
TUTORIAL

The End of Moore’s Law: Opportunities for Natural
Computing?

Ferdinand Peper1

Received: 15 April 2017 / Accepted: 25 May 2017 / Published online: 29 June 2017

� The Author(s) 2017. This article is an open access publication

Abstract The impending end of Moore’s Law has started a rethinking of the way

computers are built and computation is done. This paper discusses two directions

that are currently attracting much attention as future computation paradigms: the

merging of logic and memory, and brain-inspired computing. Natural computing

has been known for its innovative methods to conduct computation, and as such

may play an important role in the shaping of the post-Moore era.

Keywords Moore’s Law � Memory-based computing � Cellular Automata �
Brain-inspired computing � Neural networks � Natural computing

Introduction

There is an old joke about Moore’s Law stating that the number of people predicting

its end doubles every 2 years [8]. Though this has not kept it from continuing

unabated for more than half a century, recent developments indicate significant

changes in integrated circuit industry in the coming decades. One such development

is the end in 2016 of the International Technology Roadmap of Semiconductors

(ITRS), which has provided biannual updates on the technology status and expected

developments in the semiconductor industry since the 1990s, and has acted as a

treadmill to keep the various players in the industry synchronized with each other

and with Moore’s Law. There is less incentive for such coordination nowadays, due

to a slowing down of technology generations in recent years, witness, for example,

Intel’s repeated postponement of its 10 nm technology. Though ITRS has touched

upon alternative devices and architectures, it has been firmly in the camp of silicon

& Ferdinand Peper

peper@nict.go.jp

1 Center for Information and Neural Networks, National Institute of Information and

Communications Technology, Osaka, Japan

123

New Gener. Comput. (2017) 35:253–269

DOI 10.1007/s00354-017-0020-4

http://orcid.org/0000-0002-8576-7934
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-017-0020-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-017-0020-4&domain=pdf

technology, which is no surprise given this technology’s extraordinary success.

With the end of ITRS, new initiatives like IEEE Rebooting Computing have started,

accompanied by the launch of the International Roadmap for Devices and Systems

(IRDS), emphasizing novel architectures, devices, and applications.

Though all indicators are that silicon-based microelectronics will be around for

the foreseeable future, there is an increasing realization that novel materials,

designs, and principles of computation will play a major role in future technology.

Even if these alternatives will make up only a small part of computers at first, they

will require a rethinking in how information is processed. Questions on how to

overcome the Von Neumann bottleneck, for example, have already led to proposals

for architectures in which memory and logic are combined on much finer scales than

was previously thought practical, and there is an increasing realization as well that

future architectures need to incorporate at least some of the functionality of human

brains.

Computing technology is moving into a direction in which functionality has

priority over physical specifications like clock speed or device feature sizes. When

Dennard’s scaling rules [10] became unsustainable around 2004, there was a sudden

shift away from the GHz war between manufacturers. A similar phenomenon has

occurred recently with advertised on-chip feature sizes, witness Intel’s statement1

that there will be more focus on performance improvements rather than the

underlying technology node [56]. Such improvements will not necessarily be

quantitative, e.g., more Floating Point Operations per Second (FLOPS), but rather

will emphasize energy efficiency (FLOPS per Watt), or quality in terms of how well

applications will actually be served.

In this paper, we discuss two trends in information processing that have attracted

attention for a long time, but have particular appeal in the current era of new

materials, devices, architectures, and computational challenges. The merging of

logic and memory has been contemplated with the removal of Von Neumann’s

bottleneck in mind, and the obvious solution is to bring the processing of

information closer to where it is stored. Cellular Automata are a well-known model

in this paradigm, and they have particular appeal for their high degree of fine-

grained parallelism. Architectures for brain-inspired computing tend to require

similar degrees of parallelism, but they differ from Cellular Automata by their great

degree of freedom with regard to structure: whereas Cellular Automata are

extremely regular, brain-inspired computing tends to rely more on random

connectivity. The unparalleled performance of the brain in processing complex

information at an extremely meager energy budget has greatly inspired generations

of scientists, and we have now arrived in an era where this research has come to bear

fruits.

This paper is organized as follows. ‘‘A Brief History of Moore’s Law’’ places

Moore’s Law in a historic perspective to assist the reader in judging its future.

‘‘Merging of Logic and Memory’’ discusses the merging of logic and memory with

an emphasis on Cellular Automata. This is followed by a discussion of brain-

1 Statement by Venkata Renduchintala, president of Intel’s Client and Internet of Things businesses and

its Systems Architecture Group.

254 New Gener. Comput. (2017) 35:253–269

123

inspired computing in ‘‘Brain-Inspired Computing’’, in which the major trends in

brain science are discussed, as well as their possible implications on algorithms and

architectures. This paper finishes with a discussion of natural computing in ‘‘And

Natural Computing?’’, giving an outlook on the post-Moore era.

A Brief History of Moore’s Law

Before the advent of Moore’s Law, integrated circuits were a new technology that,

due to its low yields, was hardly recognized as competitive with the then more

common technology based on discrete components. Fairchild Semiconductor—the

young company Moore was part of—was able to cram 64 transistors on an

integrated circuit, albeit at a higher per-component price than that of single

components sold at the time. It was in this context that Moore formulated his now-

famous law in 1965 [45], and his prediction may very well have been rooted in a

desire to increase interest among potential customers for this new technology.

The 1965-prediction that the number of components on a chip would double

every year could be seen in this light, but fast forward 1975 it turned out to be quite

accurate, being only a factor of two below the predicted 65,000 components.

Nevertheless, in that same year Moore saw reason to revise his prediction downward

to a doubling of the number of components every 2 years [46]. To understand why,

let’s briefly examine the factors that contributed to the increase in integration

density in the first decade of Moore’s Law. First, there is the obvious factor of

device size reduction, which is commonly attributed as key to Moore’s Law. The

second factor, increasing chip area, is less obvious, but it contributed almost as

much as the first. The third factor is device and circuit cleverness: in the first decade

there was still plenty of room to pack devices closer together through more efficient

layouts, but Moore concluded that this factor was soon to run out of steam.

