
The End is Nigh: Generic Solving of Text-based CAPTCHAs

Elie Bursztein

Google

elieb@google.com

Jonathan Aigrain

Stanford University

jonathan.aigrain@gmail.com

Angelika Moscicki

Google

moscicki@google.com

John C. Mitchell

Stanford University

jcm@cs.stanford.edu

Abstract

Over the last decade, it has become well-established

that a captcha’s ability to withstand automated solving

lies in the difficulty of segmenting the image into

individual characters. The standard approach to solving

captchas automatically has been a sequential process

wherein a segmentation algorithm splits the image into

segments that contain individual characters, followed

by a character recognition step that uses machine

learning. While this approach has been effective against

particular captcha schemes, its generality is limited by

the segmentation step, which is hand-crafted to defeat the

distortion at hand. No general algorithm is known for the

character collapsing anti-segmentation technique used by

most prominent real world captcha schemes.

This paper introduces a novel approach to solving

captchas in a single step that uses machine learning to

attack the segmentation and the recognition problems si-

multaneously. Performing both operations jointly allows

our algorithm to exploit information and context that is

not available when they are done sequentially. At the same

time, it removes the need for any hand-crafted component,

making our approach generalize to new captcha schemes

where the previous approach can not. We were able to

solve all the real world captcha schemes we evaluated ac-

curately enough to consider the scheme insecure in prac-

tice, including Yahoo (5.33%) and ReCaptcha (33.34%),

without any adjustments to the algorithm or its parame-

ters. Our success against the Baidu (38.68%) and CNN

(51.09%) schemes that use occluding lines as well as

character collapsing leads us to believe that our approach

is able to defeat occluding lines in an equally general

manner. The effectiveness and universality of our results

suggests that combining segmentation and recognition

is the next evolution of catpcha solving, and that it su-

persedes the sequential approach used in earlier works.

More generally, our approach raises questions about how

to develop sufficiently secure captchas in the future.

1 Introduction

Many websites use CAPTCHAs [39], or Completely

Automated Public Turing tests to tell Computers and

Humans Apart, to block automated interaction with their

sites. For example, GMail uses captchas 1 to block access

by automated spammers, eBay uses captchas to improve

its marketplace by blocking bots from flooding the site

with scams, and Facebook uses captchas to limit creation

of fraudulent profiles used to spam honest users or cheat

at games. The most widely used captcha schemes use

combinations of distorted characters and obfuscation

techniques that humans can recognize but that may be

difficult for automated scripts. Captchas are sometimes

called reverse Turing tests, because they are intended to

allow a computer to determine whether a remote client is

human or machine.

Due to the proficiency of machine learning algo-

rithms at recognizing single letters, it has become

well-established that a captcha’s ability to withstand

automated solving lies in the difficulty of segmenting the

image into individual characters [12, 10]. The standard

approach to solving captchas automatically has been a

sequential process wherein a segmentation algorithm

splits the image into segments that contain individual

characters, followed by a character recognition step that

uses machine learning [13]. This is known as the segment

then recognize approach. While this approach has been

effective against particular captcha schemes [15, 4], its

generality is limited by the segmentation step, which

is hand-crafted to defeat the distortion at hand. No

general algorithm is known for the character collapsing

anti-segmentation technique used by most prominent real

world captcha schemes. This technique is called negative

kerning. It is a variant of the object occlusion problem,

which is a difficult problem in computer vision.

1For readability purposes, we will write the acronym in lowercase.

1



This paper introduces a novel approach to solving

captchas in a single step that uses machine learning to

attack the segmentation and the recognition problems

simultaneously. Performing both operations jointly

allows our algorithm to exploit information and context

that is not available when they are done sequentially. At

the same time, we remove the need for any hand-crafted

component, making our approach generalize to new

captcha schemes where the previous approach can not.

We were able to solve all the real-world captcha

schemes that we evaluated (section 7) with accuracy

considerably above the 1% threshold necessary [10]

to consider a captcha scheme insecure. Our algorithm

is able to achieve a 38.68% recognition rate on Baidu

2011, 55.22% on Baidu 2013, 51.09% on CNN, 51.39%

on eBay, 22.67% on ReCaptcha 2011, 22.34% on

ReCaptcha 2013, 28.29% on Wikipedia, and 5.33% on

Yahoo without any tuning. Our algorithm also recognizes

occluding lines in a generic manner, and its success

against the Baidu (38.68%) and CNN (51.09%) schemes

indicates that it is in fact well-suited to deal with them.

The effectiveness and universality of our results

suggests that combining segmentation and recognition

is the next evolution of automated catpcha solving, and

that it supersedes the sequential approach used in earlier

works. After comparing the accuracy of our algorithm

with the accuracy of humans in section 7, we suggest

that purely text based captchas may be nearing their

end, and provide early steps toward rethinking how

reverse Turing tests can be performed securely (section 9).

The reminder of the paper is organized as follows: We

start by discussing research ethics in section 2. Section 3

summarizes the previous approach and its limitations.

Then in section 4, we describe how we assembled our

dataset of real-world captchas. The core of our algorithm

is presented in section 5. We discuss optimizations in

section 6. We report the performance against real-world

schemes in section 7. Ways to improve the algorithm are

discussed in section 8. We speculate on what the future

holds for captchas in 9. Further related work is discuss

in 10, with our contributions summarized in section 11.

2 Ethics

This work is a joint collaboration between Google and

Stanford University. The results were validated by

Stanford University. While we disclose an attack in this

paper for which we don’t have an easy solution, we

believe that attracting attention to the issue outweighs the

risk of malefactors taking advantage of this work.

In particular, our algorithm is complex and more costly

to reproduce than employing cheap manual labor to solve

captchas [38]. We believe that providing details about

how such a result can be achieved will enable the industry

and academia to advance the state of the art in reverse

Turing tests. Specially now that concurrent work with

similar results were announced but without any of the

technical detailed to reproduce their results [26]. We

also note that we gave early notice of this technique to

the companies whose captchas were evaluated in this

publication.

3 Background

In this section we discuss the previous approach used to

break captchas and its limitations.

Negative kerning, also known as character collapsing,

uses negative space between characters to resist segmen-

tation by ensuring that each character is occluded by its

neighbors. Figure 1 shows a typical captcha that uses

negative kerning. This technique is usually supplemented

with noise, distortions, and randomization to prevent

side channel attacks, for example to prevent an attacker

from making educated guesses where to cut if a captcha

always contains the same number of letters. [10].

