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One common way of constructing hard real-time
systems is to use a number of periodic and
sporadic tasks assigned static priorities and
dispatched at run-time according to the pre-
emptive priority scheduling algorithm. Most
analysis for such systems attempts to find the
worst-case response time for each task by
assuming that the worst-case scheduling point is
when all tasks in the system are released
simultaneously. Often, however, a given set of
hard real-time tasks will have offset constraints: a
number of tasks sharing the same periodic
behaviour will be constrained to execute at fixed
offsets in time relative to each other. In this
situation the assumption of a simultaneous release
of all tasks can lead to pessimistic scheduling
results. In this paper we derive good response time
bounds for tasks with offset information, giving an
optimal priority ordering algorithm.

The following section describes the assumed
computational model. Section 3 provides a practical
motivation for the use of offsets in hard real-time system
design. Section 4 describes an efficient optimal priority
assignment algorithm for tasks with offsets. Section 5
gives analysis to bound worst-case response times for such
tasks. Section 6 shows how the analysis enables
scheduling of task sets with precedence and exclusion
constraints, previously deemed schedulable using only
static cyclic scheduling technology. Concluding remarks
are offered in Section 7.

2. Computational Model

A fixed number of transactions are assigned to a
processor2. Each transaction is composed of a fixed
number of tasks. Each task in a transaction requires a
bounded amount of computation time for each invocation.
A transaction may arrive periodically or sporadically, but
with a minimum time between subsequent arrivals3 —
this minimum time is denoted the period. For each
transaction arrival, each task is released (i.e. placed in a
notional priority-ordered run queue) at a fixed offset in
time, measured relative to the arrival time of the
transaction; we assume that this offset is less than the
period of the transaction. Necessarily all tasks in a given
transaction must share the same period. Each task is
assigned a unique static priority; tasks are dispatched pre-
emptively based on this priority. For the moment we
assume that tasks cannot lock semaphores and hence
cannot be blocked (we will lift this restriction later).
Tasks are permitted to have response times greater than
their periods (and hence have arbitrary deadlines [6]).
Furthermore, tasks are assumed to have a release jitter —
this occurs when the arrival time (i.e. time when a task
wishes to run) and the release time (i.e. the time when the
task is placed in the priority-ordered run-queue) are not

1. Introduction

Classic static priority sufficient and necessary
schedulability is determined assuming a ‘critical instant’:
all tasks share a simultaneous release time [1]. Under this
condition, rate monotonic priority assignment (for tasks
whose deadlines equal their periods) and deadline
monotonic priority assignment (where task deadlines may
be less than their periods) are known to be optimal1 [2].
However, when tasks are permitted to have offset
relationships, a critical instant may never occur. This has
two consequences: firstly, neither rate monotonic nor
deadline monotonic priority assignments are optimal;
secondly, although existing schedulability tests could be
used, they are pessimistic.
Previously, this has led to systems that could be scheduled
using static cyclic scheduling technology [3] but that were
deemed unschedulable when using fixed priority
scheduling.

                                                       
2Transactions can span processors, but time must be allowed for any message delay
between transaction members on different processors; any distributed transaction can
be transformed into a single transaction per processor that the transaction spans, and
analysis can proceed on the basis of a single processor model

                                                       3A periodic task can be regarded as a special case of a sporadic task — one that is
merely released at regular intervals by a timing event; the analysis throughout this
paper does not distinguish between sporadic and periodic transactions

1optimal in the sense that if the algorithm is unable to find a priority ordering where all
tasks are schedulable then no priority ordering exists where all tasks are schedulable



the same [7] (for example, a task may be delayed by the
polling of a tick scheduler, or perhaps awaiting the arrival
of a message).

(assuming the communications sub-system can provide
such guarantees [4], [5]). Task 2 is released after the
worst-case message arrival time. Note that task 2 is not
synchronised with the arrival of the message — task 2 has
a fixed release time relative to the release of task 1; if the
message arrives early task 2 is not released early (for this
approach to work the clocks on each processor must be
synchronised by an appropriate mechanism [9]).

Note that we can determine if a transaction deadline
(measured relative to the release and termination of
different tasks within the transaction) is met by summing
task offsets and response times appropriately.

Consider figure 1: tasks 1 and 2 share the same period.
They also have an offset relationship: task 2 is released a
fixed interval after the release of task 1. Current analysis
would assume that the worst-case scheduling point would
occur when tasks 1 and 2 are released together. Clearly
these tasks can never be released together, and analysis
that took account of this would be less pessimistic than
current analysis.