Reasoning that the third factor accounted for almost as much improvement as the

other two factors together, Moore revised his law in 1975 downward to a biannual

doubling of chip component counts.

Moore understood from the beginning the importance of economics in his law.

Rather than focusing on the maximum or average number of components that could

be placed on a chip, he used the number for which the cost per component was at a

minimum [41]. Merely adding components would increase the cost per component,

because of the decreased yield of chips caused by a more than proportional

occurrence of defects. So, Moore’s Law is not just about doubling of the number of

components per chip in a certain time interval, but importantly it talks about the

most economical way to do so. This sweet spot of minimum cost per component

identified by Moore is still as valid today as it was 50 years ago.

From 1975 on it has become clear that the rate of integration differs by the type

of chip: the biannual doubling of components applies to logic chips, such as

microprocessors, but memory chips tend to double their number of transistors in a

shorter period (18 months) due to their more regular structure, which offers

advantages in design and layout.

New Gener. Comput. (2017) 35:253–269 255

123

Until around 2004 Moore’s Law ran in conjunction with Dennard’s scaling rules

[10], which provided a predictable scaling of design parameters. According to these

rules, scaling by a factor k ([1) reduces device dimensions by a factor 1=k, and this

allows the voltage, current, capacitance, and delay time of a transistor to decrease by

the same factor 1=k if the doping concentration is increased by the factor k. Since

the power requirement of the device then reduces by the factor 1=k2, and the number

of devices that can be placed on the same area increases by roughly the factor k2, the

power dissipation per unit area would stay constant between generations. Dennard’s

scaling rules had provided a free lunch for engineers for decades, as the decreased

transistor sizes delivered by Moore’s Law automatically led to better performance in

terms of speed and power consumption. An early sign that Moore’s law was in its

final stages came with the end of Dennard’s scaling rules, when it became more

difficult to decrease voltage at the same high pace due to increased leakage currents

in devices. Thus came to an end the race between manufacturers for increasing

clock speeds, only to be replaced by a race to manufacture chips by the most

advanced technology node. With Dennard’s scaling finished, the main benefits of

shrinking transistors today are more functions per chip and a lower cost per

function. Though costs of equipment, material, and processing to manufacture chips

has increased exponentially over the years, the cost per square centimeter of silicon

has hardly changed over time [41]. We have now arrived in an era where more

transistors are imprinted on silicon each year than characters are printed on paper,

and the cost to do so is lower per transistor than per character.

The initial effect of Moore’s Law was a scaling up of chips into more powerful

ones at the same price every couple of years—also called Moore’s Law 1.0 by Mack

[41]. Nowadays this version of Moore’s Law governs only high-end chips, which

include microprocessors for supercomputers, high-end Field Programmable Gate

Arrays (FPGAs), and General Purpose Graphical Processing Units (GPGPUs) [41].

The billions of transistors available on these chips are overkill for most of the

applications on the market, so it has become more common to deliver similar

performance at a lower price in each generation; this scaling down of chips is also

called Moore’s Law 2.0 [41]. Up to 2010 there was optimism about the future of

Moore’s Law, and it was even predicted by some to accelerate, but this mood has

gradually darkened when it became clear that the advertised feature sizes according

to which technology generations were defined started to bear less and less

resemblance to the on-chip feature sizes that could actually be achieved.

The efforts towards ever-higher integration densities was labeled More Moore in

the ITRS report of 2011 [55]. The real interest in the 2011 report, however, was in

the various other categories it introduced. Beyond CMOS, represents the research

efforts towards novel devices and architectures. Though reaching back for decades,

these efforts have attracted increased interest with the realization that More Moore

can deliver only diminishing returns in the future. More than Moore, a category that

is called Moore’s Law 3.0 by Mack [41], indicates the trend to include different

functionalities on chips, like sensors and RF devices, and looks at systems as a

whole and their requirements for applications.

256 New Gener. Comput. (2017) 35:253–269

123

In conjunction with these trends, the question has been raised whether the Von

Neumann architecture is still as relevant today as it was at its birth in 1945. The

concept of storing programs in memory was conceived at a time in which a

computer like the ENIAC could be ‘‘programmed’’ only through a complex process

in which a problem was mapped onto hardware by setting switches and plugging in

wires in appropriate ways. The ENIAC was in fact a primitive form of

reconfigurable hardware, but its relevance was not fully appreciated at the time

due to its tedious and time-consuming programming process. The last decade has

seen a diversification of architectures, with elements of FPGAs and GPGPUs

playing an increasing dominant role in them. The diversification in applications,

away from computers to communication devices has had a significant impact on

industry, where low power consumption has become the driving force behind

designs. Combinations of various hardware solutions with more traditional von

Neumann architectures have also become increasingly commonplace. This

hybridization of architectures may be an important step in the search for alternatives

to the Von Neumann architecture.

Merging of Logic and Memory

A direct consequence of the Von Neumann architecture is the intensive traffic

between the central processing unit (CPU) and memory. The resulting bottleneck

has grown worse over the years as both the size of memory and the speed of CPUs

have radically outgrown the bandwidth between the two. Attempts to ameliorate the

Von Neumann bottleneck have led to many innovations in hardware, like caching,

memory access optimization, branch prediction, and multi-threading. Many of these

solutions could be considered Processing in Memory (PIM) [38] in one form or the

other, since they primarily aim at temporarily storing data and instructions in

memory that is inside the CPU, rather than accessing the main memory.

The Von Neumann bottleneck is not only a matter of hardware organization, it is

also considered a perceptual bottleneck in the sense that most programmers are

trained in using programming languages that inherently assume a division between

memory and processing, as argued by Backus in his Turing Award Lecture [1].

