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Abstract

The lower limit on the age of the universe derived from globular cluster dating tech-
niques, which previously strongly motivated a non-zero cosmological constant, has now
been dramatically reduced, allowing consistency for a flat matter dominated universe
with a Hubble Constant, H0 ≤ 66kms−1Mpc−1. The case for an open universe versus
a flat universe with non-zero cosmological constant is reanalyzed in this context, incor-
porating not only the new age data, but also updates on baryon abundance constraints,
and large scale structure arguments. For the first time, the allowed parameter space
for the density of non-relativistic matter appears larger for an open universe than for
a flat universe with cosmological constant, while a flat universe with zero cosmological
constant remains strongly disfavored. Several other preliminary observations suggest
a non-zero cosmological constant, but a definitive determination awaits refined mea-
surements of q0, and small scale anisotropies of the Cosmic Microwave background. I
argue that fundamental theoretical arguments favor a non-zero cosmological constant
over an open universe. However, if either case is confirmed, the challenges posed for
fundamental particle physics will be great.



The cosmological model perhaps most strongly favored by the data over the past few

years has involved a proposal which is heretical from an elementary particle physics per-

spective. In order to reconcile a flat universe—favored by both inflationary models and by

the longstanding flatness problem in cosmology—with the apparent age of globular clusters,

and the fact that many estimates for the clustered mass density on large scales suggest that

insufficient non-relativistic matter exists to achieve a flat universe, the idea that the cosmo-

logical constant is non-zero has been invoked[1]. Most recently the inclusion of additional

arguments associated with the baryon density of the Universe and large scale structure have

further strengthened the case for a cosmological constant [2, 3].

The problem with this from a fundamental perspective is that a cosmological constant—

-associated in modern parlance with a non-zero vacuum energy density in the universe—on

a scale which would be cosmologically relevant and yet still allowed today would take a value

which is roughly 125 orders of magnitude smaller than the naive value one might expect based

on considerations of quantum mechanics and gravity (see for example [4]). This apparent

discrepancy would involve the most extreme fine tuning problem known in physics, and for

this reason many particle physicists would prefer any mechanism which would drive the

cosmological constant to be exactly zero today.

The possibility that cosmology might force physicists to have to directly confront this

longstanding issue in fundamental physics is exciting, but at the same time its potential

significance warrants a careful and continued examination of the data which motivates the

confrontation. In this regard, the recent reanalysis of globular cluster age estimates based in

part on new parallax measurements obtained from the Hipparcos satellite is very significant.

Globular Cluster ages are obtained by fitting the observed color-magnitude diagram to

the predicted distribution for a system of stars of different masses which all form at the same

time and which are then evolved on a computer to a certain age. A number of different fitting

techniques are employed, with different uncertainties. Because theoretical models predict the

instrinsic stellar luminosity, while measurements yield an apparent magnitude, in order to

compare theory and prediction, the distance to the globular cluster must be known. Using

an extensive Monte Carlo analysis approach begun several years ago[5] it was demonstrated
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that it is precisely this distance determination which leads to the dominant uncertainty

in the inferred age of the oldest globular clusters. Based on the distance estimators then

available, a 95% lower limit of 12.1 Gyr was determined for the mean age of 17 of the

oldest globular clusters. By comparison, the age of a flat-matter dominated universe with

Hubble constant H0 = 100h km s−1 Mpc−1, is 6.51[80/h] Gyr, The difference between the

lower and upper limits quantified the extent of the cosmic “age problem”. This analysis

was based on normalizing the color-magnitude diagram by utilizing the inferred instrinsic

magnitude of RR-Lyrae stars at a mean metallicity of [Fe/H] = −1.9 to fix the magnitude

of the horizontal branch for the globular clusters under study. By comparing the difference

between this magnitude, and the magnitude of the observed main-sequence turnoff point for

these clusters to the predicted magnitude difference based on stellar evolution modelling,

one infers the age of the clusters. Other analyses obtained similar limits (i.e. see [6]).

Recently, following Hipparcos parallax measurements both for Cepheid variable stars and

for various subdwarf main sequence stars (i.e. [7, 8]), we have been prompted to reanalyze

the various results on the distance scale to globular clusters, and the resulting age estimates

[9]. The changes have been dramatic. A systematic shift in the estimated distances to

globular clusters has made it clear that the earlier apparent convergence of such estimates

was fortuitous, and the distance data was, and still remains, dominated by systematic errors.

