
RESEARCH Open Access

The endogenous capacity to produce
proinflammatory mediators by the ex vivo
human perfused lung
Aleksandra Leligdowicz1,2* , James T. Ross3, Nicolas Nesseler1,4,5,6 and Michael A. Matthay1,7,8

* Correspondence: Aleksandra.

Leligdowicz@uhn.ca
1Cardiovascular Research Institute,

University of California, San

Francisco, San Francisco, CA, USA
2Interdepartmental Division of

Critical Care Medicine, University of

Toronto, Toronto, Ontario, Canada

Full list of author information is

available at the end of the article

Abstract

Background: The ex vivo human perfused lung model has enabled optimizing

donor lungs for transplantation and delineating mechanisms of lung injury. Perfusate

and airspace biomarkers are a proxy of the lung response to experimental

conditions. However, there is a lack of studies evaluating biomarker kinetics during

perfusion and after exposure to stimuli. In this study, we analyzed the ex vivo-

perfused lung response to three key perturbations: exposure to the perfusion circuit,

exogenous fresh whole blood, and bacteria.

Results: Ninety-nine lungs rejected for transplantation underwent ex vivo perfusion.

One hour after reaching experimental conditions, fresh whole blood was added to the

perfusate (n = 55). Two hours after reaching target temperature, Streptococcus

pneumoniae was added to the perfusate (n = 42) or to the airspaces (n = 17). Perfusate

and airspace samples were collected at baseline (once lungs were equilibrated for 1 h,

but before blood or bacteria were added) and 4 h later. Interleukin (IL)-6, IL-8,

angiopoietin (Ang)-2, and soluble tumor necrosis factor receptor (sTNFR)-1 were

quantified. Baseline perfusate and airspace biomarker levels varied significantly, and this

was not related to pre-procurement PaO2:FiO2 ratio, cold ischemia time, and baseline

alveolar fluid clearance (AFC). After 4 h of ex vivo perfusion, the lung demonstrated a

sustained production of proinflammatory mediators. The change in biomarker levels

was not influenced by baseline donor lung characteristics (cold ischemia time, baseline

AFC) nor was it associated with measures of experimental epithelial (final AFC) or

endothelial (percent weight gain) injury. In the presence of exogenous blood, the rise

in biomarkers was attenuated. Lungs exposed to intravenous (IV) bacteria relative to

control lungs demonstrated a significantly higher rise in perfusate IL-6.
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Conclusions: The ex vivo-perfused lung has a marked endogenous capacity to

produce inflammatory mediators over the course of short-term perfusion that is

not significantly influenced by donor lung characteristics or the presence of

exogenous blood, and only minimally affected by the introduction of systemic

bacteremia. The lack of association between biomarker change and donor lung

cold ischemia time, final alveolar fluid clearance, and experimental percent

weight gain suggests that the maintained ability of the human lung to produce

biomarkers is not merely a marker of lung epithelial or endothelial injury, but

may support the function of the lung as an immune cell reservoir.

Keywords: Biomarkers, Ex vivo-perfused lung, Streptococcus pneumoniae, ARDS,

Lung transplant

Background

The ex vivo human perfused lung has been used for nearly 70 years to study mecha-

nisms of lung function [1]. The model facilitates characterizing biological mechanisms

that may preserve the lung for transplantation as well as response to clinically relevant

pathological conditions, such as exposure to endotoxin or bacteria [1–3]. The experi-

mental preparation has improved the available pool of lungs appropriate for transplant-

ation [4–9] and understanding mechanisms that contribute to primary graft

dysfunction in lung transplant recipients [10]. It also offers insight into lung physiology

in injury [11, 12] and as such, allows for the testing of new therapeutics (mesenchymal

stem cells, microvesicles) [13–16].

The controlled conditions of the ex vivo-perfused lung make it possible to collect

samples from multiple compartments (perfusate, lung tissue, airspaces) and to study

the response to experimental intervention. The quantification of biomarkers in these

compartments is representative of injury [17–20]. However, whether biomarker levels

are associated with a negative outcome is uncertain in the ex vivo-perfused lung model

because the rise in biomarkers does not always correlate with validated measures of

lung function [21]. Furthermore, removing biomarkers thought to induce injury, such

as IL-8, with an adsorbent membrane, does not improve lung function during pro-

longed ex vivo lung perfusion (EVLP) [22].

