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•˜ 0. Introduction

Let X be a smooth projective surface and ƒ° a linear system on X, bothh 

defined over an algebraically closed field ƒÈ of characteristic ƒÏ which may 

be zero. Let us assume that the generic member DƒÅ of ƒ° (defined over ƒÈ(ƒÅ), ƒÅ 

being the generic point of the parameter space of ƒ°) is a smooth curve. 

Then the cokernel J(DƒÅ/X) of the natural homomorphism of the (reduced) 

Picard variety of X to the Jacobian variety of DƒÅ is an abelian scheme over ƒÈ(ƒÅ)

Then our main theorem (Theorem 1.3) can be stated as follows (for the: 

notation, see Notation and terminology and Definition 1.2):

If ƒ° enjoys the properties (N1), (SR) and (GS), then rk End J(DƒÅ/X)•…

e(ƒ°). The equality holds if furthermore ƒ° enjoys the property (IR).

As a simple case, let us assume that ƒÈ=C and let X be a smooth projec

tive surface in PNC such that J(H•¿X/X)•‚0 for the generic hyperplane H. 

Then there is a subset _??_ of the first category o f the dual space PN(C) such 

that every H of PN(C)-_??_ intersects transversally with X and satisfies the 

conditions, End J(H•¿X/X)=Z and Hom (J(X), J(H•¿X/X))=0 (Corollary 

5.2).

Using this result we construct a Prym variety P of dimension g (for 

every g•†3 and except for the case p=2) such that End P=Z (Theorem 6.3) 

and a smooth projective hyperelliptic curve C of genus g (for every g•†1 

and for every characteristic) such that End J(C)=Z (Theorem 6.5).

For a better understanding of our results, we briefly review the history 

of our problem. To simplify the notation and situation, we state the results 

by F. Seveni and O. Zariski in restricted forms, tacitly assuming that ƒÏ=0 

because they are concerned only with the case ƒÈ=C.

First F. Seveni [18] studied the problem in order to prove the existence 

of a smooth projective curve C with a given genus (>0) such that.
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End J(C)=Z (the author was recently informed that S. Koizumi [6] also 

proved the existence of such a C for every characteristic). He asserted that 

End J(DƒÅ)=Z for regular X(i.e. H1(X,_??_x=0) and ƒ° with the property (N0).

 As pointed out by [19], he attempted to prove the assertion under some ad

ditional conditions on ƒ°, namely, (IR') in the geometrical argument, and 

(SR) in the transcendental one. (The reader will easily see by Theorem 1.3 

that these conditions are insufficient.) In the geometrical one, he attempted 

to prove End0ƒÈ(ƒÅ) J(DƒÅ7)•¨End0 J(DƒÅ) and then to show End0ƒÈ(ƒÅ) J(DƒÅ)=Z 

(neither of these are true in general, cf. Proposition 6.1). O. Zariski [19] cor

rected the second equality and proved that rk EndƒÈ(ƒÅ) J(DƒÅ)•…e(ƒ°) for regular 

X and ƒ° with the property (N0) (cf. Remark 4.7). In the present paper, 

the first equality is proved under some assumptions (Theorem 3.2) and the 

last inequality is strengthened and generalized (Theorem 4.6).

•˜1 and •˜2 are preparatory. In •˜3, we quote a fundamental theorem 

given in [15] (communicated to the author by Professor K. Doi). •˜4 is an 

analogue of [19] treated ring-theoretically. In •˜5, we complete our proof 

of Theorem 1.3. We give in •˜6 some examples, applications and comments 

on [13] and [19].

The author expresses his hearty thanks to Professor M. Artin for his 

lectures on surfaces at Kyoto university during summer in 1973, from one 

of which the author derived Lemma 3.1 at the beginning of this research.