Our new best fit age is slightly lower than our previous 95% lower limit, and the lower limit

we obtained (by accounting for the now-apparent systematic uncertainties in the RR Lyrae

distance estimators) is 9.6 Gyr. Even allowing for minimum time of 0.2 Gyr after the BIg

Bang for the galaxy to form, this new lower limit is consistent with a flat matter dominated

universe Hubble age if H0 ≤ 66.

While this might suggest that the need to consider a cosmological constant has now

vanished, it is important to remember that the age problem was just one, albeit an important

one, of several cosmological arguments which together pointed in this direction. Thus one

must combine this new age estimate with the other constraints, which themselves have

evolved, in order to reanalyze this issue. Following [2], I display in Figure 1a, for a flat

Universe with cosmological constant Λ, the parameter space of h, vs Ω0 = ρmatter/ρcrit
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(where ρ is density and ρcrit is the critical density for a flat universe, so that ΩΛ = 1− Ω0),

showing the allowed region given new age constraint, 15 ≥ τ ≥ 9.8 Gyr, along with the

other new constraints I shall describe momentarily. For reasons which will also become clear

shortly, I present in Figure 1b, the allowed range in the same parameter space for an open

universe.

The quoted upper limit of 15 Gyr is obtained by taking the 95% upper limit of ≈ 14 Gyr

obtained from the analysis in [9] and adding 1 Gyr as an upper limit to the estimated time

after the big bang before star formation began in what would become the halo of our galaxy.

Based on recent observations of primeval galaxies at redshifts in excess of 3, this seems a

reasonable upper limit on the time before structures began to form.

The other constraints displayed in figure 1 come from a consideration of the two other

independent fundamental sets of cosmological observables, the baryon content of the universe,

and large scale structure. I shall describe each in turn below. First, however, it is worth

pointing out that current estimates of the Hubble Constant have themselves evolved. Two

years ago, there was apparent incompatibility between HST measurements based on Cepheid

distances to Virgo, and those based on Supernova Type 1a distance measurements. These

two distance measures have been converging (i.e. [10]), so that now a range for H0 of

≈ 65 ± 13 brackets both measurements. The horizontal dashed lines in the figures display

this presently preferred suggested range for H0.

For over 20 years a robust upper limit on the baryon density of the universe has come from

considerations of Big Bang Nucleosynthesis (BBN). The predicted primordial abundance of

the light elements up to 4He, all of which are known to be produced primarily during BBN

and not in stars, is a function in each case of the baryon to photon ratio in the universe.

Hence a detailed comparison of all the inferred primordial light element abundances with

predicted abundances yields a restricted allowed range of baryon densities. That is, of course

if there is concordance.

During the past two years there has been a great deal of heat, and some light, shed in

this area. First, starting about two years ago, BBN predictions [11] began to tighten the

allowed range of ΩB. It began to become clear that unless systematic uncertainties in 4He
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were allowed for the upper limit on ΩB coming from 4He alone was becoming dangerously

close to the lower limit.

The most robust upper limit on ΩB, however has for over 20 years come from observa-

tions of deuterium. Deuterium is only destroyed in stellar processing, so any observation

of the interstellar or solar system abundance would put a lower bound on the actual pri-

mordial abundance of deuterium. Since the predicted deuterium BBN remnant abundance

is a monotonically falling function of ΩB, a lower bound on deuterium translates into an

upper bound on ΩB. The observed instellar value of D/H ≥ (1.6± 0.2)× 10−5 puts a limit

ΩBh
2 ≤ .027.

This situation took on a new dimension two years ago with the first claimed observation

of deuterium absorption lines in primordial hydrogen clouds illuminated by distant quasars

[12]. This method in principle allows a direct determination of the primordial deuterium

abundance, and hence a direct measure of ΩB. The only problem is that shortly after the

original measurement, which gave an anomalously high value for the primordial deuterium

abundance, other observations gave a value almost one order of magnitude lower. This value,

D/H = (2.4±0.3±0.3)×10−5 [13, 14], is almost equal to the lower limit quoted above, and

suggests not only that ΩB is near its upper limit, but also that there has been little chemical

evolution of 2H. Moreover, it reinforces the requirement that their be systematic errors in

the 4He abundance estimates if there is to be concordance in BBN. [15, 16, 17].