The uncertainty in the field prompted us to perform a detailed study of several clinic-

ally relevant biomarkers that have been studied in clinical samples as well as in ex vivo

and in vitro models of lung injury. The four biomarkers include three biomarkers asso-

ciated with inflammation: interleukin (IL)-6, IL-8, and soluble tumor necrosis factor re-

ceptor 1 (sTNFR1) [23–25], as well as one biomarker associated with endothelial

activation: angiopoietin-2 (Ang-2) [25, 26].

Additionally, the human EVLP model has been shown to lack a response to the air-

space administration of bacterial components (lipopolysaccharide, LPS) without the

addition of exogenous blood [14]. Therefore, in many instances where the ex vivo

human perfused lung model is used for studying the response to injurious stimuli, ex-

ogenous fresh human whole blood has been added to the perfusate [1, 15]. However,

the influence of the addition fresh whole blood to the ex vivo human perfused lung on

pro-inflammatory biomarker levels in the perfusate and in the airspaces has not been

studied in detail.
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The goal of our study was to address four important poorly understood concepts.

First, do donor lung characteristics (PaO2:FiO2 ratio, cold ischemia time, baseline alveo-

lar fluid clearance [3]) influence baseline biomarker levels or biomarker kinetics in the

perfusate and airspaces? Second, what is the impact of exogenous fresh whole blood on

biomarker kinetics in the perfusate and in the airspaces during EVLP? Third, what is

the impact of exposure to bacteria (intravenous (IV) or airspace infection with Strepto-

coccus pneumoniae) on perfusate and airspace biomarker kinetics relative to uninfected

control lungs? Fourth, do donor lung characteristics influence relationships between

biomarker kinetics in the presence of exogenous blood or after exposure to bacteria?

Results

Donor lung characteristics

A total of 99 single human lungs from 99 donors were studied under the following six

experimental conditions: (1) control lungs with exogenous blood (n = 22), (2) intraven-

ous infection with S. pneumoniae with exogenous blood (n = 19), (3) airspace infection

with S. pneumoniae with exogenous blood (n = 14), (4) control lungs without exogen-

ous blood (n = 18), (5) intravenous infection with S. pneumoniae without exogenous

blood (n = 23), (6) airspace infection with S. pneumoniae without blood (n = 3). The

baseline donor characteristics among the six experimental conditions were well bal-

anced (Table 1). There were no statistically significant differences in donor age, organ

cold ischemia time, PaO2:FiO2 ratio, and baseline alveolar fluid clearance (AFC).

Among the lungs perfused without exogenous blood, a greater proportion of donors of

control lungs relative to donors of lungs exposed to intravenous bacteria received pre-

procurement antibiotics (89% vs 52%, p = 0.01). This imbalance in pre-procurement an-

tibiotics was greater in control lungs and therefore would not be expected to affect bac-

terial proliferation.

Baseline biomarker variability and significant biomarker rise after 4 h of EVLP

Because the first sample was collected before the addition of experimental conditions

(exogenous fresh whole blood, intravenous or airspace infection with S. pneumoniae),

we were able to study baseline biomarker levels in the perfusate (n = 97) and in the air-

space (n = 88). Baseline (time 0 h) perfusate and airspace samples collected 1 h after

EVLP equilibration had a wide distribution in biomarker concentrations (Fig. 1).

Perfusate and airspace samples collected at baseline and after 4 h of EVLP were used

to study biomarker kinetics. The ex vivo human perfused lung demonstrated a main-

tained capacity to produce inflammatory cytokines at 4 h relative to the 0-h time point

in the perfusate and in the airspaces (Fig. 1) at a significance level of p < 0.0001. The

substantial fold change in perfusate and airspace biomarkers is shown in sFigure 1.