Notation and terminology: we understand by a variety defined over a 

fi eld ƒÈ (or simply by a ƒÈ-variety) a geometrically integral ƒÈ-scheme; by a 

ƒÈ' -subvariety of a ƒÈ-variety X (ƒÈ' is an overfield of ƒÈ) a geometrically inte

gral closed subscheme of X XSpec ƒÈ Spec ƒÈ'; by a surface (or a curve) defined 

over ƒÈ a variety of dimension 2 (or 1, respectively) defined over ƒÈ. By 

R(X), X being an integral scheme, we denote the field of rational functions 

on X.

Let X and Y be schemes over fields ƒÈ and ƒÈ' respectively, and ƒÈ" a 

common overfield of ƒÈ and ƒÈ'. We denote by Pie X the abstract group of 

invertible sheaves on X; by X(ƒÈ") the set of ƒÈ"-rational points of X; and 

by XƒÈ", the scheme X XSpec ƒÈ Spec ƒÈ"; we understand by a ƒÈ"-morphism of 

X to Y, a morphism of XƒÈ" to YƒÈ" over ƒÈ' Now we set:

Corr ƒÈ" (X,Y)=Pic(XƒÈ"•~ƒÈ"YƒÈ")/p*1 Pie(XƒÈ")•~p*2Pie(YƒÈ"),

MorƒÈ"(X,Y)={ƒÈ"-morphisms of X to Y}.

If, furthermore, X and Y are abelian schemes over ƒÈ and ƒÈ' respectively, 

we understand by a ƒÈ"-homomorphism of X to Y a homomorphism (of group 

schemes over ƒÈ") of XƒÈ" to YƒÈ". Then we set as follows:
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HomƒÈ" (X,Y)=the Z-module of ƒÈ"-homomorphisms of X to Y,

Hom0ƒÈ"(X,Y)=Q_??_zHomƒÈ"(X,Y),

HomƒÈ"(X,Y)=HomƒÈ"(X,Y),

Hom0ƒÈ"(X,Y)=Q_??_zHomƒÈ"(X,Y),

where ƒÈ" denotes the algebraic closure of ƒÈ". In these, ƒÈ" may be omitted 

if there is no danger of confusion. Similar notation is used for endomor

phisms and automorphisms. For f•¸HomƒÈ"(X,Y), Ker f, Im f and Coker f 

are defined as group schemes over ƒÈ"; (Ker f)0, Im f and Coker f are 

abelian schemes (cf. [2, No. 236]).

Finally, for an abelian group M, dimQQ_??_zM is called the rank of M and 

is denoted by rk M; for a graded ring R and an integer n, we denote by Rn 

the homogeneous part of degree n of R; for a Krull domain S, we denote 

by C1 S the divisor class group of S(cf. [17]); for a ring A, we denote by 

A•~ the unit group of A.

•˜ 1. Statement of our main result

In this section, we state our main result whose proof is given later. 

First, for the simplicity of the notation, we need the following definitions.

DEFINITION 1.1. Let X and Y be smooth projective varieties defined 

over fields ƒÈ and ƒÈ' respectively. Assume that we are given a ƒÈ"-morphism 

f: Y•¨X with a common overfield ƒÈ" of ƒÈ and ƒÈ'. Then we denote by J(X) 

the abelian scheme Pic0(X/ƒÈ)red over ƒÈ, and by J(f) (or simply J(Y/X), if 

there is no danger of confusion) Coker f*, where f* is the homomorphism 

J(X)ƒÈ"•¨J(Y)ƒÈ" induced by f.

Let X be a smooth projective surface defined over a field ƒÈ. Let ƒ° be 

a linear system on X defined over ƒÈ, i.e. ƒ° is a pair of an invertible sheaf 

D on X and a non-zero ƒÈ-vector subspace V of H0(X,D). For a (geometric) 

point y of the ƒÈ-scheme P(V*) classifying the hyperplanes of the dual vector 

space V*, we denote by Dy the effective Cartier divisor associated with y. 

We fix these notation and conventions throughout this section.

