, where
all cells/leaves are the children of the root and sorted left-to-right in decreasing
value order. A query q will consist of a subset of the leaves, and the rightmost
of these leaves obviously stores the minimal value within q, since the leaves are
sorted in decreasing order with respect to values. To represent such a tree we
store for each leaf the index (i, j) of the corresponding cell, i.e. such a tree can
be represented by a list of N pairs, each requiring ⌈logm⌉ + ⌈log n⌉ bits. Total
space usage is O(N log n) bits.

Note that at each leaf we explicitly store the index of the corresponding
cell in A, which becomes the space bottleneck of the representation: The left to
right ordering of the leaves always stores the permutation of all matrix values,
i.e. such a representation will require Ω(N · logN) bits in the worst-case. In all
the following representations we circumvent this bottleneck by not storing the
complete total order of all matrix values and by only storing relative positions
to other (already laid out) cells of A.

The structure (topology) of any tree T with N leaves can be described using
O(N) bits (since all internal nodes are assumed to be at least binary), e.g. using
a parenthesis notation. From the known lower bound of Ω(N logm) bits for
the problem, it follows that the main task will be to find a tree T satisfying
Requirement 1, and where the mapping between leaves of T and the cells of A
can be stored succinctly.

3 Space O(N(logm + log logn)) solution

We present a solution using space O(N(logm + log log n)) bits, i.e. it achieves
optimal space O(N logm) for log n = mO(1). The idea is to build a tree T of
depth two in which the nodes C1, C2, . . . , Ck with depth one, from left-to-right,
form a partitioning of A. Let Ci denote both a node in T and the subset of cells in
A corresponding to the leaves/cells in the subtree of T rooted at Ci. We call such
a Ci a component. We construct C1, . . . , Ck incrementally from left-to-right such
that Requirement 1 is satisfied. The children of Ci (i.e. leaves/cells) are sorted in
decreasing value ordered left-to-right. We first describe how to construct C1, and
then describe how to construct Ci given C1, . . . , Ci−1, generalizing the notation
and algorithm used for constructing C1. In the following we let α denote a
parameter of our construction. We will later set α = ⌈logN/ log logN⌉.

Constructing C1. To construct C1 we need the following notation: Two cells in
A are adjacent if they share a side, i.e. (i, j) is adjacent to the (up to) four cells
(i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1). Given a set of cells S ⊆ A, we define
the undirected graph GS = (S,E), where E ⊆ S×S and (c1, c2) ∈ E if and only
if c1 and c2 are adjacent cells in A.
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︷ ︸︸ ︷

L1.L2.

C2
︷ ︸︸ ︷

L1.L0.

C3
︷ ︸︸ ︷

R2.L0.L2.L0.
︸ ︷︷ ︸

local leaf index
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︷︸︸︷
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︷︸︸︷

0.1.2.

C3
︷ ︸︸ ︷

4.2.0.1.3

Representation of A

Fig. 1. Construction of C1, . . . , C4 for a 3 × 4 matrix and α = 3: In the input matrix
(left) subscripts indicate the component numbers. In the tree T (middle) the leaves
are labeled with the corresponding values of the cells in A. The spanning trees for
C1, . . . , C4 are shown (right). In the final representation of A (bottom) “.” is not part
of the stored representation.

Let S be an initially empty set. We now incrementally include the cells of A in
S in decreasing order of the value of the cells. While all the connected components
of GS contain less than α cells, we add one more cell to S. Otherwise the largest
component C contains at least α cells, and we terminate and let C1 = C. In the
example in Fig. 1, where α = 3, we terminate when S = {12, 11, 10, 9, 8} and GS

contains the two components {11, 9} and {12, 10, 8}, and let C1 be the largest
of these two components.

We first prove the size of the constructed component C1.

Lemma 1. |C1| ≤ 4α− 3.