A significant rise in the perfusate (sTable 1) and airspace (sTable 2) biomarkers was

present in all six experimental conditions. This was especially true for IL-6 and IL-8

(sFigure 2A-B and sFigure 3A-B), with IL-6 levels increasing more than 200-fold (sFi-

gure 1) up to a concentration of 1 μg/ml. The increase in perfusate and airspace

sTNFR1 and Ang-2 was lower (sFigure 2C-D and sFigure 3C-D).
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Donor characteristics and indicators of experimental lung injury are not associated with

baseline biomarker levels and biomarker kinetics

Baseline biomarker levels were tested for their association with pre-procurement PaO2:

FiO2 ratio, cold ischemia time, and baseline AFC. Neither perfusate nor airspace base-

line biomarker concentrations were associated with these donor lung characteristics

(Fig. 2a). The only exception was for airspace IL-6 and IL-8 levels, whereby a higher

baseline AFC was associated with a higher baseline biomarker concentration (p <

0.0001).

In spite of a substantial rise in perfusate and airspace IL-6 and IL-8, as well as to a

lesser extent in sTNFR1 and Ang-2, there was no association between the change in

Fig. 1 Perfusate and airspace biomarker concentrations at baseline and after 4 h of ex vivo perfusion. Biomarker

concentrations are presented on a Log10 scale. The capacity to produce the four inflammatory cytokines at the

4 hour relative to the 0-h time point in both the perfusate and in the airspace compartment was significant at

p < 0.0001 for all presented data

Fig. 2 Perfusate and airspace biomarkers at baseline and change after perfusion relative to lung characteristics.

Associations between (a) baseline perfusate (n = 97) and airspace (n = 88) biomarker levels and donor lung

characteristics, and (b) change in perfusate (n = 95) and airspace (n = 65) biomarker concentrations after 4 h of

ex vivo lung perfusion and donor lung characteristics and indicators of lung epithelial and endothelial injuries

at the end of the experiment. p values are presented after a Bonferroni correction for multiple testing
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any of the perfusate biomarker levels and indicators of lung injury at the end of

the experiment (percent weight gain or final AFC) or baseline donor lung charac-

teristics (Fig. 2b).

Exogenous blood attenuates perfusate IL-6 increase in lungs exposed to IV S.

pneumoniae

The differences between perfusate and airspace biomarker kinetics after 4 h of

ex vivo perfusion in the presence relative to the absence of fresh whole blood was

compared in control lungs and in lungs exposed to IV S. pneumoniae (sTable 3).

In control lungs, there were no statistically significant differences in the change in

perfusate (Fig. 3a) or airspace (Fig. 3b) biomarkers after 4 hours of perfusion in

lungs perfused with compared to without exogenous blood. In lungs exposed to IV

S. pneumoniae, there was a significant difference in the increase in perfusate IL-6

(Fig. 3a) and airspace sTNFR1 (Fig. 3b) in lungs perfused with relative to without

Fig. 3 Impact of exogenous blood on biomarker change after 4 h of ex vivo lung perfusion. a Comparison of

change in perfusate biomarker levels after 4 h of ex vivo perfusion in control lungs in the presence (n = 21) or

in the absence (n = 17) of exogenous blood, and in IV S. pneumoniae exposed lungs in the presence (n = 19) or

in the absence (n = 22) of exogenous blood. b Comparison of change in airspace biomarker levels after 4 h of

ex vivo perfusion in control lungs in the presence (n = 16) or in the absence (n = 13) of exogenous blood, and

in IV S. pneumoniae-exposed lungs in the presence (n = 13) or in the absence (n = 14) of exogenous blood

Leligdowicz et al. Intensive Care Medicine Experimental            (2020) 8:56 Page 6 of 15



exogenous blood. In the absence of blood, perfusate IL-6 increase was 133,885 pg/

ml higher relative to lungs perfused with blood (p = 0.003). In the presence of

blood, airspace sTNFR1 increase was 1,793 pg/ml higher relative to lungs without

blood (p = 0.009).