DEFINITION 1.2, we consider the following properties for ƒ°

N1) is free from fixed components, i. e. the support S of the cokernel 

of the natural homomorphism V_??_ƒÈ_??_x•¨D is at most zero-dimensional, and 

 induces a ƒÈ-morphism ƒÕ of X-S to P(V) whose image Z(to be exact, the 

closure, with its reduced structure, of the image of ƒÕ) is a ƒÈ-surface such 

that R(X) is separable over R(Z).

For linear systems ƒ° with the property (N1), we define (with Z as in
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(N1)):

(1.1) e(ƒ°)=#{points of Spec R(X)_??_R(Z)R(X)}-ƒÂ,

where ƒÂ=1 if dimƒÈ V=3, and ƒÂ=0 if dimƒÈ V>3.

N0) ƒ° enjoys the property (N1) and is free from base points, i.e. the 

homomorphism V_??_ƒÈ_??_1•¨D is surjective.

GS) For the generic point i of P(V*), DƒÅ is a smooth ƒÈ(ƒÅ)-curve.

IR) There is a dense ƒÈ-open set U0 of X such that Dy•¿U0 is a ƒÈ(y)-curve 

for every point y•¸ P(V*) of codimension 1.

IR') Dy is a ƒÈ(y)-curve for every point y •¸ P(V*) of codimension 1.

SR) SR(ƒ°) is a closed set of codimension at least 2 in P(V *)(ƒÈ), where 

SR(E) is the subset of P(V*)(ƒÈ) (ƒÈ is the algebraic closure of ƒÈ) defined as 

follows (which is a closed set of P(V*)(ƒÈ) by Lemma 1.6):

(1.2) SR(ƒ°)=y•¸P(V*)(ƒÈ)
| Dy has a singular point which is not 

ordinary double }
Only in the case char ƒÈ=0, we consider one more property.

SRO) SR(ƒ°)_??_H'•¾F, for a hyperplane H' defined over ƒÈ and a closed 

set F of codimension at least 2 in P(V*)(ƒÈ).

With aid of the above definition, we can state our main result as follows.

THEOREM 1.3. Let ƒÈ be algebraically closed. If ƒ° enjoys the prop

erties (N1), (SR) and (GS) (cf. Remark 1.5), then the generic member DƒÅ of ƒ° 

satisfies the following conditions.

(1.3) Him(J(X),J(DƒÅ/X))=Hom(J(DƒÅ/X),J(X))=0,

(1.4) rk End(J(DƒÅ/X))•…e(ƒ°).

The equality holds in (1.4) if furthermore ƒ° enjoys the property (IR) 

(cf. Proposition 5.1).

To simplify the proof and the notation in the following sections, we 

make the following remarks.

REMARK 1.4. Let ƒÈ be algebraically closed and free from fixed com

ponents. Assume that ƒÔ0•¸X(ƒÈ) is a base point of ƒ°, i.e. ƒÔ0•¸S (cf. the 

definition of (N1)), and that the generic member of ƒ° has a point of multi

plicity m at ƒÔ0. Consider the blowing-up f:X•¨X of X at ƒÔ0, and let E be 

the smooth curve f-1(ƒÔ0). Noting that f*V(•¼H0(X,f*D)) is contained in 

H0(X,f*D_??_I_??_Em)(•¼H0(X,f*D); IE denotes the defining ideal of E), we can 

consider a linear system ƒ°=(f*D_??_I_??_Em,f*V). Then 2 is also free from
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fi xed components and e(ƒ°)=e(ƒ°). Moreover, if ƒ° enjoys the property (N1) 

((GS), (IR), (SR) or (SRO) (in the case char ƒÈ=0)), so does ƒ° respectively. 

The derived normal models of the corresponding generic members of ƒ° and. 

ƒ° are isomorphic to each other. Since, by repeating such a process, one 

obtains a linear system free from base points (elimination of indeterminacy), 

we may assume that ƒ° enjoys the property (No) in order to prove Theorem 

1.3.