Another major use for offsets is to permit tight jitter
bounds on an input or output action. As described by
Locke [10], jitter can occur when the computation in a
periodic task is completed at irregular times (although
still at a bounded rate). Task 2 in the above example can
be assigned a high priority to give a shorter worst-case
response time. This will reduce the variability within each
period that any output from task 2 is made. If task 2 has a
large computation time (i.e. the smallest worst-case
response time, equal to the worst-case computation time,
is large, and hence the smallest worst-case jitter is also
large) then the task could be further split into a
computation phase task and an output phase task, with the
output phase task requiring little computation time and
assigned a high priority.time
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Figure 1: the shaded boxes represent computation time

3. Motivation for Offsets
Offsets can be used to avoid the need for a dynamic
concurrency control protocol controlling access to a
mutual resource (such as the priority ceiling protocol).
For example, two tasks sharing a resource can be released
at fixed offsets relative to each other such that neither task
executes concurrently, removing the need to guard the
resource.

A precedence constrained set of tasks allocated across a
number of processors can be modelled by assigning offsets
to later tasks such that earlier tasks on other processors
are guaranteed to have finished before the later task starts.
Furthermore, a later task can be given an offset which can
also allow a bounded time for a message to be sent from
an earlier task to a later task on a different processor
(Figure 2).

Offsets can also be used to express complex timing
patterns between tasks. For example, consider a sporadic
transaction controlling a disk drive (or indeed, any other
non-trivial device) in real-time; the transaction is initiated
by the arrival of a “get disk block” message. The disk
drive is controlled by requesting a disk block, waiting for
the block to be retrieved, and then fetching the data from
a buffer. The drive is guaranteed to take no more than
12ms to read the block. The controlling software can be
implemented with a two-task sporadic transaction: the
first task (task a) sends the request to the disk drive. The
second task (task b) has an offset of at least 12ms from
the end of task a; knowing the worst-case response time
of task a, an absolute offset can be found. Task b reads the
data from the buffer and replies to the transaction
initiator. In this manner complex timing patterns can be
expressed. Note, however, that the above example
requires configuration decisions to be made: the priorities
and offsets of tasks a and b must be chosen such that the
response time of the transaction (denoted the ‘end-to-end’
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Figure 2: task 2 runs when message is guaranteed to
have arrived

Task 1 could queue a message at the very last moment
before terminating. The message then takes a bounded
amount of time to travel from processor A to processor B
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response time, measured from the start of the transaction
to the worst-case finish time of task b) is less than some
deadline4, i.e. Ob + rb ≤ D (where D is some deadline)
However, the choice of offsets and priorities is further
constrained by requiring that Ob - Oa + ra ≥ 12. These
choices will almost certainly not be independent of other
configuration choices elsewhere in the system; we
anticipate a system-wide configuration approach being
used to choose offsets, priorities, etc. [10].

ordered := N
repeat
   finished := false
   failed := true
   j := 1
   repeat
       insert j at priority ordered
       if j is schedulable then
           ordered := ordered - 1
           failed := false

4. Optimal Priority Ordering            finished := true
       else
           insert j back at old priorityNeither the deadline monotonic nor rate monotonic

priority ordering policies are optimal for tasks with
arbitrary deadlines nor for tasks with offset relationships.
We now describe the optimal ‘bottom up’ priority
ordering algorithm, that is guaranteed to find a feasible
priority ordering if one exists. We reproduce here the
optimal priority ordering algorithm of Audsley (the
derivation and proof of the algorithm is given by Audsley
[11]).

       end if
       j := j + 1
   until finished or j = ordered
until Ordered = 1 or failed

At all times the sorted partition is schedulable, since the
priority ordering within the unsorted parition cannot
affect the sorted tasks. The sorted partition increases in
size until either all the tasks are schedulable, or none of
the top n tasks are schedulable at priority n. The analysis
has the property that decreasing the priority of a task
cannot lead to a decrease in worst-case response time (i.e.
a decrease in priority cannot increase schedulability).
Therefore, in the case where none of the top n tasks is
schedulable at priority n no priority ordering can exist
where all tasks are schedulable. Therefore the algorithm
must be considered optimal. Furthermore, this algorithm
holds for any scheduling test where worst-case response
time is monotonic with decreasing priority (i.e. where
decreasing the priority of a task does not lead to a
decrease in the worst-case response time of that task).

The algorithm works as follows: a priority ordering is
partition into two parts: a sorted part, consisting of the
lower n priority tasks, and the remaining unsorted higher
priority tasks. Initially the priority ordering is an arbitrary
one, and all tasks are unsorted. All tasks in the unsorted
partition are chosen in turn and placed at the top of the
sorted partition and tested for schedulability. If the chosen
task is schedulable then the priority of the task is left as it
is, and the sorted partition extended by one position. If the
task is not schedulable it is returned to its former priority.
This continues until either all tasks in the unsorted
paritition have been checked and found to be
unschedulable (in which case there is no priority ordering
resulting in a schedulable system), or else the sorted
partition is extended to the whole priority map (in which
case the priority ordering is a feasible one).