Adjustment for potential confounders (donor lung cold ischemia time and baseline

AFC) in control lungs compared with lungs perfused with or without exogenous blood

had minimal influence on perfusate and airspace biomarker kinetics (sTable 4). None

of the significant biomarker kinetics discussed above were changed after adjustment.

IV S. pneumoniae contributes to an increase in perfusate IL-6 in the absence of

exogenous blood

To address the question of whether there would be a difference in the increase in lung

endogenous biomarker production after S. pneumonia exposure relative to control

lungs, we studied (1) control lungs relative to lungs exposed to IV S. pneumoniae with

exogenous blood, (2) control lungs relative to lungs exposed to IV S. pneumoniae with-

out blood, and (3) control lungs relative to lungs exposed to airspace S. pneumoniae

with exogenous blood (sTable 5).

Lungs exposed to IV S. pneumoniae perfused without exogenous blood relative to

control lungs had a significantly greater increase in perfusate IL-6 (higher by 92,741 pg/

ml, p = 0.04) and perfusate IL-8 (higher by 103,915 pg/ml, p = 0.05) (Fig. 4a). There

were no differences in airspace biomarker levels (Fig. 4b). When exogenous blood was

present in the model, lungs exposed to IV S. pneumoniae relative to control lungs had

a greater increase in perfusate sTNFR1 (higher by 967 pg/ml, p = 0.04) (Fig. 4a), air-

space sTNFR1 (higher by 1,492 pg/ml, p = 0.02), and airspace Ang-2 (higher by 823 pg/

ml, p = 0.05) (Fig. 4b). In lungs exposed to airspace S. pneumoniae relative to control

lungs, there was no significant difference between perfusate or airspace biomarker kin-

etics (sTable 5).

Adjustment for donor lung characteristics (cold ischemia time, baseline AFC, and

pre-procurement antibiotics) in control lungs compared with lungs exposed to IV

(sTable 6) and airspace (sTable 7) S. pneumoniae had minimal impact on perfusate and

airspace biomarker kinetics. Furthermore, none of the significant biomarker kinetics

were influenced by these adjustment variables.

Discussion

In the USA, lungs of approximately 75% eligible donors are ineligible for transplant-

ation [27]. These lungs are an invaluable resource to study lung function and organ

preservation to increase eligibility for transplantation. In this study, explanted human

lungs rejected for transplantation underwent ex vivo lung perfusion and a detailed

characterization of perfusate and airspace biomarker kinetics was performed under 6

experimental conditions.

During 4 h of EVLP, we found that the lung has a remarkable capacity to produce

proteins associated with immune (IL-6, IL-8, sTNFR1) and endothelial (Ang-2) re-

sponses. The baseline level and the change in concentration of these mediators after 4

h of ex vivo perfusion was unrelated to the duration of cold ischemia time and parame-

ters associated with deranged lung epithelial (alveolar fluid clearance) or endothelial
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(percent weight gain) function [1]. The lack of association between change in bio-

marker levels and the final AFC and percent weight gain suggests that the presence of

very high levels of proinflammatory mediators does not result in deterioration of epi-

thelial or endothelial barrier function. The weak but significant association between

baseline AFC and the increase in airspace IL-6 and IL-8 levels, may suggest that lungs

with higher baseline AFC have a higher rise in airspace concentrations of these two in-

flammatory markers. The addition of fresh whole blood attenuated the increase in per-

fusate IL-6 in lungs exposed to intravenous bacteria. The addition of a lethal dose of

Gram-positive bacteria (S. pneumoniae) did not significantly change perfusate or air-

space biomarker kinetics, with the exception of perfusate IL-6 in the absence of ex-

ogenous blood.