Figure 1: Example of a Yahoo captcha that uses the nega-

tive kerning

As of 2013, negative kerning is considered the most

secure method for preventing segmentation because it has

successfully withstood years of attacks. Almost all of

the most prominently used captcha schemes rely on it,

as discussed in section 4. The other method of choice to

prevent segmentation, which seems to have fallen out of

fashion after a successful wave of attacks [47], is to use

occluding lines.

The standard approach to solving captchas auto-

matically has been a sequential process wherein a

segmentation algorithm splits the image into segments

that contain individual characters, followed by a character

recognition step that uses machine learning [13]. This

approach, known as the segment then recognize approach

and illustrated in figure 2, works equally well on image

and audio captchas (see [37, 13, 43, 47, 9, 8, 15]).

2



Pre-processing Segmentation Post-segmentation Recognition Post-processing

Image Matrix Segments matrices Segments matrices Potential answer

Final answerCaptcha

Original Pre-processing Segmentation Post-segmentation

425A

Recognition

Figure 2: The segment then recognize approach illustrated

Over the last decade, it has become well-

established [12, 10] that a captcha’s ability to withstand

automated solving lies in the difficulty of segmenting the

image into individual characters rather than recognizing

the characters themselves. A seminal work from

2005 demonstrated that machine learning algorithms

consistently outperform humans for single character

recognition [12]. Thus the innovation in automated

captcha solving shifted from optical character recogni-

tion (OCR) to solving computer vision problems such as

object occlusion in order to segment characters. To date,

no general algorithm for character segmentation is known.

Previous work related to automated captcha solving

falls roughly into two categories: The first type of attack

uses side-channel information unrelated to the distortion

itself, e.g., dictionary attacks [6, 4]. We do not dwell

on this type of attack because it is usually trivial for the

defender to patch, and because the goal of this work is to

treat captchas in a generic manner.

The second type of attack focuses on finding weak-

nesses in the distortion algorithms of particular captcha

schemes. One example of a precisely tuned segmentation

algorithm is [15], where the authors used a complex

image preprocessing phase that relies on character

alignment, morphological segmentation with three-color

bar character encoding and heuristic recognition to break

reCaptcha 2011. While it was very effective against

reCaptcha 2011, it does not generalize to other captcha

schemes that use similar distortion techniques. Similarly

in 2013, a group or researchers examined hollow captcha

specifically and were able to solve all of them using an

extended segment then recognize approach that involves

9 consecutive steps [21]. Our single step approach yields

results that are 4.22% more accurate on the Baidu 2013

scheme. We compare in depth our results with previous

work in Section 7.

To date, research in captcha solving has followed the

familiar exploit-patch cycle where the attacker finds a

flaw in a particular anti-segmentation technique, and the

defender patches it or moves on to a new one. The limita-

tion of the segment then recognize approach has been the

attacker’s ability to find new flaws. As we will show in our

evaluation (section 7), our work overcomes this limitation

by segmenting and recognizing the captcha simultane-

ously, thus removing the need for manually discovered

heuristics to segment captchas.

4 Dataset

Following the methodology of [10], we created a corpus

of real-world captchas to evaluate the effectiveness of our

algorithm. We focused on unbroken real-world captcha

schemes, and ended up creating our corpus from the

schemes depicted in Figure 3.

Baidu (2011)

Baidu (2013)

eBay 

ReCaptcha (2011)

ReCaptcha (2013)

Wikipedia

Yahoo

CNN 

Figure 3: Examples of the captchas of the schemes we

evaluated

3



Unsurprisingly, all of them rely at least to some

extent on negative kerning to prevent segmentation. The

captchas were directly downloaded from their respective

websites and annotated via Mechanical Turk [28], with

IRB approval.

Since 2011, some of those schemes, namely Baidu

and ReCaptcha, have evolved. To keep our algorithm

evaluation relevant to the state of the art in captcha design,

we extended our corpus to include the new versions of

Baidu and ReCaptcha in 2013.

As visible in figure 3, Baidu and ReCaptcha evolved in

two radically different ways: Baidu decided to use hollow

letters whereas ReCaptcha introduced more aggressive

distortions. As discussed in section 7, our success rate

decreased on the new version of ReCaptcha compared to

the previous version. On the other hand, surprisingly, its

accuracy significantly increased on the newer version of

Baidu.

5 Algorithm

In this section we provide an overview of our algorithm

and describe its major components. Then we discuss the

reinforcement learning process that is central to the accu-

racy of our algorithm. Finally, we explain how to handle

occluding lines in a generic manner since it is a natural

extension of our algorithm. We leave the discussion of

optimizations and trade-offs that can be applied to the

algorithm for the next section.

5.1 Algorithm overview

The main idea is to use a machine learning algorithm to

score all possible ways to segment a captcha and decide

which combination is the most likely to be the correct one.

Analyzing all the possible segmentation paths allows the

algorithm to find the path (set of segments) that globally

maximizes the recognition rate. We contrast this with the

segment then recognize approach where an uninformed

segmentation algorithm passes at most a small number

of possible segmentations to an independent recognition

algorithm.

Cut-points 

detector
Slicer Scorer Arbiter

Figure 4: Overview of the algorithm’s four components

As depicted in figure 4, the algorithm is composed of

four components: the Cut-point Detector that finds all

the potential ways to segment a captcha, the Slicer that is

responsible for extracting the segments and combining

them into a graph, the Scorer that performs OCR on the

segments and assigns a recognition confidence score to

each one of them, and the Arbiter that is responsible for

processing the scores and determining what are the most

likely letters.

l i e b e k i n e d l i e b ei

l i e b e

Slicer

Scorer

Arbitrer

Figure 5: Illustration of how the algorithm works

Figure 5 illustrates the graph representation that we

use to keep track of all possible segmentations at once.

This structure is what enables us to simultaneously solve

the recognition and segmentation problems. A concrete

example of the algorithm’s output while operating on a

Yahoo captcha is shown in Figure 6. We now describe

each component in turn.