Parallel computing is one of the proposed solutions to deal with the Von Neumann

bottleneck, since it allows memory to be brought closer to processing resources, but

one should be careful not to introduce a separate Von Neumann bottleneck for each

parallel processor employed. When we follow a very fine-grained model of parallel

processing, we arrive at models in which small chunks of logic are equipped with

limited amounts of memory. The most extreme form of distributing memory over

processing resources are Cellular Automata, to which, ironically, Von Neumann

also got his name associated with.

A Cellular Automaton (CA) is a regular array of cells, each of which is a finite

automaton that has as input the state of the cell itself and the states of the neighbors.

Depending on those states, the cell’s next state is determined according to a set of

transition rules. The neighborhood of a cell is often chosen to be the four cells

directly orthogonally adjacent to it (Von Neumann neighborhood), but other

New Gener. Comput. (2017) 35:253–269 257

123

neighborhoods have also been investigated, including neighborhoods with addi-

tionally the diagonal neighbors (Moore neighborhood), and neighborhoods includ-

ing cells up to a distance larger than 1.

The functionality of a CA is determined by its transition rules. Depending on the

design, a CA may be specialized in certain operations, or it may be capable of

universal computation. The latter can be accomplished through various strategies.

One strategy is to simulate a universal Turing Machine on a CA, another is to

simulate a logic circuit on a CA and show that such a circuit can be constructed for

any computational function. Since Turing Machines are notorious for their

inefficiency, simulating them on a CA is not considered a good way to use the

parallel processing ability of CAs. This is a reason why simulation of logic circuits

on CA is preferable in hardware implementations.

Most CA models are synchronously timed, like the well-known Game of Life

[18], meaning that the updates of all cells take place simultaneously. Synchronous

updating requires the distribution of a clock, as well as sufficient memory in each

cell to store its current state as well as its next state. An alternative, asynchronous,

timing model has been explored in [49, 50] that allows cells to operate more

independently from each other, thus emphasizing the locality of their interactions. In

an asynchronous CA, each cell may undergo a transition with a certain probability,

but only so if the cell’s state and the states of its neighbors match the left-hand side

of a transition rule. Absent such a match to any transition rule, no transition will

take place for that cell. In this respect, asynchronous CAs are quite different from

synchronous CAs, which update all cells in each step.

The timing of CAs carries over to the logic circuits they simulate. Asynchronous

CAs are typically designed such that they support so-called Delay-Insensitive (DI)

circuits [29]. In DI-circuits signals are allowed to have arbitrary delays in time,

which means that variations in the arrival times of signals at gates do not affect the

correctness of operations. For conventional synchronously timed Boolean circuits

the situation is quite different: a delay of a signal by a single clock cycle to the input

of a logic gate will often dramatically affect the gate’s output. Conventional logic

gates are not universal for the class of DI-circuits, because they do not implement

timing functionality, and as a result they are unsuitable as the basis for

asynchronous CAs. DI-circuits tend to use a set of logic primitives that includes

at least one gate that is able to ‘‘synchronize’’ input signals. Synchronization by a

logic element in the context of DI-circuits means that the element will only produce

output if all of its input wires have signals on them. If at least one input signal is

absent, the element will keep all other input signals pending until all missing input

signals are provided.

Asynchronous CAs tend to employ DI-circuits in which signals take the form of

tokens. A well-known example of a token-based DI-circuit is a Petri-net [47]. A

token in a CA is usually implemented as an uninterrupted finite linear area of cells

that are in the same state. This area may stretch and shrink due to the randomness of

the asynchronous timing of the CA, but the probability that it has its minimum

size—which is usually one cell—in a certain time interval will not change over

time. Designs of DI-circuits, and especially token-based circuits, are different from

conventional Boolean circuits, because different logic primitives are used. Typically

258 New Gener. Comput. (2017) 35:253–269

123

a dual-rail representation is employed, in which each logic level is assigned its own

wire and a signal is represented through the presence of a token on the wire

corresponding with the logic value. A dual-rail representation makes certain

operations less complex: a NOT-gate, for example, can be realized by simply

crossing a 0-wire and a 1-wire. However, most other operations tend to become

more complex, though this also depends on the particular choice of the logic

primitives.

The complexity of cells is an important issue in CAs, especially when efficient

implementation in hardware is required. Cell complexity is determined by the

number of states a cell can assume, as well as the number of transition rules

describing its functionality. Even within that framework there may be a difference

in complexity due to the size of the neighborhood in a CA: a bigger neighborhood

tends to result in transition rules with higher complexity. On the other hand, a bigger

neighborhood may require less transition rules to specify certain functionality.

Designers usually favor a smaller neighborhood in CA, because complexity tends to

be less in this case when taking all factors in account. The number of cell states and

rules required in asynchronous CA models based on token-based DI-circuits tend to

be of the same order as their synchronous counterparts. Further reductions in the

number of states and rules have been achieved by allowing signals in asynchronous

CAs to fluctuate, and make them search their way from input to output in a random

search process; the resulting models are called Brownian Cellular Automata [35].

The use of fluctuations may be relevant in a nano-electronic and biological context,

since noise plays a significant role on scales of single particles and molecules.

Complexity of cells is also strongly dependent on the granularity of a CA. On one

side of the spectrum is a fine granularity, in which a cell has very limited

functionality. Since most cells in a CA simulating a logic circuit are used for wires

or for unused spaces between wires, it is a waste of resources to include lots of

functionality in cells. In its most extreme form of fine granularity, multiple cells will

be needed to simulate a single logic gate. Coarse granularity (the other side of the

spectrum) uses at most one cell per logic gate, and usually multiple logic gates can

be simulated by a single cell [13]. In this case fewer cells will be required, but if a

cell cannot be fully used due to it being deployed as a wire or space between wires,

there is significant overhead.