REMARK 1.5. It is worth while to show some sufficient condition for ƒ° 

to enjoy the property (GS). For instance, (N0) implies (GS) if char ƒÈ=0, 

but this is no longer the case if char ƒÈ>0. We, however, have the follow

ing implications.

(1.5) (No)+"SR(ƒ°)•‚P(V*)(ƒÈ)"•Ë(GS),

(1.6) (N1)+(SR)•Ë(GS).

Since we impose the condition (GS) on ƒ° in most cases (cf. Theorem 1.3, for 

example), (1.5) and (1.6) are not used in this paper, and we omit the proofs 

of them.

We must check the closedness of SR(ƒ°) used in the definition of the 

property (SR) (cf. (1.2)).

LEMMA 1.6. SR(ƒ°) is a closed set of P(V*)(ƒÈ).

PROOF. First we may assume ƒÈ=ƒÈ. We consider the subset F of 

(X•~P(V*))(ƒÈ) consisting of all the pairs (x,y) such that Dy has a singular 

point at ƒÔ which is not ordinary double. Obviously it suffices to show that 

F is a closed set of (X•~P(V*))(ƒÈ). Let (x,y) be a closed point of X•~P(V*). 

TaƒÈing a set of an open set U•¹ƒÔ of X, elements fi of P(U,_??_x)(i=0,...,r)s 

and an affine space Ar•¹y of P(V*) with a coordinate system (t1,...,tr)

(r=dim P(V*)), we may assume that Du'•¿U has the defining equation fo+

ƒ°ri=1 ti(y')fi (denoted by fy,) on U for every point y'•¸ArƒÈ. Let{D1,D2} be a 

basis of the „C(U,_??_x)-module „C(U,ƒ¦x), where is ƒ¦x is the tangent vector 

bundle of X. Then F•¿(U•~Ar)(ƒÈ) is composed of the elements (x',y') of 

(U•~Ar)(ƒÈ) such that

(1.7) fy'(x')=D1fy'(x')=D2fy'(x')=0,

(1.8)
 (D1Dlfy')(x')(D1D2fy')(x')

(D2Dlfy')(x')(D2D2fy')(x')
=0,
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(cf. [5, Expose XVII, •˜1]). Thus F is closed in (X•~P(V*))(ƒÈ).

q.e.d.

The situations treated so far (and later) may be better understood by 

the following remark.

REMARK 1.7. Let{X0,•c,Xr} be a basis of V and {Y0,•c,Yr} its dual 

basis of V*. Then ƒ°rj=1XjYj is a global section of an invertible sheaf

 p*1D_??_Op*2_??_(1) on X•~ƒÈP(V*). We denote by ƒ¡(ƒ°) the Cartier divisor of 

X•~ƒÈP(V*) defined by the above section of p*1D_??_p*2_??_(1)(ƒ¡(ƒ°) is determined 

independently of the choice of Xi). For a (geometric) point y of P(V*), Dy 

is naturally isomorphic to ƒ¡(ƒ°)•~P(v*) Spec ƒÈ(y) (denoted simply by ƒ¡(ƒ°)y). 

As is easily shown, if ƒ° enjoys the property (No), then ƒ¡(ƒ°) is a smooth ƒÈ

- variety.

•˜ 2. Preliminaries

In this section, we state some results which follow easily from the well 

known facts and are needed later. First recall that, for a smooth projec

tive ƒÈ-variety X, the Albanese variety Alb(X) of X(cf.[8]) is defined 

over ƒÈ, hence hereafter we regard it as an abelian scheme over ƒÈ, as in the 

case of J(X). Furthermore, it is well known that Alb(X) and J(X) are dual 

to each other.

The following proposition connects the theory of correspondences with 

the theory of the homomorphisms of abelian varieties.