Cut-point detector: The cut-point detector is responsible

for finding all the possible cuts along which to segment

a captcha into individual characters. The potential cuts

are found by examining the second derivative of the curve

generated by following the bottom pixels of the captcha,

and the curve generated by following the top pixels of

the captcha. An example of this step is shown in figure 6

in the second image from the top. We use the inflection

points as potential end points for each cut. These are

marked in red for the top line and in blue for the bottom

one. Each cut is constructed by connecting the inflection

points - one from the top, and one from the bottom.

4



Inflection

points

Potential

cuts

Compatible cut

with start

Best

shards

Answer 4 c z 8 j y a z

Figure 6: Example of the algorithm successfully applied

to a Yahoo captcha

As is shown in the center image in figure 6, this

procedure generates a large number of cuts that will be

processed later by the slicer. We emphasize that this

technique is purely geometric and is designed to be

simple; no specific tuning is necessary. In section 6, we

discuss changing the number of cuts to make a trade-off

between speed and accuracy.

Slicer: The slicer applies some heuristics to extract the

meaningful potential segments based on the cut points

and builds the graph in figure 5. A potential segment

is considered meaningful if the two cuts that define

its left and right boundaries are sufficiently far apart

(90% of the width of the smallest character observed in

training), yet not too far apart (110% of the width of the

largest character seen in training). The selection process

is illustrated in the second image from the bottom in

figure 6. As is visible in the figure, even for the first

character we end up with a large number of potential

segments, each of which will generate even more

subsequent potential segments because we use them as

right boundary for the next one. This exponential number

of segments caused early versions of our algorithm to be

very slow (but still computationally feasible). During the

early phase of research, it was not uncommon that a 12

letter long captcha took up to 9 hours of computation. We

have since improved performance, discussed in section 6.

Scorer: The scorer traverses the graph of potential

segments, applies OCR to each potential segment, and

assigns a recognition confidence score. It uses a modified

version of KNN [16] to perform the OCR. KNN works

by computing how far each potential segment is from

the k closest known (learned) examples to decide the

most likely character depicted in the potential segment.

Segments are processed at the pixel level, as this has

been demonstrated to be the best approach for text

recognition [31]. The fact that it is easy to produce a

mathematically sound score from the recognition process

was one of three factors that led us to settle on KNN. The

other two factors were noise resistance and computational

speed given our feature set domain.

The noise resistance arises from using a relatively

small k (less than 10) in our KNN to identify the nearest

neighbors. This is essential in our case because most

of the potential segments generated by the slicer are

meaningless and belong to the garbage class. If we had

used a margin based classifier (e.g. SVM), we would

have had to compensate for this bias at the expense of

accuracy due to the class contiguity hypothesis [34].

Our brief experimentation with an SVM linear classifier

supports this assumption.

Using a simple metric distance produced a poor

recognition rate, so we modified our distance function.

We realized that the problem was assigning an equal

weight to each pixel regardless of its position in the

segment or its grayscale value. It turns out that pixels

on the edge of segments are less meaningful than pixels

in the center precisely because they are shared between

characters that have been collapsed together.

We achieved very good results on all captcha schemes

by assigning higher weight to pixels nearer the center of

the segment, and to darker ones. While this approach

is adequate, we believe that the algorithm could be

improved by learning the weights from the data itself. We

discuss this idea in more detail in section 8.

Arbiter: The final component of our algorithm is the

arbiter that selects the final value for the captcha. The

arbiter uses an ensemble learning approach [19] where

each sequence of segments has a vote weighted by the

recognition score confidence. This is very similar to the

random forests algorithm except that trees are replaced

with paths in our case. Similarly, random features are

replaced by multiple segmentations of the same set of

characters.

5



Ensemble learning, while deceptively simple, is very

robust to noise and leverages the fact that there is not

one but multiple ways to segment an occlusion based

captcha that will yield the correct answer. The Condorcet

theorem [40] implies that combining paths yields better

predictive performance than could be obtained from a

single path in isolation. In our experience, the right voting

approach is critical to the algorithm’s success. While this

approach is accurate, it is also very slow to the point of

being impractical, which is why we discuss trade-offs that

can be applied to make the algorithm orders of magnitude

faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning

The traditional way to train a character classifier is to

provide a set of labeled captchas already segmented

and let the classifier learn to recognize each char-

acter from those segments using the labels. This

process assumes that the classifier is given the cor-

rect number of segments - one for each letter in the

captcha. In the segment then recognize approach, this

assumption holds because the segmentation is handled

by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our

algorithm produces a huge number of segments, most of

which are garbage, and many paths in the graph that do

not correspond to valid segmentations at all. To overcome

this, we use a reinforcement learning approach where the

human fills an entirely different role: instead of providing

the classifier with labeled examples of valid segments, the

algorithm asks the human to annotate segments that have

been misclassified, and then learns from the feedback.

The algorithm is able to initiate the learning process

because the first two components of the algorithm (the

cut-point detector and the slicer) are fully unsupervised.

A K E

Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-

ment surrounded by two correctly classified segments is

misclassified

In a nutshell, our reinforcement learning works as fol-

lows: during training, the algorithm processes a set of

labeled captchas and isolates the captchas that were not

successfully recognized. For the failed captchas, the al-

gorithm asks for human feedback when a segment sur-

rounded by two correctly classified segments is misclassi-

fied (see figure 7). In those cases, the algorithm needs the

human expertise because the misclassification could be

due either to improper segmentation, or to bad recognition

and the algorithm is unable to tell them apart by itself.

Examples of improper segmentation and bad recognition

are shown in figure 8. If the error was due to improper

segmentation, the segment is discarded. If the error was

due to a recognition error, the segment is added to the

classifier training set. When all the cases are reviewed,

the algorithm is retrained with the enriched dataset. In

practice, even a single round of reinforcement learning

is enough to significantly improve accuracy, as summa-

rized in table 3. The number of cases requiring manual

intervention was small enough where we performed the

corrections ourselves.

Bad segmentation Bad recognition

4

1

t

4

o

7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-

mentation and bad recognition

5.3 Occluding lines

The last fundamental hurdle we needed to overcome to

produce a fully generic algorithm was to deal with occlud-

ing lines. While not as popular as negative kerning, lines

are used by some captcha providers. For example Baidu

2011 (figure 9) uses both lines and negative kerning to

defend against automated solvers.