Proof. Let S be the final set in the construction process of C1, such that S
contains a connected component of size at least α. Before inserting the last cell
c into S, all components in GS\{c} have size at most α−1. Since c is adjacent to
at most four cells, the degree of c in GS is at most four, i.e. including c in S can
at most join four existing components in GS\{c}. It follows that the component
C1 in GS containing c contains at most 1 + 4(α− 1) cells. ⊓⊔

Next we will argue that the partition of A into C1 and R = A\C1 (R will be
the leaves to the right of C1 in T ) supports Requirement 1, i.e. for any query q
that overlaps both with C1 and R there is an element c ∈ q ∩ R that is smaller
than all elements in q ∩C1, implying that the answer is not in C1 and will be to
the right of C1 in T . Since by construction all values in R \ S are smaller than
all values in S ⊇ C1, it is sufficient to prove that there exists a c ∈ (q ∩R) \ S.

Lemma 2. For a query q with q ∩ C1 6= ∅ and q ∩ R 6= ∅, there exists a cell

c ∈ (q ∩R) \ S.
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Fig. 2. The edges of G
(L)

A\L. The cells of L are shown as grey.

Proof. Assume by contradiction that q ⊆ S. Then each cell in q is either in C1

or in S \ C1, and by the requirements of the lemma and the assumption q ⊆ S,
there exists at least one cell in both q ∩ C1 and (q ∩ S) \ C1. Since each cell in
q belongs to one of these sets, there must exist two adjacent cells c1 and c2 in q
such that c1 ∈ q ∩ C1 and c2 ∈ (q ∩ S) \ C1. But since c1 and c2 are adjacent,
both in S, and c1 ∈ C1, then c2 must also be in C1 which is a contradiction. ⊓⊔

Constructing Ci. Given how to construct C1, we now give a description of how
to construct Ci when C1, . . . , Ci−1 have already been constructed. To construct
Ci we let L = C1 ∪ · · · ∪ Ci−1. We generalize the notion of adjacency of cells to
L-adjacency : Given a set L, two cells c1 and c2 in A \ L are L-adjacent if and
only if Rect[c1, c2] \ {c1, c2} ⊆ L. Note that the adjacency definition we used to
construct C1 is equivalent to ∅-adjacency. Finally given a set S ⊆ A\L, we define

the undirected graph G
(L)
S = (S,E), where (c1, c2) ∈ E if and only if c1 and c2

are L-adjacent. See Fig. 2 for an example of edges defined by L-adjacency.
The algorithm for constructing C1 now generalizes as follows to Ci: Start

with an empty set S. Consider the cells in A \ L in decreasing value order and

add the cells to S until the largest connected component C of G
(L)
S has size at

least α (or until all elements in A \ L have been added to S). We let Ci = C.
Note that with L = ∅ this algorithm is exactly the algorithm for computing C1.
Fig. 1 illustrates an example of such a partitioning of a 3× 4 matrix for α = 3.

Lemma 3. All nodes in a graph G
(L)
S have degree at most 2m.

Proof. Let G
(L)
S = (S,E). Consider a cell c ∈ S. For any row r, there exists at

most one cell c1 ∈ S in row r to the left of c (or immediately above c), such that
(c, c1) ∈ E. Otherwise there would exist two cells c1 and c2 in S to the left of c
in row r, where c1 is to the left of c2 (see Fig. 2). But then c2 ∈ Rect[c, c1], i.e. c
and c1 would not be L-adjacent and (c, c1) /∈ E. It follows that for any row, at
most one cell to the left and (symmetrically) one cell to the right of c can have

an edge to c in G
(L)
S . ⊓⊔

The following two lemmas generalize Lemmas 1 and 2 for C1 to Ci.

Lemma 4. |Ci| ≤ m(α− 1) + α ≤ 2mα.
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Proof. Since the last cell c added to S is in Ci and by Lemma 3 has degree at

most 2m in G
(L)
S , and before adding c to S all components had size at most

α− 1, it follows that |Ci| ≤ 1+ 2m(α− 1) ≤ 2mα. This bound can be improved
to 1+ (m+1)(α− 1) by observing that adding c can at most join m+1 existing
components: if c is adjacent to two cells c1 and c2 in the same row, one in a
column to the left and one in a column to the right of c, then c1 and c2 must be
L-adjacent, provided if c is not in the same row as c1 and c2, i.e. c1 and c2 were
already in the same component before including c. ⊓⊔

We next prove the generalization of Lemma 2 to Ci. Let L = C1 ∪ · · · ∪Ci−1

be the union of the already constructed components (to the left of Ci) and let
R = A \ {C1 ∪ · · · ∪Ci} be the set of cells that eventually will be to the right of
Ci in T . The following lemma states that if a query q contains one element from
each of Ci and R, then there exists a cell c ∈ q ∩ R with smaller value than all
values in Ci. It is sufficient to show that there exists a cell c ∈ q ∩ R \ S since
by construction all values in R \ S are smaller than min(S) ≤ min(Ci).