PROPOSITION 2.1. Let X and Y be smooth projective ƒÈ-varieties. Then 

one has the following natural homomorphism:

(2.1)

 CorrƒÈ(X,Y)•¨HomƒÈ(Alb(X),J(Y)).

_??_ HomƒÈ(Alb(Y),J(X))

The kernel and cokernel are torsion groups. Furthermore, if both X and 

Y have ƒÈ-rational points, then (2.1) is an isomorphism.

PROOF. First we take a separable closure ƒÈs of ƒÈ. Then, for every 

fi nite Galois extension K such that ƒÈ•¼K•¼ƒÈs, we have the following com

mutative diagram of homomorphisms of G-modules (G=Gal(K/ƒÈ)) with 

exact rows:
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(2.2)

Indeed, aK and cK are induced by the morphism X•¨Spec ƒÈ, bK is the canon

ical surjection, and eK and fK are the natural injections because the Picard 

scheme Pic(Y/ƒÈ) is the coarse moduli of the f unctor PicY/ƒÈ(cf.[12, Chap

ter 0, •˜5]). Hence cK is injective, because X is flat over ƒÈ. For ƒÕ•¸

MorK(K,Pic(Y/ƒÈ)), dKƒÕ is a homomorphism defined over K making the 

following diagram commutative.

(2.3)

(we note that ƒÕop1-ƒÕop2 factors through J(Y)K.) Now the above assertion 

(including the existence of gK) is obvious because dKocK=0. Assume first 

that X and Y have ƒÈ-rational points x and y, respectively. Then eƒÈ and fƒÈ 

are isomorphisms (cf.[12, Chapter 0, •˜5]). Furthermore dƒÈ is surf ective, 

i.e. for every ƒµ•¸HomƒÈ(Alb(X),J(Y)),dƒÈƒÕ=ƒµ with the composition

 ƒÕ:X•¨X•~ƒÈ Spec ƒÈ1x•~x•¨X•~ƒÈX•¨Alb(X)•¨J(Y)•¨Pic(Y/ƒÈ). Hence 

gƒÈ is an isomorphism. Now, we go back to the general case. Let K be a 

finite Galois extension of ƒÈ such that X and Y have K-rational points (note 

that X and Y are smooth over ƒÈ) and set G=Gal(K/ƒÈ). By virtue of the 

definition, we have the following commutative diagram:

(2.4)

and also natural isomorphisms (MK)G•¨(NK)G•©NƒÈ.1) Hence applying 

the "SnaƒÈe Lemma" to MƒÈ•¨(MK)G, we can easily reduce the proposition to 

the following lemma. q.e.d.

LEMMA 2.2. Let Z be a ƒÈ-variety, and K a Galois extension of ƒÈ of 

degree d with G=Gal(K/ƒÈ). Then the kernel and the cockernel of 

a: Pic Z•¨(Pic(ZK))G are annihilated by d (indeed, Ker a=0, and Coker a_??_

1) We denote by MG the submodule of G-invariant elements of M (G is a group 
and M is a G-module).
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H2(G,K•~).2) But the above assertion is sufficient for our use.)

PROOF. ƒ¿ is induced by the morphism ƒÎ:ZK•¨Z. There is a normm 

homomorphism Nm: Pic ZK•¨Pic Z (cf.[11, Lecture 10]), and the restric

tion N'm of Nm to (Pic ZK)G satisfies the conditons: N'm=d and ƒ¿N'm=d (d 

denotes the multiplication by d). Hence Ker ƒ¿ and Coker ƒ¿ are annihilated 

by d. q.e.d.