Without the line class With the line class

Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition

rate for the Baidu scheme without iterative learning

6



Initially we struggled with lines and unsuccessfully

tried numerous approaches, including an independent line

removal algorithm based on a soft margin classifier. In

the end the solution was surprisingly simple: we added a

new character class to the scorer for line segments. For

example, we were able to increase our recognition rate

by 8.49% on the Baidu 2011 scheme when this class is

added, as reported in table 1. Although the solution is

simple, the reasons why it works are not. First, we believe

adding a class is effective because of how our algorithm

is designed; the KNN algorithm permits discontinuous

character classes, which allows many different shapes of

line to fall into the same class. Secondly, the cut point

detector uses the second derivative to find potential cuts,

which is well suited for ignoring flat parts. This is espe-

cially clear in figure 9; there are very few cut points on

the line itself.

Inflection

points

Potential

cuts

Compatible cut

with start

Best

shards

Cuts

optimization

Answer

iterative:

full:

iterative:

full: a 6 y k - -

a 6 y k - -

Figure 9: Example of adding a line class to the classifier,

illustrated on a Baidu captcha. The ”-” in the answer

represents the line class

6 Optimizations

In this section we discuss optimizations that make the

algorithm run faster at the expense of accuracy. Drasti-

cally reducing the computation time with a limited loss of

accuracy was necessary to make our algorithm practical.

We note that all heursitics proposed in this section apply

equally well to all types of distortions, and thus do not

impact the generality of our approach.

6.1 Reducing the number of cuts

Since the computation time is directly related to the num-

ber of potential segments, our first optimization was to

come up with heuristics to reduce the number of cut points

considered by the cut point detector. This optimization

works by pruning near-duplicate and improbable cuts

from the set of potential cut points. First, we removed all

the cuts that have an angle > 30o. Then we examined the

ratio of white pixels to black pixels to eliminate cut lines

that pass through too many black pixels, since they are

most likely cutting through the middle of a letter. Finally

we compared the pixel intensities of the left and right

boundaries to estimate whether the cut marks a transition

between two letters. As illustrated in figure 10, when

these heuristics are applied, the number of potential cuts

decreases visibly.

Inflection

points

Potential

cuts

Compatible cut

with start

Best

shards

Answer 4 c z 8 j y a z

Cuts

optimization

Figure 10: Example of the cut point reduction heuristic

applied to a Yahoo captcha

As a more quantitive example, the number of segments

considered on Baidu 2011 decreased by a factor of 8,

as reported in table 2. We chose to use the Baidu 2011

corpus to evaluate this optimization because the Baidu

captchas are the shortest and therefore the fastest, with

only 4 letters. As reported in the table, with this optimiza-

tion accuracy dropped from 21.05% to 17.39% (-3.6%).

However, we also observe close to a 63x speed up. The

time spent per captcha decreases from 246 seconds to

3.9 seconds. We ran this experiment without the rein-

forcement learning in order to produce a fair accuracy

comparison, since the set of segments that the algorithm

asks a human to evaluate will differ due to the optimiza-

tion.

7



Recognition Time Segments

Baidu all cuts 21.05% 246s 8820

Baidu pruned cuts 17.27% 3.9s 1192

Table 2: Algorithm recognition rate (recognition), average

solve time (time) and average number of segments (seg-

ments) with and without the cut point reduction heuristic

6.2 Sequential recognition

The computational cost of our algorithm increases

exponentially with the length of the captcha, to the point

of becoming prohibitive on long captchas such as the

Yahoo scheme. As explained in section 5, the complexity

is due to generating the graph of all possible segment

combinations and then evaluating all paths.

To mitigate this problem, we developed a version of

the algorithm that makes local decisions for character

recognition rather than looking at the entire captcha. As

depicted in figure 11, we found out that the best approach

when making a local decision is to consider a window of

two letters at a time. Considering two characters at a time

yielded significantly better results than looking at one or

three characters at a time. To make a local decision, the

algorithm attempts all possible cuts for a given window

and keeps the pair of letters and cuts that maximizes the

recognition score for the pair. Making a local decision is

of course suboptimal and prone to errors that don’t affect

the global approach, but in practice accuracy decreased

by less than 5% in all cases.

4cz8jyaz 4cz8jyaz4cz8jyaz 4cz8jyaz

4cz8jyaz 4cz8jyaz4cz8jyaz 4cz8jyaz

Sequential recognition

Right-left recognition

Figure 11: The sequential and right-left recognition pro-

cesses

Improving the sequential approach We discovered

that the accuracy of the solver depends heavily on the

position of the character in the captcha as shown in

figures 12 and 13. The closer a character is to the center

of the captcha, the less accurate the algorithm is. We also

observed that the sequential recognition approach is less

accurate on the right side of the captcha than on the left

side. This is particularly true for long captchas such as

the Yahoo scheme (figure 13).

Full algorithm recognition rate per letter

Sequential recognition rate per letter

Left - Right recognition rate per letter

R
e

c
o

g
n

it
io

n
 r

a
te

 f
o

r 
B

a
id

u

40%

50%

60%

70%

Letter position

1 2 3 4

Figure 12: Recognition rate per letter for the each learning

approach on the Baidu 2011 scheme

This observation led us to the idea of performing the

sequential recognition from both directions and then

combining the two recognition scores to improve the

overall accuracy, as illustrated in figure 11. We call this

the left-right approach. Figures 13 and 12 show that

this approach greatly increases the accuracy on the right

side of the captcha and often improves the overall accu-

racy compared to the simple sequential approach (table 3).

Sequential rate per letter

Left - Right rate per letter

Accuracy of the left most char

R
e

c
o

g
n

it
io

n
 r

a
te

 f
o

r 
Y

a
h

o
o

30%

40%

50%

60%

70%

Letter position

1 2 3 4 5 6 7 8

Figure 13: Recognition rate per letter for the various

approaches for the Yahoo! scheme.

Moving from a global recognition to a local one

significantly improved the speed of our algorithm. For

example, it reduced the computation time for an eBay

captcha from 35.79 seconds down to 2.36 seconds, which

is a 15x speed up on top of the gains from the cut-point

elimination heuristic. These optimizations allowed us to

run our algorithm over large corpuses of captchas and

made our approach practical.

8



Reinforcement learning Simple learning Previous Work

Full L-R L-R Time Seq. Full L-R Seq Accuracy Delta Ref.