A similar high rise in some biomarkers quantified in this study has been demon-

strated in prior reports of EVLP [20, 28]. IL-6 and IL-8 are inflammatory cytokines

Fig. 4 Impact of IV S. pneumoniae on biomarker change levels after ex vivo lung perfusion. a Comparison

of change in perfusate biomarker levels after 4 h of ex vivo perfusion in control lungs (n = 17) relative to

models with IV S. pneumoniae (n = 22) without blood and in control lungs (n = 21) relative to models with

IV S. pneumoniae (n = 19) with blood. b Comparison of change in airspace biomarker levels after 4 h of

ex vivo perfusion in control lungs (n = 13) relative to models with IV S. pneumoniae (n = 14) without blood

and in control lungs (n = 16) relative to IV S. pneumoniae (n = 13) with blood
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traditionally synonymous with organ injury and poor outcome. In the EVLP model,

several studies of cross-sectional cytokine levels suggest that donor lung levels of these

biomarkers are inversely associated with graft function in the transplant recipient [17–

20]. Interestingly, cytokines in the EVLP perfusate of successfully transplanted lungs

also reach extremely high levels (as much as a 30–100-fold increase in IL-6 and IL-8)

without evidence of primary graft dysfunction (PGD) [20, 21]. If IL-6 and IL-8 are al-

ways injurious, why do not more transplant recipients develop PGD?

High levels of IL-6, IL-8, sTNFR1, and Ang-2 in plasma samples of patients with the

acute respiratory distress syndrome (ARDS) are well-known for their association with

poor outcomes [29, 30]. However, plasma biomarker levels are substantially lower than

those reported in EVLP perfusate. This discrepancy between the extremely high levels

of inflammatory cytokines in the EVLP perfusate and the lack of injury in every trans-

plant recipient as well as the lack of association with experimental measurements of in-

jury in our study (percent weight gain, final AFC) suggest that these cytokines have an

additional biologic significance [31], especially in the EVLP model. Future studies may

provide insight into the biologic relevance of the elevated biomarker levels in the EVLP

model, including their potential role in immune cell recruitment, enhancement of

phagocytosis, stimulation of tissue turnover, or eradication of pathogens.

The source of biomarker production and the mechanism of accumulation are uncer-

tain. The EVLP model lacks mechanisms associated with clearance, specifically the liver

[32], the kidneys [33], and components of the vascular compartment, the absence of

which may explain the striking difference between biomarker concentrations detectable

in plasma relative to the perfusate and airspaces of the ex vivo perfused lung. In our ex-

periments in which only 100 ml of fresh whole blood was added to 2 l of EVLP perfus-

ate (representative of a hematocrit of approximately 2%), there appeared to be a trend

toward a dampening effect on the increase in perfusate IL-6 and IL-8 levels in control

lungs as well as in lungs exposed to IV S. pneumoniae. This suggests that protective

factors are present in blood that either reduce the production of these cytokines, that

increase their enzymatic clearance, or that facilitate their sequestration [34]. Future in-

vestigation of whole blood components that may be responsible for the decrease in in-

flammatory biomarker levels may be relevant to transplantation as several studies

support the notion that high IL-8 in perfusate is related to an increased incidence of

PGD3 in the recipient [17–19].

A potential source of cytokines may be cell necrosis and apoptosis due to ischemia-

reperfusion injury [35]. However, neither the baseline nor the change in biomarkers

after 4 h of EVLP was associated with cold ischemia time, suggesting that presumed cell

necrosis and apoptosis cannot on their own explain the high abundance of cytokines in

our model. In fact, prolonged hypothermia without reperfusion did not increase pneu-

mocyte apoptosis in a rat lung transplant model [36]. Also, there is evidence from

studying tissue biomarker levels in the human EVLP model that inflammatory cytokine

levels do not significantly differ after extended cold ischemia time [7].

Of note, not all biomarker levels increased to the same extent during EVLP. The

small change in Ang-2 levels during the 4 h of ex vivo perfusion relative to inflamma-

tory biomarker levels is puzzling. This protein is produced by the endothelium and is

stored in Weibel Palade bodies [26], where it has a long half-life (over 18 h) and can be

secreted within minutes of stimulation [37]. However, despite lung injury due to
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ischemia-reperfusion and addition of lethal doses of S. pneumoniae, the magnitude of

Ang-2 change was minimal compared with the change in IL-6 and IL-8.