It tends to be difficult for CAs to achieve the level of functional density of

contemporary CPUs, but in the end the regularity of CAs may allow the use of

bottom-up manufacturing methods that can achieve much higher integration

densities than those possible with the top-down methods employed for conventional

VLSI. This era has not yet arrived, and an important reason for the relatively low

functional densities of CAs is that the transition rules of CAs need to be stored in

each cell to make the model truly local, thus leading to much overhead. This

motivates research into finding physical or biological materials in which rules are

naturally implemented through physical interactions.

Materials that implement CAs in a natural way are hard to find in nature, though

some examples approaching computation ability have been demonstrated [2, 23]. A

problem with such rules is that physical systems tend to converge to a state with

minimal potential energy, so it is difficult to continue a computation for an extended

New Gener. Comput. (2017) 35:253–269 259

123

time in such systems. Rather, a one-time computation can be achieved, in which the

elements used in the computation stabilize into a lower-energy state, and need to be

reset afterwards [23]. Alternatively, energy needs to be fed into the system in order

to sustain a computation [5], but as of today, such CA-based systems have not been

found in nature.

Minimization of the number of rules has resulted in computation-universal CAs

with only three rules [35], and recently even further improvements have been made

[48]. Nevertheless, it would be of great practical significance if rule-less CAs could

be designed. Such models have actually been considered in the history of computer

science. Called Microcellular Arrays, these models consist of an array of cells, each

of which can be configured as either a logic gate or as a wiring pattern, depending

on the contents of a memory of a few bits associated with the cell. Cells in

microcellular arrays are organized in a uniform structure with neighbors connected

to each other by fixed wires. Microcellular logic was first proposed by Minnick in

1964 (see also [44]) as a way to integrate many logic devices on a single wafer

without having to dice the wafer into separate integrated circuit components to be

assembled into packages. The approach was one of the first attempts to realize

reconfigurable logic, but it was largely unsuccessful because it was quickly

overtaken by the commercial successes of the early microprocessors. This was also

the era in which interconnect had a huge advantage over logic in terms of area,

speed, and energy consumption, so it was considered not very cost-effective to use

cells with logic in them just for the purpose of wiring. These assumptions are not

valid anymore in modern VLSI, where interconnect causes more delay in signals

than logic does, and it has started to compare unfavorable in terms of area and

energy consumption too. These problems may merit a reconsideration in favor of

the cellular approach.

Brain-Inspired Computing

Neurons come in many forms and functionalities and form a complex network that

gives the brain its remarkable abilities. It is, therefore, no surprise that research to

make hardware mimicking the brain has a long history (see for example [57] for a

review). Rather than giving a comprehensive overview, we discuss the principal

differences with conventional computers and the future potential of brain-inspired

computing in this section.

The number of neurons in the human brain (100 billion) is expected2 to be

surpassed by the number of transistors on a chip by 2026 [24], but even if this

extrapolation of Moore’s Law turns out to be correct, it does not necessarily mean

that a chip will have the same abilities as the brain. A neuron is much more complex

than a transistor, having an intricate dynamics that depends on many parameters [7],

including whether the neuron is inhibitory or excitatory, whether an action potential

is generated from the neuron’s soma or from its axon initial segment, what its

topological features are such as the location of the axon initial segment and the

2 According to Intel’s senior vice-president Mooly Eden in Intel’s CES 2014 keynote.

260 New Gener. Comput. (2017) 35:253–269

123

spatial structure of dendrites, and what the history is of the neuron’s firing. There is

a variety of operations that can be conducted by single neurons, including addition,

subtraction, multiplication, division, filtering (high-pass or low-pass), and toggle

switching [25].

Connections in the brain are very different from connections in computers.

Axons, which form an important part of the connections in the brain, have a

complex dynamics in themselves. Though they are traditionally thought of as the

transmission cables along which the impulses—called spikes—fired by neurons

propagate, they are increasingly recognized as having a functional and computa-

tional repertoire that is much richer [9]. Geometric properties of axons have been

shown to play an important role in synaptic efficacy and neuronal timing.

An important function of connections in the brain is the storage of knowledge.

The main mechanism for storage is through synapses, which form the interfaces

between axons and dendrites of neurons. The strength of a synapse determines the

degree to which signals pass through, and by adjusting synaptic strengths according

to conditions surrounding synapses, a neural network can learn new knowledge.

Whereas the huge number of connections in the human brain, estimated to be

between 1014 and 1015, would be considered a significant overhead in traditional

computers, in the brain they represent the main functionality.

The mechanisms via which learning takes place are intimately tied to the

representation of signals between neurons. While it has been known for an extended

time that most neurons use spikes as signals, it is still an open question how spikes

are exactly used to encode information [6]. An early model assumed a so-called rate

encoding, in which the average number of spikes fired by a neuron in a certain time

window defines an analog value that is considered the output of the neuron. Rate

encoding has long been used in artificial neural networks, and it is compatible with

Hebb’s learning rule, which states that ‘‘neurons that fire together wire together’’.

Hebb’s rule follows the principle that if a pre-synaptic neuron and a post-synaptic

neuron both fire at high rates, the synapse in between will be strengthened. While

Hebb did not clearly describe when a synaptic strength will be decreased, it is

commonly assumed that this will happen in all cases when neurons do not ‘‘fire

together’’. Many artificial neural networks use some form of Hebb’s rule to learn

new knowledge.

There are compelling reasons to discount rate encoding as the only mechanism

used to represent information in signals in the brain. Since a single spike takes

approximately 1 ms of time, and a neuron’s refractory period—during which it

cannot fire—takes at least the same time, there will be at most 50 spikes fired by a

neuron in the minimal time of 100 ms it takes for a human to react to a stimulus, but

this means that a statistically significant averaging over a time window allows no

more than a few time windows in this 100 ms interval. In other words the processing

in the brain required to bring about a reaction to a stimulus would consist of only a

few stages if rate encoding is employed, but this small number of stages is

considered too meager to conduct useful cognitive processing. This indicates that

spikes are used in another way in the brain, i.e., through their timings, though this

does not completely exclude rate encoding. Using the timing of spikes opens a

New Gener. Comput. (2017) 35:253–269 261

123

whole new spectrum of possibilities to encode signals, because spikes can be timed

over a continuous temporal dimension with resolutions well below the typical 1 ms

width of a spike. Evidence suggests that spike timing is used in the motor cortex

[53], the primary visual cortex [52], and mammalian olfactory systems [26].