Baidu (2011) 38.68% 33.42% 3.94 s 36.58% 17.27% 16.55% 16.69% 5% +33.6% [10]

Baidu (2013) 55.22% 54.38% 1.9 s 54.38% - - - 51% +4.22% [21]

CNN - 51.09% 4.9 s 48.54% - 46.40% 45.96% 16% +35.09% [10]

eBay 51.39% 47.92% 2.31 s 48.61% 39.43% 40.14% 36.29% 43% +11.4% [10]

ReCaptcha (2011) 22.67% 21.74% 7.16 s 19.25% 19.86% 18.25% 17.10% 40.4% -17.73% [15]

ReCaptcha (2013) 22.34% 19.22% 4.59 s 19.74% 20% 14.61% 12.77%

Wikipedia - 28.29% - 26.36% - 27.02% 26.24% 25% +3.3% [10]

Yahoo - 3.67% 7.95 s 5.33% - 2.72% 2.29%

Table 3: Recognition rates for real-world schemes. Full denote the full algorithm, L-R denote the Left-Right algorithm

, Seq denote the Sequential algorithm, ”L-R time” for the time the Left-Right algorithm takes to solve a captcha on

average.

7 Evaluation

In this section we report how our algorithm performed

against real-world captchas schemes. Table 3 summarizes

our results. Following the best practices proposed

in [10], our evaluation was performed on a test set of

approximately 1000 captchas for each captcha scheme

that were not used during training. The evaluation was

performed on a core-i5M laptop. The algorithm was

trained the same way once for each scheme without

changing any of the algorithm’s parameters.

We ran the algorithm with and without the various

optimizations described earlier to evaluate how they

impact recognition rate. All results include the cut-point

elimination heuristic.

For certain cases the recognition rates are not available

because the computational cost of running the algorithm

was prohibitive on our test set (over 24 hours of

computation). We compare our results to previous work

when the data is available in column Ref. To establish

a fair comparison between the various schemes we

normalized the number of examples per character to

26, which in practice meant a very small training set of

well under 1000 captchas in all cases. We believe that

normalizing the number of examples per character results

in a more accurate comparison because different schemes

use different character sets.

Our algorithm was able to solve every scheme

with accuracy significantly above the 1% success rate

necessary to deem a captcha scheme insecure [10]. The

algorithm in its best configuration is able to achieve

38.68% on Baidu 2011, 55.22% on Baidu 2013, 51.39%

on eBay, 51.09% on CNN, 22.67% on ReCaptcha 2011,

22.34% on ReCaptcha 2013, 28.29% on Wikipedia,

and 5.33% on Yahoo. On average the reinforcement

learning provides a 6.7% accuracy improvement. Using

the sequential decision instead of the global decision

decreases accuracy on average by 3.42%, the left-right

only decreases it by 1.75%. In terms of speed, the algo-

rithm takes on average 6.22s to process a captcha, which

makes it not only practical, but indeed comparable to

the speed at which humans are able to solve captchas [11].

While still in its infancy, our algorithm in most cases

outperforms previous work that relies on manually

generated segmentation algorithms. More importantly,

our approach does not suffer from the brittleness inherent

in attacks manually tuned against particular distortions.

For instance our approach outperforms [10] and [21].

While [15] outperforms our algorithm on reCaptcha 2011,

the authors acknowledge that their approach is not able to

solve the CNN captcha scheme whereas our algorithm

solves both without modification or tuning. Overall there

is no previous work that is effective against the breadth

of captchas schemes presented in this paper. This leads

us to believe that a unified approach is likely to replace

the segment then recognize approach.

7.1 Learnability

Figure 14 shows how overall accuracy improves as a

function of the number of training examples per character.

We confirm the findings of [10] that it does not take very

many examples to achieve a sufficient accuracy rate. This

figure also shows that the left-right approach does not

seem to require more examples than the global one.

9



Baidu

Baidu left-right

ebay

eBay left-right

ReCaptcha

ReCaptcha left-right

R
e

c
o

g
n

it
io

n
 r

a
te

0%

10%

20%

30%

Number of examples per class

1 2 3 4 5 10 15 20

Figure 14: Recognition rate as a function of the number

of example in each class.

7.2 Human accuracy

To complete our investigation of negative kerning, we

also quantified human accuracy compared to the accuracy

of our algorithm at different levels of distortion. We

ran an experiment, with IRB approval, on Internet users

using Amazon Mechanical Turk [28]. We asked Turkers

to solve 2000 captchas for each kerning that ranged

from 0 pixels to -7 pixels (16 000 captchas total). The

captchas were 6 characters long, drawn at random from

the character set a-z and use the Arial font in 20px. We

discarded captchas that were solved too quickly (< 4s)

or to slowly (> 15s) as they were most likely not honest

attempts to solve the captcha. We ran our algorithm on

those 8 kerning variations as well.

Figure 15 shows the result of the experiment. The gap

between human and machine accuracy for negative kern-

ing based distortion is too narrow to be used reliably as a

reverse Turing test. Driving the algorithm’s recognition

rate close to 0% using solely this type of distortion will

lead to a horrendous human recognition rate (< 20%).

We acknowledge that fully understanding human vs.

machine ability to process distortion is a fascinating

problem in its own right, and we leave it to future

work. Nevertheless this experiment supports our claim

that devising effective text-based captchas is very difficult.

8 Areas of improvement

While our algorithm produces good results, it is just the

first rough implementation of the new holistic approach.

This section highlights some of the most promising

directions for improvement.

Human accuracy

Breaker accuracy (left-right)

A
c
c
u

ra
c
y

0%

20%

40%

60%

80%

100%

Spacing between letters

0px -1px -2px -3px -4px -5px -6px -7px

Figure 15: Human and Algorithm accuracy vs. spacing

between letters in pixel

Learn the KNN weights The current implementation

uses a single manually chosen set of weights for the KNN

distance computation that performed well on our corpus.

We believe that automatically learning those weights

for each captcha scheme would improve accuracy,

particularly for schemes that use unusual fonts or specific

distortions. We believe that it is possible to accomplish

this fully unsupervised, similar to the cut-point detector

and slicer phases of our algorithm.

Improve cut-point elimination As discussed in sec-

tion 6.1, we rely on a set of heuristics to remove unlikely

cut lines to increase the speed of the algorithm. As our

evaluation suggests, this heuristic generates a drop in ac-

curacy (-3.6% on Baidu). Finding a better set of heuristics

that are both generic and more precise is an open question.