Most recently, the original high deuterium observation has been withdrawn. However,

at the present time, until more observations are made, it seems premature to require that

ΩB is near its upper limit. We have seen over and over again that systematic errors are the

dominant contribution to our uncertainty in cosmological quantities, and thus large shifts

within the allowed range are as likely as small shifts. Moreover, concordence between the

deuterium estimates and the 4He estimates requires some significant systematic error in one

of these values. Nevertheless, it is reassuring that even with the new data, a robust estimate

of allowed range of 0.01 ≤ ΩBh
2 ≤ 0.0265 [15] from BBN, allowing for maximal systematic

uncertainties in all abundance estimates remains compatible with the data. This range is

slightly larger than another independent estimate [16] but is more easily compatible with
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the new deuterium abundance observations.

Even this relatively large upper bound on ΩBh
2 is clearly incompatible with a flat baryon

dominated for any reasonable Hubble Constant. What is more surprising, however, is that it

seems incompatible with a flat universe at all unless the Hubble constant is extremely small,

or there remains a large unclustered component of the energy density of the universe. This

result arises from considerations of X-Ray measurements of hot gas in rich galaxy clusters. If

the gas in these systems is in hydrostatic equilibrium, and the overall gravitational potential

is relativity smooth, one can invert an X-Ray temperature/luminosity profile to get both the

mass in hot gas, which is by far the largest baryonic component to the mass of the cluster,

and also the total mass of the cluster. Thus, one gets a direct estimate for fB = ΩB/Ω0,

where Ω0 represents the fraction of the closure density which is in the form of clustered

mass in the universe. If one assumes, for example, that Ω = 1, and non-relativistic matter

dominates, then Ω0 = Ω = 1.

In 1993, White et al [18] argued that the estimate of fB obtained from the Coma cluster

was sufficiently large so that it would be incompatible with the BBN upper limit for a flat

matter dominated universe unless the Hubble constant were extremely small. Since that time

a number of analyses of a broader class of clusters confirms the large fB estimates [19, 20],

and these were utilized in previous work to put constraints in Ω0 and h space [2, 3]. Recently,

a comprehensive theoretical analysis of cluster modeling has been completed [21] to explore

the robustness of the X-Ray interpretations. There is remarkable consistency between the

numerical profiles and the data for a value of fB = 0.060± .003)h−3/2. A comparison of this

value with the BBN constraint would put very severe limits on Ω0. However, if one desires

a more conservative upper limit on Ω0 one should consider the lowest possible value of fB

which would be consistent with the data. This value assumes all baryons are in the form of

hot gas in the cluster and is given by 0.043h−3/2 [21]. Similarly, taking the largest value of

fB consistent with all the data, and allowing for a baryon fraction as large as .013 from stars

and dark baryonic halo objects yields an approximate upper limit 0.078h−3/2 for the range

of h values of interest here.

Combining these limits with the BBN bounds yields a conservative constraint 0.12 ≤
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Ω0h
1/2 ≤ 0.60. This is displayed in Fig 1 for both an open and flat universe with cosmological

constant.

Finally, the last set of constraints comes from considerations of large scale structure.

This is another area where progress has been made recently, in particular as a result of

measurements of CMB anisotropies. For some time, various independent observations have

suggested that while the clustered mass in the universe exceeds the upper limit on the

baryon density coming from BBN, it nevertheless falls short of the closure density. Recent

observations confirm this trend. Nevertheless, virial estimates suggest that Ω0 ≥ 0.3, and I

adopt this conservative lower bound here, as displayed in Fig 1.