The observation that starting AFC is only significantly associated with baseline IL-6

and IL-8 levels in the airspace compartment is intriguing. It is plausible that when the

lung epithelial function is intact and alveolar fluid clearance is preserved [38], IL-6 and

IL-8 may concentrate in the airspaces. It also implies that when interpreting levels of

these cytokines in the airspace compartment of the EVLP model, it is important to

measure and account for lung alveolar fluid clearance.

This study has some limitations. First, only two time points were studied during the

course of perfusion, and as such, it is possible we missed important time point bio-

marker production trends, particularly in experimental conditions in the presence of

bacteria. It is also possible that the perfusion was not long enough to appreciate differ-

ences between the experimental conditions included in this study. Secondly, we studied

only four soluble proteins, and to detect relevant differences between experimental

conditions, other proteins may need to be studied. It is also plausible that other met-

rics, such as RNA expression, microvesicle or lipid production, could provide insight

into biological differences between the experimental conditions. Third, our experiments

were performed with a single bacterial pathogen, and as such, the data may not be ex-

trapolated to infection with other pathogens. Lastly, the effect of exogenous whole

blood on biomarker kinetics in lungs exposed to airspace S. pneumoniae could not be

studied as there were only 3 lungs in this subgroup. Therefore, the previous observation

that the addition of whole blood leads to a sharp increase in airspace biomarkers (IL-

1β, TNF⍺, and IL-8) when a bacterial component (LPS) is instilled into one of the lung

lobes [14] could not be ascertained.

Conclusions

Overall, the ex vivo-perfused lung has a remarkable capacity to generate high levels of in-

flammatory proteins during 4 h of perfusion. This was true in all experimental conditions,

including control lungs, suggesting that future EVLP models assessing effect of injury or

novel therapies should incorporate appropriate control lungs in the study design. The

substantial increase in biomarker levels between the two time points suggests that future

studies of cross-sectional and longitudinal biomarker analysis should ensure strict adher-

ence to predefined timing of sample collection. The addition of blood does not increase

biomarker levels, while the addition of live bacteria results in a higher rise in only IL-6 in

lungs perfused without exogenous blood. The remarkable lack of association between

baseline proinflammatory biomarker levels as well as their increase over time and donor

lung characteristics (cold ischemia time, starting AFC) and experimental outcomes (alveo-

lar fluid clearance 5 h after perfusion and the percent weight gain) suggests that the main-

tained ability to produce biomarkers is not merely a marker of lung epithelial or

endothelial injury and may instead support the lung’s role as an immune reservoir.

Materials and methods

Ex vivo human perfused lung

Donor lungs rejected for transplantation were received from Donor Network West.

Lungs were rejected for various reasons, including a mismatch in sex, race, size, or
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geography between the donor and available recipients, donor age or smoking history,

radiographic or bronchoscopic findings suggestive of atelectasis, edema and/or infec-

tion, or other elements of the donor history or clinical course [39, 40]. The right or left

lung was selected for EVLP based on gross appearance, as previously described [1].

Briefly, the main bronchus was intubated with an endotracheal tube and the pulmonary

artery was cannulated. The lung was perfused with 2 l of acellular DME-H21 media

with 5% bovine serum albumin (BSA) and warmed to 37 °C. Subsequently, 8 cm H2O of

continuous positive airway pressure was applied using room air. Lung weight was ob-

tained at the start (baseline) and at the end of each experiment. One hour after experi-

mental conditions were reached, 100 ml of exogenous fresh whole blood was added to

the perfusate of some of the lungs (sFigure 4). University of California, San Francisco

(UCSF) Institutional Review Board (IRB) approval was obtained for the collection of

blood from healthy volunteers (laboratory members).

Quantification of lung function: alveolar fluid clearance

Alveolar fluid clearance (AFC) was determined once the ex vivo-perfused lung was

equilibrated on the circuit by introducing 100 ml of normal saline with 5% BSA into

the distal airspaces. Samples for measurement of total protein by refractometry were

collected at 5 and 35min via a catheter inserted into the endobronchial tube. AFC was

calculated using the formula: AFC (%/h) = 2(1 −Ci/Cf), where Ci is the 5-min sample

protein concentration and Cf is the 35-min sample protein concentration [3, 41]. The

AFC for all experiments was calculated at the start of the experiment (baseline) and at

5 h (sFigure 4).