Additional Occlusion As pointed out earlier, Baidu and

CNN captcha schemes use occluding lines with low

curvature. While our results on these captcha schemes

are very good and our algorithm properly detects lines

(see section 5.3), future work should investigate in depth

how various types of lines, e.g., sine waves that have a

high curvature, impact the recognition rate. It should also

consider other types of occlusion, e.g., blobs. To date, we

have not found real world captcha schemes that employ

this type of occlusion; perhaps occlusion of this type

presents usability challenges that make it impractical for

humans.

Explore deep neural networks A primary contribution

of this work is to empirically demonstrate the effec-

tiveness of performing segmentation and recognition

simultaneously. Accordingly, we have considered other

algorithms that are able to process captchas in a holistic

manner.

10



In particular, with collaborators, we have experimented

with deep convolutional neural networks, similar to those

in [29]. These experiments have confirmed the benefits

of a unified approach, and have achieved captcha-solving

results that equal or improve upon those presented in this

paper. For certain ReCaptcha data sets, these new results

show such dramatic improvement in accuracy, while using

large-scale training sets, that they suggest that deep neural

networks may hold a substantial advantage over humans

for solving text-based captchas [23].

9 The future of captchas

When captchas were invented, the community realized

that with the passage of time one of two things would

happen: either captchas would remain an invaluable

way to differentiate humans and computers, or very high

quality OCR would become readily available [29]. We

believe that our approach of solving the segmentation

and recognition problems in a single step ushers in

the latter. This breakthrough not only affects the way

solvers are designed, but also forces us to reconsider

from ground up how reverse Turing tests should be done.

This is a very complex open question that is generally

outside the scope of this work, but we have gleaned some

insights on potential promising directions for developing

next-generation reverse Turing tests, both from this work

and from our experience at Google.

Moving to a more complex domain The first potential

direction is simply to find a more difficult problem in

computer vision. Incorporating video or requiring the user

to perform a higher order cognitive task such as circling or

rotating an object [24] are examples. A significant amount

of work has been produced on alternative captchas of this

type [36, 20, 17]. However, many proposals do not meet

a high enough standard of universal accessibility, since

reverse Turing tests must be solvable by any human.

For example, English language comprehension is

clearly not a general reverse Turing test. Past experience

has shown that finding a better common denominator

than text transcription that is also difficult for machines is

elusive. A good example is the Asirra captcha, depicted

in figure 16, which asked users to distinguish between

cats and dogs. Less than a year after its release it was

successfully broken using a classifier trained to recognize

image textures [22]. More recently, the MintEye captcha

scheme [3], that relies on ”undistorting” an image

(figure 17) was broken by a very simple attack based on

Sobel operators that only required 23 lines of Python [2].

Figure 16: Example of the Asirra captcha that asks users

to distinguish between cats and dogs

On the other hand, casting the problem of text

transcription into a more complex domain (video) has

also proven difficult. NuCaptcha attempted to do this, and

was broken by two different teams [7, 45] using different

approaches. Mitra et. al. have suggested using emergent

images as an alternative way to encode information

in video that might be robust against computer vision

algorithms [36]. Whether there exist situations where the

human brain is definitively able to process information

more efficiently than machines remains an open question.

Recently game-based captchas have been devel-

oped [1], however implementing this idea as proven to

be difficult, as the game captcha schemes for the leading

game captcha provider ”Are you a human” have been

broken [42].

Figure 17: Example of the MintEye captcha that ask users

to ”undistort” an image.

Using cognitive behavior Another direction to expand

the space in which reverse Turing tests operate is to con-

sider how the test is solved in addition to the underlying

difficulty of the problem. For example, our experiment

with Mechanical Turk shows that human solving time is

very predictable for random strings, as visible in figure 18.

We observe that the brain has a ”start-up” time of 2.6s dur-

ing which scientists believe the brain performs something

akin to Gabor filters [18] to preprocess shapes. Then the

brain takes 0.97s to process each character.

11



s
o

lv
in

g
 t
im

e
 (

s
)

0

5

10

15

20

25

30

35

captcha length (number of characters)

5 10 15 20 25 30

Linear: 2.596 + 0.9709*x

Exponential: 5.219exp(0.06834x)

Figure 18: Human solving time increases linearly with

the length of the captcha

This linear relation between the length of a captcha and

the time it takes to process is quite apparent in figure 18.

Clearly solving time is not a good reverse Turing test

since it is easy for machines to fake, but other examples

might exist, especially for captcha schemes that require a

prolonged user engagement.

Leveraging reputation. In addition to considering how

a reverse Turing test is solved, captcha providers could

consider the identity of the solver, for example the IP

address, the geographic location, etc. If a good enough

proof of identity can be established, providers can use

this reputation to adapt the difficulty of the reverse Turing

test. This opens the door to easier tests for users in good

standing, which will alleviate the captcha burden. It also

empowers providers to challenge suspicious solvers more

aggressively, and serves as a signal that is entirely orthog-

onal to the difficulty of the reverse Turing test, which will

in turn result in a higher quality anti-abuse system. On the

other hand, employing such a risk-based strategy requires

a great deal of knowledge about network behavior and

a large user base, which makes it feasible only for large

providers.

10 Related Work

Alternate captcha schemes In [20] the authors proposed

the Asirra captcha scheme, which was broken within

a year [22]. In [27] the authors proposed using a 3D

model as captcha. In [5] the authors proposed animated

captchas. In [36] the authors present the concept of

emergent images, and propose to use animated emergent

images as captcha. In [24] the authors proposed using the

task of rotating images as a captcha.

NuCaptcha was one of the first to deploy video

captchas [30], and was first broken first by [7] with

motion tracking and shortly after by a second group using

a variant of this technique [45].