If information can be coded through the timing of spikes, why would there be a

need for rate encoding? The answer to this is speculative, but a higher rate of firing

in a group of neurons may somehow be related to where attention of the mind goes.

A more systematic answer to this question is offered in [39], which shows, based on

data from various studies, that spikes appear to occur in temporal groups of a few

hundred milliseconds called packets, such that at the beginning of a packet,

encoding based on spike times is more important, but later in a packet rate encoding

is more prominent. In other words, though both encodings are likely to be used at

any time, their relative importance appears to change over the course of a packet. It

has been argued by Szymanski [59] that the timing of the spike arriving first at a set

of neurons may represent important information, because the first spike will more

likely be associated with the stimulus that is most significant to the organism

receiving it. This resembles the well-known winner-takes-all principle in compet-

itive learning, whereby the winner is the neuron firing the first spike.

Hebb’s rule as described earlier is no longer sufficient to describe learning when

spike timing is used. More relevant in this context is so-called Spike-Timing-

Dependent Plasticity (STDP) [42], according to which a synaptic strength is

adjusted based on the relative timing of the spikes output by a pre-synaptic neuron

and a post-synaptic neuron. Simply put, when a pre-synaptic spike occurs

immediately before a post-synaptic spike, the synapse will typically be strengthened

in a process called Long-Term Potentiation (LTP), but if the order of the spikes is

reversed, weakening of the synapse will ensue [Long-Term Depression (LTD)]. In

other words, when there is a causal relationship between the firings of the pre-

synaptic neuron and the post-synaptic neuron, LTP will take place, whereas an anti-

causal relationship results in LTD.

If timing of spikes is so important, how can it be manipulated? An obvious

mechanism is synaptic strength: since a spike from a pre-synaptic neuron will add

more to a post-synaptic neuron’s action potential if the corresponding synapse is

strong, the timing of spikes from the post-synaptic neuron will on average be earlier

in this case. This effect, however, does not give precise control over spike timing, so

there is speculation that there is another mechanism that can manipulate spike

timing more directly. Delays of spikes along axons have been reported to depend on

the characteristics of a sheath around axons that consists of myelin, which is an

electrically insulating white fatty substance [16] making up part of the brain’s white

matter. The myelin sheath is periodically interrupted by nodes of Ranvier, and these

serve as points between which electrical charges jump, thus propagate signals along

axons. The velocity by which this propagation takes place increases with the

thickness of the myelin sheath, up to a point that the myelin is so thick that it starts

to cover the nodes of Ranvier. Not only does myelin around axons influence the

delays of spikes, it has also been reported to change over the course of weeks when

experimental subjects undergo a training process [15, 19], leading to speculation

that learning processes affect not merely neurons and their synapses, but also white

262 New Gener. Comput. (2017) 35:253–269

123

matter. To date no satisfactory model has been formulated that can explain, or even

describe, these processes in sufficient detail.

It has been pointed out [27] that the use of spike timing in combination with

delays by which spikes propagate between neurons has the potential for a highly

complex dynamical behavior, in which groups of neurons fire together in intricate

patterns. Called polychronization, this model assumes different delays between

different pairs of pre- and post-synaptic neurons, and this allows a different post-

synaptic neuron to become potentiated to fire a spike, depending on the timing of the

spikes it receives from the pre-synaptic neurons. In other words, even if the same

pre-synaptic neurons fire, a different post-synaptic neuron could fire in response,

depending on the order and timing in which the spikes from the pre-synaptic

neurons are fired. The amount of information that can be represented by the huge

number of combinations in which polychronous groups can occur is overwhelming,

but this resource in our brain has hardly been exploited in artificial neural network

models.

In the early days of Turing and colleagues computing was assumed to be

organized according to a batch model in which input and a program is offered to a

computer, which then processes the input according to the program, and finally

produces output. This view of computing has traditionally pervaded the artificial

neural network community too: the hierarchical organization of the brain is

generally thought of as defining the structure in which processing take place, i.e.,

from the bottom up to the highest layer, stage by stage. There is evidence, however,

that supports a more dynamic view of the brain, in which autonomous processes

take place even if there are no input stimuli. In this framework, input merely serves

to modulate the autonomous activity taking place in the brain [11]. An artificial

neural network with similar behavior is the Liquid State Machine [40]. It consists of

a ‘‘reservoir’’ of neurons that are randomly connected to each other, as well as input

neurons that are randomly connected to the neurons in the reservoir, and output

neurons that are randomly connected to the neurons in the reservoir as well. The

reservoir has an internal dynamics of its own, but this dynamics is modulated by

signals from the input neurons. All connections have random fixed weights, except

the connections to the output neurons, which can be trained according to desired

input-output combinations. This training is relatively fast compared to multilayer

neural networks, but it tends to be difficult to control the dynamics in the reservoir.

Though there is a considerable gap between the liquid state machine and brains, the

model sheds some light on the dynamics that likely play a role in the brain.

Interestingly, computers have developed over the last decades to include humans in

the loop of information processing in many applications. For example in gaming

and networking a human typically interacts with a computer on a continuous basis,

whereby the computer runs an autonomous process modulated by input from a

human. It has been argued that results on computability in the traditional batch

processing paradigm may be less relevant to this new framework.