I shall utilize two additional large scale structure constraints in this analysis. First, ob-

servations of galaxy correlations supply a constraint on the shape of the power spectrum

of density fluctuations on large scales. This is an extremely powerful constraint because it

is related to the primordial power spectrum primarily by considerations of causality, and

the density of clustered matter in the universe. While the result is somewhat model de-

pendent, assuming a Cold Dark Matter dominated universe and assuming a roughly scale

invariant initial spectrum of density perturbations, as predicted by inflation and as al-

lowed by COBE constraints on the CMB, Peacock and Dodds [22] obtained the constraint

Γ = Ω0hexp(−ΩB − ΩB/Ω0) = 0.255+.038
−.033, which has been used in previous analyses. More

recently both these authors [23, 24] have noted that non-linear effects might alter their re-

sults on short scales. Removing the shortest scale points and refitting one obtains [25, 26]

Γ = 0.230+.042
−.034 + 0.28(1/n − 1) at the 95 per cent confidence level. Here n is the spectral

index of the primordial density perturbations, which CMB observations suggest is between

≈ 0.9− 1.1. We display this constraint in both Figure 1a and 1b, as it is insensitive to the

presence or absence of a cosmological constant.

Finally, recently a number of authors [27, 28, 29] have examined the abundance of galaxy

clusters, which constrains the magnitude of density fluctuations on intermediate scales. By

comparing to the COBE normalized value on large scales [30], one can put a constraint on

Ω0 vs h which is complementary to the shape constraint described above, although it turns

out to be provide limits which are quite similar. Because the growth of fluctuations between
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COBE scales and galaxy cluster scales is dependent on the geometry of the universe, this

constraint is slightly different for open vs flat cosmological constant dominated cosmologies.

We plot these constraints [25, 26] in Figures 1a and 1b.

The interplay between all of these new constraints in the Ω0 vs h parameter space is quite

significant. Most important, by shifting the allowed region in h upward, the new age limit

combines with the other constraints so that now a larger region of parameter space is allowed

for an open universe than for a flat universe with cosmological constant. In particular, it

is now clear that smaller values of a Hubble constant yield a universe which is now too old

in a cosmological constant dominated universe. The significance of the shift in age estimate

which has taken place can be seen in both figures, where a solid curve displays what used to

the upper limit on the allowed phase space coming from the earlier age constraint. For an

open universe, this old limit was extremely constraining. In this regard, the recent decrease

in estimates for the Hubble constant coming from HST measurements is also relevant.

It is also clear that while globular cluster age estimates have relaxed the constraint on the

overall matter density of the universe, the other updated cosmological constraints coming

from large scale structure and baryon counting have solidified in a region in which a flat,

matter dominated universe is marginally viable only for an extremely small Hubble Constant.

The debate thus appears to remain between an open universe and flat universe with

cosmological constant. On the basis of shear size of allowed parameter space, for the first

time an open universe is more strongly favored. There are, however, additional theoretical

and observational data which bear on this conclusion. First, several preliminary observations

have been made which are claimed to directly constrain Ω0 and Λ which on balance may

swing slightly in favor of a non-zero cosmological constant. Cluster evolution, in number

density [31], and luminosity density[32], has recently been used to place constraints on both

Ω0, and Λ. The former, also displayed in figures 1a and 1b, yields a bound on Ω0 which

is inconsistent with a flat universe, but reasonably independent of the presence or absence

of a cosmological constant. The latter however, is claimed to strongly favor a non-zero

cosmological constant. In fact, a lower bound on ΩΛ of 0.37 at the 99% confidence level

is claimed. This result is displayed in figure 1a, but it should be taken as preliminary.
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To counterbalance it, recent observations of the luminosity-redshift relation for type 1a

supernovae [33] place a preliminary upper limit on the value of ΩΛ of 0.49. While this result

involves the first application of a new technique, the recent measurements of more high

redshift supernovae should, within the next few years, provide the strongest constraints on

a cosmological constant in the universe today.

Eventual measurements of cosmic microwave anisotropies on small angular scales will

allow a direct measurement of the cosmological constant, in addition to other fundamental

cosmological parameters, at the 10-20 % level (i.e. [34]). A distinction can be made between

the effects of a cosmological constant, and a non zero curvature. For a flat universe, increasing

λ, which implies decreasing the ratio Ω0/ΩB, causes the magnitude of the first Doppler peak

to increase, while its position is relatively unaffected. An open universe, on the other hand,

changes the position of the first doppler peak, because introducing a non-zero curvature alters

the redshift-angular scale relation of the universe. In this regard, present measurements of

CMB anisotropies suggest a large doppler peak in the location expected for a flat universe.