Lemma 5. For a query q with q∩Ci 6= ∅ and q∩R 6= ∅, there exists a c ∈ q∩R\S.

Proof. Assume by contradiction that q ∩R \ S = ∅. Then q ⊆ S ∪L = Ci ∪ (S \
Ci) ∪ L. By the requirement of the lemma and the assumption q ∩ R \ S = ∅,
there exist c1 ∈ q ∩Ci and c2 ∈ q ∩ S \Ci. We will now show that c1 and c2 are

connected in G
(L)
S (not necessarily by a direct edge), i.e. c1 and c2 are both in

Ci, which is a contradiction.

We construct a path from c1 to c2 in G
(L)
S = (S,E) as follows. If Rect[c1, c2]\

{c1, c2} ⊆ L, then c1 and c2 are L-adjacent, and we are done. Otherwise let c3
be the cell, where Rect[c1, c3] \ {c1, c3} contains no cell from S (c3 is the closest
cell to c1 in S ∩ Rect[c1, c2] \ {c1, c2}). Therefore, c1 and c3 are L-adjacent,
i.e. Rect[c1, c3] \ {c1, c3} ⊆ L and (c1, c3) ∈ E. By applying this construction

recursively between c3 and c2 we construct a path from c1 to c2 in G
(L)
S . ⊓⊔

Representation. We now describe how to store sufficient information about the
tree T such that we can decode T and answer a query. For each connected
component Ci we store a spanning tree Si, such that Si consists exactly of the
edges that were joining different smaller connected components while including
new cells into S. We root Si at the cell with smallest value in Ci (but any node
of Ci could have been chosen as the root/anchor of the component).

In the following representation we assume n and m are already known (can
be coded using O(logN) bits). Furthermore it is crucial that when we layout Ci

we have already described (and can decode) what are the cells of C1, . . . , Ci−1,
i.e. L in the construction of Ci.

Crucial to our representation of Ci is that we can efficiently represent edges

in G
(L)
S : If there is an edge from c1 to c2 in G

(L)
S , then c1 and c2 are L-adjacent,

i.e. to navigate from c1 to c2 it is sufficient to store what row c2 is stored in,
and if c2 is to the left (L) or right (R) of c1 (if they are in the same column,
then c2 is to the left of c1), since we just move vertically from c1 to the row of
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c2 and then move in the left or right direction until we find the first non-L slot
(here it is crucial for achieving our space bounds that we do not need to store
the number of columns moved over). It follows that a directed edge from c1 to
c2 identifying the cell c2 can be stored using 1+ ⌈logm⌉ bits, provided we know
where the cell c1 (and L) is.

The details of the representation are the following (See Fig. 1 for a detailed
example of the representation):

– We first store the structure of the spanning trees for C1, . . . , Ck as one big
tree in parenthesis notation (putting a super-root above the roots of the
spanning trees); requires 2(N + 1) bits. This encodes the number of compo-
nents, the size of each component, and for each component the tree structure
of the spanning tree.

– The global index of the root cell for each Ci, where we enumerate the cells
of A by 0..N − 1 row-by-row, top-down and left-to-right; requires k⌈logN⌉
bits.

– For each of the components C1, . . . , Ck, we traverse the spanning tree in a
DFS traversal, and for each edge (c1, c2) of the spanning tree for a component
Ci, where c1 is the parent of c2, we store a bit L/R and the row of c2
(note that our representation ensures that the cells of L = C1 ∪ · · · ∪ Ci−1

are previously identified, which is required). Since there are N − k edges
in total in the k spanning trees, we have that the edges in total require
(N − k)(1 + ⌈logm⌉) bits.