Whereas the architectures of early computers in the 1940s represented a serial

mode of processing, the artificial neural networks proposed in the same era initiated

a more parallel distributed approach. The history of neural networks is quite

tumultuous, with periods of frenzied excitement followed by ‘‘winters’’ in which

New Gener. Comput. (2017) 35:253–269 263

123

interest in the field and funding was minimal (see [32] for a well-written non-

technical overview). Artificial neural networks have long been perceived as

performing poorly in the machine learning community, but that started to change

when improved learning algorithms, some relabeled as Deep Learning because of

the many layers of neurons they use, were combined with fast GPGPU hardware and

big training sets. This combination allowed dramatic improvements in image

recognition, speech recognition, natural language understanding, and the analysis of

data on drug molecule activity, particle accelerator data, and gene expression and

disease [34]. Noticeable in the success of neural networks is that though they were

initially inspired by the workings of the brain, in the end it was Moore’s Law that

facilitated their performance improvements.

Learning in artificial neural networks is characterized by a gradual update of the

connection weights between neurons each time a sample of the training data is

presented. This mode is also called incremental learning, and it tends to use a trial-

and-error strategy and to require large numbers of training samples to adequately

train a network. The sensory systems of many organisms are constantly bombarded

by stimuli from a very early age, so it can be argued that they do not differ much in

this respect from their artificial counterparts. When it comes to higher functionality,

however, learning tends to proceed on a much faster scale. Humans, for example,

are able to learn new knowledge through exposure of merely one or a few training

samples. Called one-shot learning, this mode of learning takes advantage of

knowledge learned at an earlier stage, and humans are able to use this knowledge to

quickly learn new information [14], even if it differs substantially from knowledge

they already have. There is evidence that humans quickly switch to a mode of one-

shot learning from incremental learning if there is a weak causal relationship

between stimulus and outcome [37]. Such a weak causality indicates novelty of

information, and thus encourages the brain to employ knowledge about past

experiences in its learning of the new information. Artificial neural networks, on the

other hand, face difficulties in this task, because new information will interfere with

previously learned knowledge [30]. Though deep learning excels in finding intricate

structures in big data sets, it does less well than the brain when only small quantities

of training data are available. The need to quickly learn new information based on

only few data samples has recently led to proposals in which a memory is added to a

neural network such that no retraining is required; rather the augmented memory

retains old information while allowing quick encoding and retrieval of new

information [54]. Though such models carry names like Neural Turing Machine

[20] and Differentiable Neural Computer [21], suggesting that they are nothing

more than their non-neural counterparts attached to neural networks, they differ in

that they can be trained by gradient-based methods, just like most artificial neural

networks. These models, however, do not truly integrate and combine data, and it is

unclear how well they perform on data sets containing a wide variety of information

organized in categories that may partially overlap each other. Models based on

polychrony [58] may have better potential in this respect: in such models memories

are represented by overlapping groups of neurons that fire in time-locked patterns

defining polychronous groups. Though a neuron may be part of multiple groups, the

264 New Gener. Comput. (2017) 35:253–269

123

groups are relatively independent, which may facilitate the encoding of new

memories without disturbing old ones.

Key to these models is the use of spike timing. The GPGPU hardware typically

used for deep neural networks is not optimized to handle individual spikes, and

neither does it excel in terms of low power consumption. Computers designed for

running simulations of neural systems, on the other hand, generally have a

mechanism to handle spikes. IBM’s TrueNorth [43], the Neurogrid [4], and

SpiNNaker [17], for example, all employ an Address Event Representation (AER)

scheme [33], in which spikes between arbitrary neurons are provided with an

address to which they can be routed via a bus, as well as with other information, like

their firing time and the delay between the pre-synaptic and post-synaptic neurons.

These computers, however, adopt a Von Neumann architecture as their underlying

design, and can thus not be called genuinely neuromorphic. The future will likely

bring us architectures that can efficiently handle neural models in which spike

timing plays a central role, but these architectures will need to adopt a high degree

of localized configurability to accomodate the flexible structure of biological neural

systems. It has been argued [22] that alternative materials and devices that can

implement neuron-like functionalities in a natural way may also play an important

role in delivering efficient brain-inspired architectures.

And Natural Computing?

Cellular Automata and Brain-like computing are among the first examples of

computing systems that were inspired by nature [28], and it did not take long before

they were joined by a diversity of models like evolutionary algorithms, swarm-

based models, artificial immune systems, artificial life, and DNA computing. The

practitioners of these natural computing paradigms tend to share a belief that nature

hosts a myriad of information processing mechanisms. These mechanisms may

occur at many levels. An ignoble example of natural computing is the spaghetti

sorter of Dewdney [12], which consists of merely a handful of uncooked spaghetti

sticks of different lengths of which the longest can be selected in constant time by

placing all of them with one end down on a table. Though quite trivial, this model

actually resembles the timing mechanism in the neural systems mentioned in

‘‘Brain-Inspired Computing’’, whereby the dimension of time replaces the length of

a spaghetti stick, and the neuron that fires a spike first is declared winner [59].

Signals are represented in digital computers in a binary fashion by a high or low

voltage, and they are usually controlled by a central clock, but in many natural

computing paradigms this is no longer true. Brain-inspired architectures and

dynamical systems generally use analog values, whereas quantum computing [3]

and noise-based computing [31] use superpositions of binary values. Bio- and nano-

systems, on the other hand, tend to use signals that have a discrete character. This

may take the form of molecular cascades [23] that behave like a set of domino

stones triggering each others’ transitions into lower energy states. Signals may also

behave like discrete particles, like the tokens used in Petri nets. When signals

consist not of single particles, but 10’s or 100’s of them, like in bio-systems, in

New Gener. Comput. (2017) 35:253–269 265

123

which molecules are typically available in relatively low concentrations, we

encounter new challenges. Such meso-scale systems tend to fall in between the

paradigms employing voltage-encoded signals and token-based signals, and

whereas circuit theory is available for each of these, the computational framework

for meso-scale systems still has to be developed.

Timing of signals may also be radically different in natural computing systems.