The algorithm has complexity O((n2 + n) E). This reflects
that at most (n2 + n) / 2 different priority orderings are
examined (from a maximum of n!). E represents the
complexity of the schedulability test.

5. The Offset Test
An arbitrary priority ordering is chosen in an array, with
0 being the highest priority, and N – 1 the lowest (N
denotes the number of tasks in the system; the algorithm
assumes N > 1). The following pseduo-code details the
algorithm:

The analysis given in this section calculates the worst-
case response time of a given task i, assumed by the
algorithm given above. The following equations give the
test:

r w J Si
significant S

i S i= + −
∀

max ,c h

ri is the worst-case response time of a task i (measured
from the arrival of the task to the completion of all the
computation of the task). Ji is the worst-case release jitter

                                                       
4There may be no immediate deadline that can be sensibly chosen, in which case the
term ra + 12 + rb merely forms part of some larger ‘end to end’ response time; this
larger response time will be eventually compared to a deadline
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(i.e. the worst-case time between a task arrival time and
release time). The ‘significant S’ term is defined as:

The evaluation of ri for increasing values of q continues
until wi,S + Ji – S ≤ Ti for all values of j at a particular
value of q.

S j tasks trans i hp i q k

T O J O J

j

j j j i i

∈ ∀ ∈ ∩ +

• − − + +

{ ( ( )) ( )

}

d i
6. Static Priority vs Static Cyclic
Scheduling

where q is 0, 1, 2, 3, ...; trans(i) is defined as the
transaction of which i is a member, tasks(t) is the set of
all tasks that are members of transaction t, hp(i) is the set
of all tasks of higher priority than i, and kj is defined by:

So far we have shown how periodic (or sporadic)
transactions of tasks, with time offsets between tasks of
the same transaction, can be analysed using newly derived
scheduling theory. This theory is able to find good worst-
case response time bounds. We now discuss some of the
ramifications of the offset scheduling theory.

k
J O O J

Tj
j j i i

j
=

+ − −L

M
M
M

O

P
P
P

(1)

Unrelated strictly periodic tasks sharing the same period
can be incorporated into the same transaction, with offsets
between the tasks. This increases schedulability because
the computation due to these tasks can be ‘spread out’.
Tasks with similar but different periods can be
transformed into tasks sharing the same period by
choosing a common period which is smaller than the
original periods. This has the advantage of reducing the
least common multiple of the task periods, and
simplifying the transaction (at the expense of a small loss
in schedulability). Tasks with periods which are exact
divisors of a given transaction period can also be
incorporated into the transaction by adding multiple
instances of the same task with offsets between them. The
offset approach is more general that this, however, since
it allows any instance to have different attributes (e.g.
priority); this generality can be used to improve
schedulability (for example, if only one instance of a task
were unschedulable then the priority of just that instance
might be increased).

Oi is the offset of task i measured relative to the start of
the transaction of which i is a member. Tj is the period of
task j (note that Ti is equal to Tj, since all tasks in the
same transaction share the same period)

Now, wi,S (which is the length of the ‘busy period’ [6]
starting at time S before the release of task i) is given by:

w C a C B

I H

i S i i i i

j
j tasks trans i hp i

t
t trans trans i

,

( ( )) ( ) ( )

= + + +

+
∀ ∈ ∩ ∀ ∈ −

∑ ∑ (2)

Where trans is the set of all transactions Ci is the worst-
case computation time requirement of task i, Bi is the
worst-case blocking time task i can experience (derived
from the priority ceiling protocol [8] for locking
semaphores), and aj is given by:

a
S O J O J

Tj
i i j j

j

=
− − + +M

N
M
M

P

Q
P
P

(3) The above description of constructing transactions will be
familiar: it is exactly the procedure that is adopted in
finding static cyclic schedules [3]. It therefore reasonable
to conclude that the Offset Test, coupled with a method
for configuring tasks (choosing priorities [12], offsets,
etc.), provides a means by which static cyclic schedules
can be analysed. However, the offset approach provides a
major additional benefit: other transactions are also
permitted to run concurrently. Thus a number of sporadic
and periodic tasks can be run alongside any cyclic
schedule. Indeed, a number of cyclic schedules can be run
concurrently on the same processor. Thus we can see that
the Offset Test bridges the gap between static cyclic
scheduling and static priority pre-emptive scheduling, and
that static cyclic scheduling is merely a special case of the
more general pre-emptive scheduling algorithm.

and Ij is given by:
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and Ht is given by:
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Meeting Precedence and Exclusion Constraints and hence require that task B terminate before the
subsequent invocation of task A.