Next we consider the endomorphism ring of a projective abelian scheme 

A over a Noetherian scheme S. The scheme End(A/S) representing the 

endomorphisms of A over S is a disjoint union of quasi-projective schemess 

over S(cf.[2, No. 221]). Every component of End(A/S) is unramified 

over S. Indeed, for an endomorphism cp of A•~SS',S' being an Artin locall 

scheme over S with closed point s', if ƒÕ induces the identity on A•~s Spec ƒÈ(s'), 

then ƒÕ itself is the identity by [12, Corollary 6.2]. Furthermore every 

component of End(A/S) is proper over S. To see this assertion, we may 

assume that S is the spectrum of a discrete valuation ring, in which case the 

assertion was proved in [7, Theorem 1]. Thus we have:

PROPOSITION 2.3. With the above notation, End(A/S) is a disjoint 
union of S-schemes which are projective and unramified (i.e. finite and un
ramified) over S.

In this paper, we are mainly concerned with the abelian schemes with. 

the following condition E:

DEFINITION. Let A be an abelian scheme over a field ƒÈ. We say 

that A satisfies the condition E if, for every overfield K of ƒÈ, we have

(2.5) EndƒÈ(A)•¨EndK(A).

The following proposition is known. We, however, prove it for the 

reader's convenience.

PROPOSITION 2.4. (i) Let A be an abelian scheme over a separable 

closed field ƒÈ. Then A satisfies the condition E.

(ii) Let AB•¨C be ƒÈ-homomorphisms of abelian schemes over 

ƒÈ, such that Im f=(Ker g)0. Then for every abelian ƒÈ-scheme D, we have 

exact sequences:

(2.6) Hom0ƒÈ(C,D)•¨Hom0ƒÈ(B,D)•¨Hom0ƒÈ(A,D),

(2.7) Hom0ƒÈ(D,A)•¨Hom0ƒÈ(D,B)•¨Hom0ƒÈ(D,C).

2) H2(G,K•~) denotes the second Galois cohomology group of K•~ with respect to G.
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(iii) With the notation and the assumptions of (ii), assume, further

more, that Ker f is a fiinite group scheme and Coker g=0 . Then B satisfies 

the condition E, if and only if so does A•~ƒÈC.

PROOF. (i): This is an immediate corollary to Proposition 2 .3.

(ii) follows easily from the results in [8, Chapter II, •˜1].

(iii): Setting E=C in (2.6), we obtain an isogeny A•~ƒÈC•¨B. 

Thus (iii) is reduced to the case A=0. Furthermore, it suffices to prove 

the only if part because there is an isogeny h:C•¨B defined over ƒÈ such that 

goh=nc for some positive integer n.3) we assume that B satisfies the con

dition E. Take an arbitrary K-endomorphism ƒÕ on C, where K is a finite 

Galois extension of ƒÈ with Galois group G. Then, hoƒÕog=hoƒÕƒÐog for every 

ƒÐ•¸G (ƒÕƒÐ denotes the conjugate of ƒµ with ƒÐ, for every K-homomorphism ƒµ) 

because hoƒÕog•¸EndK (B). Hence ho(ƒÕƒÐ-ƒÕ)og=0. Thus ƒÕƒÐ=w because h 

and g are isogenies. Hence there is a ƒÈ-endomorphism ƒÕ of C such that

 ƒÕ=ƒµk by the theory of descent. Hence C satisfies the condition E (cf. (i)) .

q.e.d.

Finally we prepare the following lemma for later use.

LEMMA 2.5. Let (R,M) be a discrete valuation ring with residue field 

ƒÈ and quotient field K. Assume, for a finite field extension K•¨K', the inte

gral closure R' of R in K' is a discrete valuation ring with maximal ideal 

M' and residue field ƒÈ'. Let A be a projective abelian scheme over R . As

sume that AƒÈ satisfies the condition E. Then we have:

(2.8) EndK(AK)EndK'(AK').

PROOF. Take an endomorphism f•¸EndK'(AK')=End(A/R)(K') .