While asynchronous architectures lack a clock, and thus effectively use an analog

value in the temporal dimension, neuromorphic computing tends to go even further

and uses spiking signals that are not only timed asynchronously, but also

synchronize the spikes among groups of neurons. Bio- and nano-systems are

typically governed by probabilistic interactions, and for this reason alone they are

best timed asynchronously, because it is difficult to guarantee that interactions take

place within the interval defined by a clock. Brownian circuits [36, 51] have been

developed with probabilistic interactions in mind, but they are mostly geared

towards signals consisting of single particles.

Implicitly assumed in this paper—and indeed in many discussions about a post-

Moore era—is that the ultimate goal is to squeeze as much performance in terms of

operations per second or per Watt out of devices, circuits, and architectures, and

though this assumption makes perfect sense for designing computing systems

inspired by nature, it is less so when the purpose is to employ materials from nature

to realize computation. This is especially true when such systems are intended for

use in a biological environment, like the human body. MFLOPS do not mean much

inside the body, and they are likely to be harmful because of the high energy

consumption and heat dissipation that usually accompany them. Engineered systems

operating in the body, like molecular robots, need to be bio-compatible, and in order

for them to be able to operate autonomously, they need to employ control

algorithms that effectively utilize the characteristics of their environment, while

requiring only very limited input of instructions and energy from the outside. Nature

offers fascinating opportunities to realize information processing systems that have

hardly been touched upon by computer science. The end of Moore’s Law will likely

be credited with highlighting these opportunities.

Acknowledgements This work was supported by JSPS KAKENHI Grant Number JP16H01719.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

1. Backus, J.: Can programming be liberated from the Von Neumann style?: A functional style and its

algebra of programs. Commun. ACM 21(8), 613–641 (1978)

2. Bandyopadhyay, A., Pati, R., Sahu, S., Peper, F., Fujita, D.: Massively parallel computing on an

organic molecular layer. Nat. Phys. 6(5), 369–375 (2010)

266 New Gener. Comput. (2017) 35:253–269

123

http://creativecommons.org/licenses/by/4.0/

3. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian

model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

4. Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.R., Bussat, J.M., Alvarez-

Icaza, R., Arthur, J.V., Merolla, P.A., Boahen, K.: Neurogrid: a mixed-analog-digital multichip

system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

5. Biafore, M.: Cellular automata for nanometer-scale computation. Phys. D Nonlinear Phenom. 70(4),

415–433 (1994)

6. Brette, R.: Philosophy of the spike: rate-based vs. spike-based theories of the brain. Front. Syst.

Neurosci. 9, 151 (2015)

7. Brunel, N., Hakim, V., Richardson, M.J.: Single neuron dynamics and computation. Curr. Opin.

Neurobiol. 25, 149–155 (2014)

8. Cross, T.: After Moore’s law: double, double, toil and trouble. The Economist, Technology Quar-

terly, vol. 1. http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law (2016).

Accessed 9 June 2017

9. Debanne, D., Campanac, E., Bialowas, A., Carlier, E., Alcaraz, G.: Axon physiology. Physiol. Rev.

91(2), 555–602 (2011)

10. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted

MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuits 9(5), 256–268 (1974)

11. Destexhe, A.: Intracellular and computational evidence for a dominant role of internal network

activity in cortical computations. Curr. Opin. Neurobiol. 21(5), 717–725 (2011)

12. Dewdney, A.K.: Computer recreations: on the spaghetti computer and other analog gadgets for

problem solving. Sci. Am. 250(6), 15–19 (1984)

13. Durbeck, L.J.K., Macias, N.J.: The cell matrix: an architecture for nanocomputing. Nanotechnology

12(3), 217 (2001)

14. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal.

Mach. Intell. 28(4), 594–611 (2006)

15. Fields, R.D.: Change in the brain’s white matter. Science 330(6005), 768–769 (2010)

16. Fields, R.D.: A new mechanism of nervous system plasticity: activity-dependent myelination. Nat.

Rev. Neurosci. 16(12), 756–767 (2015)

17. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The SpiNNaker project. Proc. IEEE 102(5),

652–665 (2014)

18. Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game

‘‘life’’. Sci. Am. 223(4), 120–123 (1970)

19. Gibson, E.M., Purger, D., Mount, C.W., Goldstein, A.K., Lin, G.L., Wood, L.S., Inema, I., Miller,

S.E., Bieri, G., Zuchero, J.B., et al.: Neuronal activity promotes oligodendrogenesis and adaptive

myelination in the mammalian brain. Science 344(6183), 1252304 (2014)

20. Graves, A., Wayne, G., Danihelka, I.: Neural Turing machines. arXiv preprint arXiv:1410.5401

(2014)

21. Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Col-

menarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou, J., et al.: Hybrid computing using a neural

network with dynamic external memory. Nature 538(7626), 471–476 (2016)

22. Grollier, J., Querlioz, D., Stiles, M.D.: Spintronic nanodevices for bioinspired computing. Proc. IEEE

104(10), 2024–2039 (2016)

23. Heinrich, A., Lutz, C., Gupta, J., Eigler, D.: Molecule cascades. Science 298, 1381–1387 (2002)

24. Henderson, R.: Intel claims that by 2026 processors will have as many transistors as there are neurons

in a brain. http://www.pocket-lint.com/news/126289-intel-claims-that-by-2026-processors-will-have-

as-many-transistors-as-there-are-neurons-in-a-brain (2014). Accessed 9 June 2017

25. Herz, A.V., Gollisch, T., Machens, C.K., Jaeger, D.: Modeling single-neuron dynamics and com-

putations: a balance of detail and abstraction. Science 314(5796), 80–85 (2006)

26. Hopfield, J.J.: Pattern recognition computation using action potential timing for stimulus represen-

tation. Nature 376(6535), 33 (1995)

27. Izhikevich, E.: Polychronization: computation with spikes. Neural Comput. 18(2), 245–282 (2006)

28. Kari, L., Rozenberg, G.: The many facets of natural computing. Commun. ACM 51(10), 72–83

(2008)

29. Keller, R.: Towards a theory of universal speed-independent modules. IEEE Trans. Comput. C-23(1),

21–33 (1974)