Captcha solving In [13] the authors propose using

machine learning classifiers to attack captchas. In [12]

the same authors study how efficient statistical classifiers

are at recognizing captcha letters. Almost a decade ago,

the authors of [13] mentioned in the discussion section

that unifying the segmentation and recognition steps

was a promising direction. However until this work this

direction was not explored and we are not aware of any

prior work that successfully applied this idea to captcha

solving. In [47] the authors were able to solve the 2008

Microsoft captcha using the segment then recognize

approach. In [44] the author proposes using an erode

and dilate filter to segment captchas. [46] is one of

the first papers to propose the use of histogram-based

segmentation techniques against captchas. Yan et al.

where able to devise heuristics to segment the easy

version of reCaptcha 2010 [4]. In [6] the authors were

able to break an older version of reCaptcha that used

English words with a dictionary attack. In [8], the authors

successfully applied the segment then recognize approach

to audio captcha schemes. In 2011 [10] the authors

successfully attacked numerous captchas schemes using

an improved version of the segment then recognize

approach, but failed to break reCaptcha. In 2012, the

authors of [15] used a complex image preprocessing

phase that relies on character alignment, morphological

segmentation with three-color bar character encoding

and heuristic recognition to crack the reCaptcha 2011.

In 2013 the authors of [21] looked at hollow captchas

specifically.

Machine learning algorithms The perceptron, the sim-

plest neural network, has been used as a linear classifier

since 1957 [41]. Convolutive neural networks, which

are considered to be the most efficient neural networks

to recognize letters, were introduced in [32]. Space dis-

placement neural network that attempt to recognize digits

without segmentation were introduced in [35]. Support

vector machines were introduced in [14]. The KNN algo-

rithm is described in detail in [16]. Recently deep belief

networks, which aim at mimicking the human brain, have

emerged has the best way to classify complex data such

as images [25, 29]. While still in their infancy, deep belief

networks represent a major break thought that yield unpar-

alleled accuracy. The use of a bag of features to recognize

objects in images is a very active field. The closest work

to ours in this area is by [33], where the authors try to

segment and categorize objects using this approach.

12



11 Conclusions

This paper introduces a novel approach to solving

captchas in a single step that uses machine learning to

attack the segmentation and the recognition problems

simultaneously. Performing both operations jointly

allows our algorithm to exploit information and context

that is not available when they are done sequentially. At

the same time, we remove the need for any hand-crafted

component, making our approach generalize to new

captcha schemes where the previous approach can not.

We were to solve many prominent real-world captcha

schemes that use both negative kerning and occluding

lines without any modification to the algorithm. Improv-

ing on the best previous results, our algorithm was able to

achieve a 38.68% recognition rate on Baidu 2011, 55.22%

on Baidu 2013, 51.09% on CNN, 51.39% on eBay,

22.67% on ReCaptcha 2011, 22.34% on ReCaptcha 2013,

28.29% on Wikipedia, and 5.33% on Yahoo. The breadth

of distortions our algorithm is able to solve shows that it

is a general solution for automatically solving captchas.

Based on our experience, we also provide suggestions

on how reverse Turing tests might be improved going

forward.

The effectiveness and universality of our results sug-

gests that combining segmentation and recognition is the

next evolution of catpcha solving, and that it supersedes

the sequential approach used in earlier works. With these

advances, it seems that purely text-based captchas are

likely to have declining utility; significant effort may be

needed to rethink the way we perform reverse Turing

tests.

Acknowledgment

We thank Aleksandra Korolova, Matthieu Martin, Celine

Fabry and our anonymous reviewers for their comments

and suggestions. This work was partially supported by

the National Science Founda- tion, the Air Force Office

of Scientific Research, and the Office of Naval Research.

References

[1] Are you human ? http://areyouahuman.

com/.

[2] Breaking the minteye image captcha in 23

lines of python. Blog post http://www.

jwandrews.co.uk/2013/01/breaking-

the-minteye-image-captcha-in-23-

lines-of-python/.

[3] Minteye captcha. website: http://www.

minteye.com/, 2013.

[4] A. S. E. Ahmad, J. Yan, and M. Tayara. The robust-

ness of google captchas. Technical report, Newcas-

tle University, 2011.

[5] E. Athanasopoulos and S. Antonatos. Enhanced

captchas: Using animation to tell humans and com-

puters apart. In IFIP International Federation for

Information Processing, 2006.

[6] P. Baecher, N. Büscher, M. Fischlin, and B. Milde.

Breaking recaptcha: A holistic approach via shape

recognition. In Future Challenges in Security and

Privacy for Academia and Industry, pages 56–67.

Springer, 2011.

[7] E. Bursztein. How we broke the nucaptcha video

scheme and what we propose to fix it. blog post

http://elie.im/blog/security/how-

we-broke-the-nucaptcha-video-

scheme-and-what-we-propose-to-

fix-it/, February 2012.

[8] E. Bursztein, R. Bauxis, H. Paskov, D. Perito,

C. Fabry, and J. C. Mitchell. The failure of noise-

based non-continuous audio captchas. In Security

and Privacy, 2011.

[9] E. Bursztein and S. Bethard. Decaptcha: breaking

75% of eBay audio CAPTCHAs. In Proceedings of

the 3rd USENIX conference on Offensive technolo-

gies, page 8. USENIX Association, 2009.

[10] E. Bursztein, M. Martin, and J. Mitchell. Text-based

captcha strengths and weaknesses. In Proceedings of

the 18th ACM conference on Computer and commu-

nications security, CCS ’11, pages 125–138, New

York, NY, USA, 2011. ACM.

[11] E. Bursztein, A. Moscicki, C. Fabry, S. Bethard,

D. Jurafsky, and J. C. Mitchell. Easy does it: More

usable captchas. CHI, 2014.

[12] K. Chellapilla, K. Larson, P. Simard, and M. Czer-

winski. Computers beat humans at single charac-

ter recognition in reading based human interaction

proofs (hips). In CEAS, 2005.

[13] K. Chellapilla and P. Simard. Using machine learn-

ing to break visual human interaction proofs (HIPs).

Advances in Neural Information Processing Systems,

17, 2004.

[14] C. Cortes and V. Vapnik. Support-vector networks.

Machine learning, 20(3):273–297, 1995.

13

http://areyouahuman.com/
http://areyouahuman.com/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.jwandrews.co.uk/2013/01/breaking-the-minteye-image-captcha-in-23-lines-of-python/
http://www.minteye.com/
http://www.minteye.com/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/
http://elie.im/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it/


[15] C. Cruz-Perez, O. Starostenko, F. Uceda-Ponga,

V. Alarcon-Aquino, and L. Reyes-Cabrera. Break-

ing recaptchas with unpredictable collapse: heuristic

character segmentation and recognition. In Pattern

Recognition, pages 155–165. Springer, 2012.