– For each component Ci, we store the leaves/cells of Ci in decreasing value
order (only if |Ci| ≥ 2): For each leaf, we store its local index in Ci with
respect to the following enumeration of the cells. Since the spanning tree
identifies exactly the cells in Ci and |Ci| ≤ 2mα, we can enumerate these
cells by 0..2mα − 1, say row-by-row, top-down and left-to-right; in total at
most N⌈log(2mα)⌉ bits.

Lemma 6. The representation of T requires O(N(logm+ logN
α + logα)) bits.

Proof. From the above discussion we have that the total space usage in bits is

2(N + 1) + k⌈logN⌉+ (N − k)(1 + ⌈logm⌉) +N⌈log(2mα)⌉ .

For all Ci we have α ≤ |Ci| ≤ 2mα, except for the last component Ck, where we
have 1 ≤ |Ck| ≤ 2mα. It follows that k ≤ ⌈N/α⌉, and the bound stated in the
lemma follows. ⊓⊔

Setting α = ⌈logN/ log logN⌉ and using logN ≤ 2 log n, we get the following
space bound.

Theorem 1. There exists a 2D-RMQ encoding of size O(N(logm+ log log n))
bits.

We can reconstruct T by reading the encoding from left-to-right, and thereby
answer queries. We reconstruct the tree structure of the spanning trees of the
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components by reading the parenthesis representation from left-to-right. This
gives us the structure of T including the size of all the components from left
to right. Given the structure of T and the spanning trees, the positions of the
remaining fields in the encoding are uniquely given. Since we reconstruct the
components from left-to-right and we traverse the spanning trees in depth first
order, we can decode each spanning tree edge since we know the relevant set L
and the parent cell of the edge. Finally we decode the indexes of the leaves in
each Ci, by reading their local indexes in Ci in decreasing order.

4 Space O(N logm log∗

n) solution

In the following we describe how to recursively apply our O(N(logm+log log n))
bit space solution to arrive at an O(N logm log∗ n) bit solution, where log∗ n =

min{i | log(i) n ≤ 1}, log(0) n = n, and log(i+1) n = log log(i) n.
Let K be an integer determining the depth of the recursion. At the root

we have a problem of size N0 = N and apply the partitioning algorithm of
Section 3 with α = ⌈logN0⌉, resulting in sub-components C1, C2, C3, . . . each
of size at most N1 = 2m⌈logN0⌉. Each Ci is now recursively partitioned. A
component C at level i in the recursion has size at most Ni. When constructing
the partitioning of C, we initially let L = A \ C, i.e. all cells outside C act
as neutral “+∞” elements for the partitioning inside Ci. The component C is
now partitioned as in Section 3 with α = ⌈logNi⌉ into components of size at
most Ni+1 = 2m⌈logNi⌉. A special case is when |C| ≤ Ni+1, where we skip
the partitioning of C at this level of the recursion (to avoid creating degree one
nodes in T ).

Let Ni denote an upper bound on the problem size at depth i of the recursion,
for 0 ≤ i ≤ K. We know N0 = N and Ni+1 ≤ 2m logNi. By induction it can be

seen thatNi ≤ 2m log(i) N+12m logm: For i = 0 we haveN0 = N ≤ 2m log(0) N
and the bound is true. Otherwise we have

Ni+1 ≤ 2m⌈logNi⌉

≤ 2m⌈log(2m log(i) N + 12m logm)⌉

≤ 2m⌈log((2m+ 12m logm) log(i) N)⌉ (for log(i) N ≥ 1)

≤ 2m log(i+1) N + 2m log(2m+ 12m logm) + 2m

≤ 2m log(i+1) N + 12m logm (for m ≥ 2) .

Representation. Recall that T is an ordered tree with depthK, in which each leaf
corresponds to a cell in A, and each internal node corresponds to a component
and the children of the node is a partitioning of the component.

– First we have a parenthesis representation of T ; requiring 2N bits.
– For each internal node C of T in depth first order, we store a parenthesis

representation of the structure of the spanning tree for the component rep-
resented by C. Each cell c of A corresponds to a leaf ℓ of T and is a node in
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the spanning tree of each internal node on the path from ℓ to the root of T ,
except for the root, i.e. c is in at most K spanning trees. It follows that the
parenthesis representation of the spanning trees takes 2KN bits.