 Then, by Proposition 2.3, there is an irreducible reduced closed subscheme 

Spec S of End(A/R) such that f extends to a morphism from Spec R' to 

Spec S with a finite unramified torsion-free R-algebra S . Hence S is an 

integral domain, etale over R, such that Spec S_??_RR' is not connected unless 

S_??_RR'_??_R' (cf. [3, Expose I, •˜1, Corollary 5.3]). Since S_??_RR' is in

tegral over S, there is a prime ideal P of S_??_RR' such that P•¿S=0 (cf . [13, 

Corollary (10.8)]). Then for every prime ideal P1 of S_??_RR', there are prime 

ideals Q and Q1 of S_??_RR' such that P_??_Q
, P1_??_Q1, and Q and Q1 lie over the 

:maximal ideal N of S(cf. [13, Corollary (10.9)]). Now ƒÈ•¨S/N
, by the 

hypothesis on AƒÈ. Hence S_??_RR'/N(S_??_RR')_??_(S/N)_??_ƒÈ(R'/MR')_??_R'/MR'

 is Artin local, whence Q=Q1. This implies that Spec S_??_R' is connected
, 

so S_??_RR'_??_R'. Noting that R' is faithfully flat over R , we see that S_??_R.

3) For an abelian scheme C,nc denotes the endomorphism of C induced by multi

plication by n.
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Thus f is induced by an endomorphism of A over R. q.e.d.

•˜ 3. The essential reduction

Our whole theory depends on Theorem 3.2, which enables us, under the 

notation and the assumptions of Theorem 1.3, to reduce our question to the 

case of ƒÈ(ƒÅ)-homomorphisms of the abelian schemes.

First we need the following lemma.

LEMMA 3.1. Let X be a smooth projective surface defined over an 

algebraically closed field ƒÈ, andƒ°'=(D',V') a linear system on X defined 

over ƒÈ. Then J(D'ƒÅ'), ƒÅ' being the generic point of P(V'*), satisfies the condi

tion E, provided that:

(3.1) 

ƒ°' enjoys the property (SR)
, dimƒÈ V'=2, and there are two closed 

points y and z o f P(V'*) such that D'y and D'z are smooth curves inter

secting transversally with each other if D'y•¿D'z•‚ƒÕ.

PROOF. By blowing up the points of D'y•¿D'z, one can easily reduce the 

assertion to the case D'y•¿D'z=ƒÓ, i.e.ƒ°' is free from base points (cf. Remark 

1.4). We consider the morphism f:XY'=P(V'*) associated with ƒ°'. 

Now J(XƒÅ')=J(D'ƒÅ') has semi-stable reduction over Y' because ƒ°' enjoys the 

property (SR) (cf. [4, Expose IX, •˜12]).4) Then every endomordhism•¸

End J(D'ƒÅ') is defined over a field L such that the derived normal model of 

Y' in L is etale over Y' (cf. [15, Theorem 1.1]). Thus J(D'ƒÅ') satisfies the 

condition E because Y'=P1ƒÈ has no non-trivial connected etale coverings.

 q.e.d.

Now we state the main result of this section.

THEOREM 3.2. With the notation and assumptions as in Theorem 1.3, 

assume furthermore that ƒ° enjoys the property (N0). Then J(DƒÅ) satisfies) 

the condition E.

PROOF. We prove the assertion by induction on r=dimƒÈV-1(r•†2). 

For every finite separable extension L of ƒÈ(ƒÅ), let g:YY=P(V*) be the 

normalization of Y in L. Noting that r•†2, we can find a hyperplane Y' of 

Y defined over ƒÈ, such that g-l(Y') is irreducible (cf. the lemma in [9, 

p. 213]) and the linear subsystem ƒ°' of ƒ° corresponding to Y' satisfies the 

condition that; ƒ°' enjoys the property (3.1) in the case ƒÁ=2, and the prop

erties (NO), (SR) and (GS) in the case ƒÁ>2. Then J(DƒÅ'), ƒÅ' being the generic 

point of Y', satisfies the condition E, by Lemma 3.1 in the first case and by

4) XƒÅ' denotes the scheme-theoretic fiber of f over ƒÅ'.
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the induction assumption in the second case. On the other hand, the integrall 

closure R' of R=_??_Y,ƒÅ' in L is a discrete valuation ring because g-1(Y') is. 