Thus, while extremely preliminary, CMB measurements on small angular scales may favor

of a cosmological constant over an open universe [35].

At present, it is clearly too early to choose one cosmological model over the other. It is

clearly getting increasingly difficult to find accord with a flat universe without a cosmological

constant. The question then becomes: Which fundamental fine tuning problem is one more

willing to worry about: the flatness problem, or the cosmological constant problem? The

latter involves a fine tuning of almost 125 orders of magnitude, if the cosmological constant is

non-zero and comparable to the density of clustered matter today, while the former involves

a fine tuning of perhaps only 60 orders of magnitude if one arbitarily fixes the energy density

of the universe at the planck time to be slightly less than the closure density. Numerological

arguments might thus suggest that one should be more prepared to give up flatness than a

zero cosmological constant. I claim however, that this argument is incomplete.

We have a perfectly good theory, involving physics well below the planck scale, for why

we might live in a flat universe. As long as there was an inflationary regime in the early

universe, the universe generically is driven to be approximately flat to many more decimal
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places than are required to resolve the flatness problem. Moreover, when considering possible

particle physics models of the early universe, inflation seems to be ubiquitous. The difficulty

seems to be not how to get enough inflation, but rather how to end it. On the other hand,

we have absolutely no theory of the cosmological constant at all. Other than vague a priori

prejudice, there is no well defined physical argument at the present time suggesting a zero,

rather than arbitrarily small value of this quantity. Moreover, the energy scale associated

with a non-zero cosmological constant which dominates the universe today is not unusual.

It corresponds to the characteristic mass scale which is discussed for neutrino masses which

might solve the solar neutrino problem. Also interesting, recent arguments suggest that if

the laws of physics predict a distribution of universes, with randomly chosen values for the

cosmological constant, then quantitative anthropic arguments make it not implausible that

it should be observed to be comparable to the matter density in the universe today [36].

Whatever one’s views toward anthropic arguments, it is not clear that the same reasoning

could be applied to the flatness problem. Precisely because we have physical laws which

suggest the universe should be flat, I would argue the a priori probability distribution for

the curvature parameter one might reasonably consider should be strongly peaked about

zero, in which case anthropic arguments along the lines applied to the cosmological constant

might not be as suggestive, to the extent such arguments are suggestive.

In conclusion, we should know within a decade whether the cosmological constant is non-

zero, and whether we live in a flat universe. The recent resolution of the age problem has

dramatically altered the case for a cosmological constant vs an open universe. A combina-

tion of cosmological observations now allows a larger parameter space for an open universe

than a flat universe with cosmological constant. While one might argue that theoretical

prejudice still favors the latter, if either of these cases represents reality, the implications for

fundamental particle physics will be profound.
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Figure 1: Shaded regions represent constraints on h vs. Ω0 for a flat universe with cosmolog-
ical constant arising from (a) globular cluster age limit, (b) baryon content of the universe,
(c)shape of galaxy power spectrum, (d) lower limit on clustered mass from virial estimates,
(e) abundance of galaxy clusters extrapolating from COBE normalization, assuming dark
matter is cold. Shown in dark shading is the locus of points in phase space satisfying all
limits. Horizontal dashed lines present the upper and lower limits of the present preferred
range of the Hubble constant quoted in the text. The dashed vertical lines represent various
preliminary limits on Ω0 for a flat universe with cosmological constant. The right-most limit
represents the claimed 99% lower limit on ΩΛ = 0.34 arising from considerations of the evo-
lution of the cluster luminosity function. The next largest limit represents an upper limit
on Ω0 from considerations of the evolution of the galaxy cluster number density. The left
most limit arises from a claimed upper limit on ΩΛ coming from a measurement of q0 using
Type 1a supernovae. Finally, the solid curved line represents the previous upper limit on h
vs Ω0 using the claimed lower limit on the age of the Universe of 12.1 Gyr which has now
been revised downward.
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Figure 2: Same as figure 1a, but in this case for an Open Universe. The vertical dashed line
represents the claimed upper limit on Ω0 arising from considerations of the evolution of the
galaxy cluster number density.
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