This paper has already mentioned how concurrency
control can be obtained using the priority ceiling protocol
to guard small critical sections (we are also able to use
offset and priority assignment to ensure total exclusion5

[3]). We have yet to adequately address precedence
constraints.

Example Task Set

Xu and Parnas [3] provide an example which they claim
cannot be scheduled using either fixed or dynamic priority
approaches. We include this example here and show how
offset test analysis can be used to show how it can be
feasibly scheduled with fixed priority scheduling.

Constraint: Task B is constrained to run only when a
task A has finished

Five tasks, A-E, all share the same period, have exclusion
and precedence relationships:

This constraint can be achieved two ways: through offsets
and through priority. We deal with the priority approach
first. If task B is assigned a lower priority than task A and
is released at the same time as (or after) task A then task
A will immediately pre-empt B (or already be released
and delay B). Task B will not be dispatched until it
becomes the highest priority task; this cannot happen
until task A has finished. Therefore we can say that the
precedence constraint will be satisfied if:

1. B precedes D
2. A excludes D
3. A excludes B.

The following table gives the requirements, as stated by
Xu and Parnas:

d r C
O O O r O T B AB A B B A≥ ∧ + ≤ + ∧ <b g pri( ) pri( ) (5)

A 161 0 30
B 51 11 30Given that task B is of lower priority than task A.
C 90 60 30

The following approach can be used when task B has a
lower or higher priority than task A: if task B has an
offset larger than the offset of A plus the worst-case
response time of A then task B will never be released
before A is finished, i.e.:

D 100 41 10
E 140 90 50

C is the worst-case execution time; d is the deadline of the
task, measured from time zero; rXu is the minimum
release time measured from time zero.

O O r O OB A A B A≥ + ∧ <b g b g
Now consider the modified task set we can obtain:

We have to be careful about periodic task execution where
the subsequent invocation of a task may disturb the
precedence relationship. For example, if task A were
assigned a priority higher than task B then the subsequent
re-arrival of task A could pre-empt a currently running
invocation of B. If we additionally require exclusion
between B and the subsequent invocation of A then we
must ensure that B always finishes before A is re-released.
Alternatively, we could turn task A into two logically
different tasks, each of period twice that of the original,
with an offset equal to the original period between the two
tasks. We could then assign a lower priority to the second
task A so that task B would not be pre-empted. In the
example we take precedence to be stronger than exclusion

d r C D O pri r r

A 161 0 30 110 51 5 110 150 ü

B 51 11 30 40 11 1 30 30 ü

C 90 60 30 30 60 3 30 70 ü

D 100 41 10 59 41 2 10 40 ü

E 140 90 50 50 90 4 50 120 ü

The timing constraint d stated by Xu and Parnas is
measured relative to time zero. In our offset analysis we
measure the deadline from the release time of the task.
Therefore we obtain a new deadline D measured from the
release of the task and equal to d – O. Furthermore, rXu is
the minimum release time of the task; O must be greater
than this required value.                                                       

5Xu and Parnas [3] use the term ‘exclusion’ between two tasks to mean no part of the
execution of either task can overlap; where the critical section is small a total exclusion
constraint is too harsh, and an alternative concurrency control protocol (such as the
priority ceiling protocol) can be used more efficiently; of course, the priority ceiling
protocol cannot be used in a static cyclic schedule

We have set the offset of task A such that task A cannot
not execute before time 51. Note that in this example
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there are only five tasks, all members of the same
transaction — using a pre-emptive scheduler in a larger
system we could have other sporadic and periodic tasks
(using the static cyclic scheduling approach it is very
difficult to guarantee tight bounds on servicing sporadic
requests).

to Static Priority Pre-emptive Scheduling,” Report
RTRG/92/120 Department of Computer Science,
University of York (February 1992).
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Synchronisation in Distributed Real-Time
Systems,” IEEE Transactions on Computers C-
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In the above table, the worst-case response time of the
task, r, is measured relative to O, the offset (which is
itself measured relative to time zero). The column headed
rold is the old scheduling analysis applied to the same
problem; we can see how poor the performance of the old
analysis is in this situation. The ü symbol indicates that
the timing constraint (r ≤ D) has been met.

[10] Locke, C.D., “Software architecture for hard real-
time applications: cyclic executives vs. fixed
priority executives,” Real-Time Systems 4(1)
(March 1992) pp.37-53.  Real-Time Syst.
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Start Times,” YCS 164, Dept. Computer Science,
University of York (December 1991).

This paper has provided extensions to static priority
scheduling theory for tasks with offset relationships. This
has been achieved in two ways: efficient optimal priority
assignment and less-pessimistic worst-case response time
analysis. This theory is shown to provide sufficient
analysis for task sets previously thought schedulable using
only static cyclic scheduling technology. Thus we have
illustrated a form of coverage equivalance between static
priority and static cyclic scheduling.
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