New Gener. Comput. (2017) 35:253–269 267

123

http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
http://arxiv.org/abs/1410.5401
http://www.pocket-lint.com/news/126289-intel-claims-that-by-2026-processors-will-have-as-many-transistors-as-there-are-neurons-in-a-brain
http://www.pocket-lint.com/news/126289-intel-claims-that-by-2026-processors-will-have-as-many-transistors-as-there-are-neurons-in-a-brain

30. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan,

J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting in neural net-

works. In: Proceedings of the National Academy of Sciences. p. 201611835 (2017)

31. Kish, L.B., Khatri, S., Sethuraman, S.: Noise-based logic hyperspace with the superposition of 2N

states in a single wire. Phys. Lett. A 373(22), 1928–1934 (2009)

32. Kurenkov, A.: A ‘brief’ history of neural nets and deep learning. http://www.andreykurenkov.com/

writing/a-brief-history-of-neural-nets-and-deep-learning (2015). Accessed 12 April 2017

33. Lazzaro, J., Wawrzynek, J., Mahowald, M., Sivilotti, M., Gillespie, D.: Silicon auditory processors as

computer peripherals. IEEE Trans. Neural Netw. 4(3), 523–528 (1993)

34. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

35. Lee, J., Peper, F.: On Brownian Cellular Automata. In: Proc. of Automata 2008, pp. 278–291.

Luniver Press, Bristol, UK (2008)

36. Lee, J., Peper, F., Cotofana, S., Naruse, M., Ohtsu, M., Kawazoe, T., Takahashi, Y., Shimokawa, T.,

Kish, L., Kubota, T.: Brownian circuits: designs. Int. J. Unconv. Comput. 12(5–6), 341–362 (2016)

37. Lee, S.W., O’Doherty, J.P., Shimojo, S.: Neural computations mediating one-shot learning in the

human brain. PLoS Biol 13(4), e1002137 (2015)

38. Loh, G.H., Jayasena, N., Oskin, M., Nutter, M., Roberts, D., Meswani, M., Zhang, D.P., Ignatowski,

M.: A processing in memory taxonomy and a case for studying fixed-function PIM. In: Workshop on

Near-Data Processing (WoNDP), Davis, California (2013)

39. Luczak, A., McNaughton, B.L., Harris, K.D.: Packet-based communication in the cortex. Nat. Rev.

Neurosci. 16, 745–755 (2015)

40. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new

framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560

(2002)

41. Mack, C.: The multiple lives of Moore’s law. IEEE Spectr 52(4), 31–31 (2015)

42. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence

of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)

43. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L.,

Imam, N., Guo, C., Nakamura, Y., et al.: A million spiking-neuron integrated circuit with a scalable

communication network and interface. Science 345(6197), 668–673 (2014)

44. Minnick, R.C.: A survey of microcellular research. J. ACM 14(2), 203–241 (1967)

45. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117

(1965)

46. Moore, G.E.: Progress in digital integrated electronics. In: Digest of the 1975. International Electron

Devices Meeting, pp. 11–13. Washington, DC (1975)

47. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

48. Peper, F.: Simplifying brownian cellular automata: two states and an average of two rules per cell. In:

2012 Third International Conference on Networking and Computing, pp. 367–370. Naha, Japan

(2012)

49. Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-tolerance in

nanocomputers: a cellular array approach. IEEE Trans. Nanotechnol. 3(1), 187–201 (2004)

50. Peper, F., Lee, J., Adachi, S., Mashiko, S.: Laying out circuits on asynchronous cellular arrays: a step

towards feasible nanocomputers? Nanotechnology 14(4), 469–485 (2003)

51. Peper, F., Lee, J., Carmona, J., Cortadella, J., Morita, K.: Brownian circuits: fundamentals. ACM J.

Emerg. Technol. Comput. Syst. 9(1), 3-1–3-24 (2013)

52. Reich, D., Mechler, F., Victor, J.: Temporal coding of contrast in primary visual cortex: when, what,

and why. J. Neurophysiol. 85(3), 1039–1050 (2001)

53. Riehle, A., Grn, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differ-

entially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)

54. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: One-shot learning with memory-

augmented neural networks. arXiv preprint arXiv:1605.06065 (2016)

55. Semiconductor Industry Association and others: International technology roadmap of semiconductors

(ITRS), chapter on emerging research devices (ERD) (2011), International Roadmap Committee

56. Shah, A.: Intel Will Change Its Approach to PC Chip Upgrades, Deemphasize Process Sizes. PC

World, San Francisco, California (2017)

57. Smith, L.S.: Neuromorphic systems: past, present and future. In: Brain Inspired Cognitive Systems

2008, Advances in Experimental Medicine and Biology, vol. 657. Springer, New York (2010)

268 New Gener. Comput. (2017) 35:253–269

123

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning
http://arxiv.org/abs/1605.06065

58. Szatmáry, B., Izhikevich, E.M.: Spike-timing theory of working memory. PLoS Comput. Biol. 6(8),

e1000879 (2010)

59. Szymanski, B.K., Chen, G.G.: Computing with time: from neural networks to sensor networks.

Comput. J. 51(4), 511–522 (2008)

Ferdinand Peper, Ph.D received his Ph.D. in Computer Science from the Delft University of

Technology in 1989. In 1990, he joined the National Institute of Information and Communications

Technology (NICT) in Japan (then named Communications Research Laboratory) as a researcher and has

been at NICT since then, currently as an Associate Director of the Neural Information Engineering

Laboratory. His research interests include artificial neural networks, cellular automata, nanocomputer

architectures, asynchronous systems, distributed computing, noise and fluctuations, and sensor networks.

New Gener. Comput. (2017) 35:253–269 269

123

	The End of Moore’s Law: Opportunities for Natural Computing?
	Abstract
	Introduction
	A Brief History of Moore’s Law
	Merging of Logic and Memory
	Brain-Inspired Computing
	And Natural Computing?
	Acknowledgements
	References