Infection with Streptococcus pneumoniae

S. pneumoniae serotype 19F (49619; ATCC, Manassas, VA) was grown in brain-heart

broth (Becton-Dickinson, Sparks MD), and 1010 bacteria was resuspended in phosphate-

buffered saline for administration according to a weight-based adjustment of a severe

pneumonia murine model [42, 43]. Two hours after reaching target temperature, bacteria

were added intravenously into the perfusate (non-pulmonary sepsis model) or into the air-

spaces (pneumonia model, sFigure 4).

Biomarker quantification

Perfusate and airspace samples were prospectively collected for biomarker quantifica-

tion at two time points. The first sample was collected after the lungs were equilibrated

on the circuit for 1 h (immediately prior to the addition of exogenous whole blood and

1 h prior to the introduction of S. pneumoniae in selected experiments; sample referred

to as time 0 h). The second sample was collected 4 h later (sample referred to as time 4

h, sFigure 4). Airspace fluid samples were not available for 11 lungs at the 0-h time-

point and 24 lungs at the 4-h time. This was due to mucus production or very effective

AFC which prevented airspace fluid collection. For lungs perfused with exogenous fresh

whole blood, this corresponded to a 4-h exposure to blood. For lungs exposed to S.

pneumoniae, this corresponded to a 3-h exposure to bacteria. All samples were cryo-

preserved at − 80 °C prior to protein quantification using the Simple PlexTM Ella multi-

plex microfluidic platform (Protein Simple, CA, USA). A 4-plex custom panel was used
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to quantify interleukin (IL)-6, IL-8, angiopoietin (Ang)-2, and soluble tumor necrosis

factor receptor (sTNFR)-1. Low-abundance proteins (Ang-2) were tested at a 1:10 dilu-

tion, and high-abundance proteins (IL-6, IL-8, sTNFR-1) were tested at a 1:1000 dilu-

tion. The same dilutions were used for perfusate and airspace samples. Assays were

performed according to manufacturer’s protocol, as described previously [44]. Raw data

were analyzed using the SimplePlex Explorer software.

Statistical analysis

Relationships between continuous variables were performed using Pearson (normally

distributed data) or Spearman (skewed data) correlation, with a Bonferroni correction

for multiple testing. Comparison of baseline continuous variables among experimental

groups were analyzed using the Kruskal–Wallis test and dichotomous variables were

compared using the chi squared test. Comparisons of biomarker kinetics among experi-

mental conditions were made using generalized estimating equation models (GEE)

using robust standard errors [45]. Lungs lacking a sample at the second time point

(t4h) were excluded from analysis. The analyses included (1) impact of exogenous

whole fresh blood on change in perfusate and airspace biomarker levels in lung sub-

groups stratified by exposure to bacteria (control/no bacteria, intravenous bacteria), (2)

impact of addition of intravenous S. pneumoniae (non-pulmonary sepsis model) on

change in perfusate and airspace biomarker levels in lung subgroups stratified by

addition of exogenous whole fresh blood, and (3) impact of addition of airspace S.

pneumoniae (pneumonia model) on change in perfusate and airspace biomarker levels

in lungs perfused with exogenous whole fresh blood. Too few lungs exposed to airspace

S. pneumoniae were perfused without exogenous blood (n = 3) to test the impact of air-

space bacteria on biomarker kinetics in this experimental subgroup. Interaction terms

for cold ischemia time, baseline lung function (the surrogate of which was baseline

AFC), lung response at end of experiment (AFC at 5 h, percent weight gain) were in-

cluded individually in the above GEE models to test for the effect of these potential

confounders on perfusate and airspace biomarker kinetics. In models assessing the im-

pact of bacteria on biomarker kinetics, an interaction term for the administration of

pre-procurement antibiotics was included. Statistical analyses and data presentation

were performed using STATA v14.1 (StataCorp 2015).
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