– For each internal node C of T in depth first order, we store the local index of
the root r of the spanning tree for C as follows. Let C ′ be the parent of C in
T , where C ′ is partitioned at depth i of the recursion. We enumerate all cells
in C ′ row-by-row, top-down and left-to-right by 0..|C ′|−1 and store the index
of r among these cells. Since |C ′| ≤ Ni−1, this index requires ⌈logNi−1⌉ bits.
The total number of internal nodes in T resulting from partitionings at depth
i in the recursion is at most 2N/⌈logNi−1⌉ (at least half of the components
in the partitionings are large enough containing at least ⌈logNi−1⌉ cells),
from which it follows that to store the roots we need at most 2N bits at
each depth of the recursive partitioning, i.e. in total at most 2KN bits.

– For each internal node C of T in depth first order, we store the edges of
the spanning tree of C in a depth first traversal of the spanning tree edges.
Each edge requires 1 + ⌈logm⌉ bits. Since there are less than N spanning
tree edges for each level of T , the total number of spanning tree edges is
bounded by NK, i.e. total space NK(1 + ⌈logm⌉) bits.

– For each leaf ℓ of T with parent C we store the index of ℓ among the up to
NK cells in C, requiring ⌈logNK⌉ bits. Total space N⌈logNK⌉ bits.

The total number of bits required becomes 2N + 2KN + 2KN + NK(1 +

⌈logm⌉) + N⌈logNK⌉ = O(NK logm + N log(K+1) N). Setting K = log∗ N =
O(log∗ n) we get the following theorem.

Theorem 2. There exists a 2D-RMQ encoding using O(N logm log∗ n) bits.

5 Space O(N logm) solution

The O(N logm log∗ n) bits solution of the previous section can be viewed as
a top-down representation, where we have a representation identifying all the
cells of a component C before representing the recursive partitioning of C, and
where each Ci is identified using a spanning tree local to C. To improve the
space to O(N logm) bits we adopt a bottom-up representation, such that the
representation of C is the concatenation of the representations of C1, . . . , Ck,
prefixed by information about the sizes and the relative placements of the Ci

components.
We construct T top-down as follows. Let C be the current node of T , where

we want to identify its children C1, . . . , Ck. Initially C is the root of T covering
all cells of A. If |C| < m8, we just make all cells of (the component) C leaves
below (the node) C in T in decreasing value order from left-to-right. Otherwise
we create a partition C1, . . . , Ck of C, make C1, . . . , Ck the children of C from
left-to-right, and recurse for each of the generated Ci components.

This solution which partitions a component C into a set of smaller compo-
nents C1, . . . , Ck, takes a parameter α = ⌊|C|1/4/2⌋ and the set of cells L to the
left of C in the final tree T , i.e. given C and L, we for Ci have the corresponding
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Li = L ∪ C1 ∪ · · · ∪ Ci−1. To be able to construct the partitioning, the graph

G
(L)
C must be connected and |C| ≥ α. Given such a C we can find a partition

satisfying that each of the constructed Ci components has size at least α and at

most 4α2m2, and G
(Li)
Ci

is a connected graph. It follows that k ≤ 4 · |C|3/4 (since

α = ⌊|C|1/4/2⌋ ≥ |C|1/4/4) and |Ci| ≤ 4α2m2 ≤ 4 · ⌊|C|1/4/2⌋2 · |C|1/4 ≤ |C|3/4

(since m2 = (m8)1/4 ≤ |C|1/4 for |C| ≥ m8).
The details of how to construct the partitions and how to use it to derive a

space-efficient representation is described in the full version of the paper.

Theorem 3. There exists a 2D-RMQ encoding using O(N logm) bits.

6 Conclusion

We have settled the encoding complexity of the two dimensional range minimum
problem as being Θ(N logm). In the worst case, a query algorithm requires to
decode the representation to be able the answer queries. It remains an open prob-
lem to build a data structure with this space bound and with efficient queries.
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