[16] B. Dasarathy. Nearest Neighbor ({NN})

Norms:{NN} Pattern Classification Techniques.

1991.

[17] R. Datta. Imagination: A robust image-based

captcha generation system. In ACM Multimedia

Conf., 2005.

[18] J. G. Daugman et al. Uncertainty relation for res-

olution in space, spatial frequency, and orientation

optimized by two-dimensional visual cortical filters.

Optical Society of America, Journal, A: Optics and

Image Science, 2(7):1160–1169, 1985.

[19] T. G. Dietterichl. Ensemble learning. The handbook

of brain theory and neural networks, pages 405–408,

2002.

[20] J. Elson, J. Douceur, J. Howell, and J. Saul. Asirra:

A captcha that exploits interest-aligned manual im-

age categorization. In 4th ACM CCS, 2007.

[21] H. Gao, W. Wang, J. Qi, X. Wang, X. Liu, and

J. Yan. The robustness of hollow captchas. In Pro-

ceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, pages 1075–

1086. ACM, 2013.

[22] P. Golle. Machine learning attacks against the asirra

captcha. In ACM CCS 2008, 2008.

[23] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud,

and V. Shet. Multi-digit number recognition from

street view imagery using deep convolutional neural

networks. arXiv preprint arXiv:1312.6082, 2013.

[24] R. Gossweiler, M. Kamvar, and S. Baluja. What’s

up captcha? a captcha based on image orientation.

In World Wide Web, 2009.

[25] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast

learning algorithm for deep belief nets. Neural com-

putation, 18(7):1527–1554, 2006.

[26] R. Hof. Ai startup vicarious claims milestone in

quest to build a brain: Cracking captcha. http:

//www.forbes.com/sites/roberthof/

2013/10/28/ai-startup-vicarious-

claims-milestone-in-quest-to-

build-a-brain-craking-captcha/,

November 2013.

[27] M. Hoque, D. Russomanno, and M. Yeasin. 2d

captchas from 3d models. In IEEE SoutheastCon

2006, 2006.

[28] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing

user studies with mechanical turk. In CHI ’08: Pro-

ceeding of the twenty-sixth annual SIGCHI confer-

ence on Human factors in computing systems, pages

453–456, New York, NY, USA, 2008. ACM.

[29] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen,

G. S. Corrado, J. Dean, and A. Y. Ng. Building

high-level features using large scale unsupervised

learning. In ICML, 2011.

[30] Leapmarketing. Video-based captchas now available

for sites and blogs. http://www.prnewswire.

com/news-releases/video-based-

captchas-now-available-for-sites-

and-blogs-97471319.html, 2008.

[31] Y. Lecun. The mnist database of handwritten digits

algorithm results. http://yann.lecun.com/

exdb/mnist/.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[33] B. Leibe, A. Leonardis, and B. Schiele. Robust

object detection with interleaved categorization and

segmentation. International Journal of Computer

Vision, 77(1):259–289, 2008.

[34] C. D. Manning, P. Raghavan, and H. Schütze. In-

troduction to information retrieval, volume 1. Cam-

bridge University Press Cambridge, 2008.

[35] O. Matan, C. Burges, and J. Denker. Multi-digit

recognition using a space displacement neural net-

work. Advances in Neural Information Processing

Systems, pages 488–488, 1993.

[36] N. J. Mitra, H.-K. Chu, T.-Y. Lee, L. Wolf, H. Yeshu-

run, and D. Cohen-Or. Emerging images. ACM

Transactions on Graphics, 28(5), 2009. to appear.

[37] G. Mori and J. Malik. Recognizing objects in adver-

sarial clutter: Breaking a visual captcha. In CVPR

2003, pages 134–144, 2003.

[38] M. Motoyama, K. Levchenko, C. Kanich, D. Mc-

Coy, G. Voelker, and S. Savage. Re: CAPTCHAs–

Understanding CAPTCHA-solving services in an

economic context. In Proceedings of the 19th

USENIX conference on Security, pages 28–28.

USENIX Association, 2010.

14

http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.forbes.com/sites/roberthof/2013/10/28/ai-startup-vicarious-claims-milestone-in-quest-to-build-a-brain-craking-captcha/
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://www.prnewswire.com/news-releases/video-based-captchas-now-available-for-sites-and-blogs-97471319.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


[39] M. Naor. Verification of a human in the loop or

identification via the turing test. Available electron-

ically: http://www.wisdom.weizmann.ac.

il/˜naor/PAPERS/human.ps, 1997.

[40] L. Rokach. Pattern classification using ensemble

methods, volume 75. World Scientific, 2009.

[41] F. Rosenblatt. The perceptron: a perceiving and rec-

ognizing automation (projet PARA), Cornell Aero-

nautical Laboratory Report. 1957.

[42] Spamtech. Cracking the areyouahuman captcha.

http://spamtech.co.uk/software/

bots/cracking-the-areyouhuman-

captcha/, 2012.

[43] J. Tam, J. Simsa, S. Hyde, and L. von Ahn. Breaking

audio captchas. In Advances in Neural Information

Processing Systems, 2008.

[44] J. Wilkins. Strong captcha guidelines v1. 2. Re-

trieved Nov, 10:2010, 2009.

[45] Y. Xu, G. Reynaga, S. Chiasson, J.-M. Frahm,

F. Monrose, and P. van Oorschot. Security and us-

ability challenges of moving-object captchas: De-

coding codewords in motion. In Usenix Security,

2012.

[46] J. Yan and A. Ahmad. Breaking visual captchas

with naive pattern recognition algorithms. In ACSAC

2007, 2007.

[47] J. Yan and A. El Ahmad. A Low-cost Attack on a

Microsoft CAPTCHA. In Proceedings of the 15th

ACM conference on Computer and communications

security, pages 543–554. ACM, 2008.

15

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/

	1 Introduction
	2 Ethics
	3 Background
	4 Dataset
	5 Algorithm
	5.1 Algorithm overview
	5.2 Reinforcement learning
	5.3 Occluding lines

	6 Optimizations
	6.1 Reducing the number of cuts
	6.2 Sequential recognition

	7 Evaluation
	7.1 Learnability
	7.2 Human accuracy

	8 Areas of improvement
	9 The future of captchas
	10 Related Work
	11 Conclusions