irreducible as mentioned above. Since ƒ¡=ƒ¡(ƒ°)•~Y Spec R is a curve over 

R (cf. Remark 1.7 and [12, Chapter 5, •˜2]), J=PicƒÑ(ƒ¡ /R) is an abelian 

scheme over R such that JƒÈ(ƒÅ,)_??_J(DƒÅ') and JƒÈ(ƒÅ)_??_J(DƒÅ) (cf. [12, Chapter 

6, •˜1]). Therefore, we have, by Lemma 2.5:

(3.2) EndƒÈ(ƒÅ)(J(DƒÅ))EndL(J(DƒÅ)).

Hence J(D) satisfies the condition E by Proposition 2.4, (i). q.e .d.

REMARK 3.3. In the case char ƒÈ=0, the conclusion of Theorem 3 .2 

holds good under a weaker condition on X, "ƒ° enjoys the properties (No) 

and (SRO)." Indeed, since A1ƒÈ has no non-trivial etale coverings (cf . the 

proof of Lemma 3.1), we can prove the assertion by modifying the proofs 

of Lemma 3.1 and Theorem 3.2.

•˜ 4. On ƒÈ(ƒÅ)-rational correspondences of DƒÅ

In this section, we will use the notation and terminology of Definition 

1.2. So X,ƒ°,ƒÈ,ƒÕ,Z,etc. are as in Definition 1.2. Furthermore
, we assume 

that #ƒÈ=•‡ and ƒ° enjoys the properties (N1) and (GS).

We consider natural homomorphisms (cf. Proposition 2.1):

(4.1) ƒ¿:CorrƒÈ(X,X)CorrƒÈ(ƒÅ)(X,DƒÅ),

(4.2) ƒÀ:CorrƒÈ(X,X)CorrƒÈ(ƒÅ)(D,ƒÅ,DƒÅ).

Concerning ƒ¿ and ƒÀ, we will prove the following.

PROPOSITION 4.1.

(4.3) Coker ƒ¿=0,

(4.4) rk Coker ƒÀ•…e(ƒ°).

The equality holds in (4.4) if furthermore ƒ° enjoys the property (IR) .

The proof is divided into several steps. Here we treat ƒÀ only ((4 .3) is 

proved much more easily than (4.4) by similar arguments). We first 

consider an ample effective Cartier divisor C of X such that C_??_D0,5' Do be

ing a member of associated with a ƒÈ-rational point of P(V*)
, and U=X-C 

is etale over Z (such a C does exist by the property (N1) of ƒ°) . By taking

5) C_??_Do means that C-D0 is an effective Cartier divisor.
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a suitable coordinate system of pr(ƒÁ=dimƒÈV-1), we may assume that ƒÕ|U 

is given by UƒÔ•¹(1:fl(x):•c:fr(x))•¸Pr(f1,•c,fr are ƒÈ-linearly inde

pendent elements of A=ƒ¡(U,_??_X)) and such that:

f2_??_1-1_??_f2 is prime in A_??_ƒÈA (cf. Lemma 4.3).6)

We denote furthermore by H the closed subscheme of U•~AƒÁ(AƒÁ=affine ƒÁ

- space) with the defining equation T1+f1+ƒ°ƒÁj=2 fjTj, where {T1,•c,Tr} is a

 coordinate system of AƒÁ. Then we want to determine the divisor class group 

of Y=H•~AƒÁH, where HAƒÁ is the second projection. By the definition, 

B=ƒ¡(Y,_??_Y) is expressed as follows:

(4.5)

where we set g'=g_??_1 and g"=1_??_g for arbitrary g•¸A. First of all, we 

must check the normality of B.

LEMMA 4.2. B is a normal integral domain flat over k[T1,•c,TƒÁ].

PROOF. First we note that B is Cohen-Macaulay because A_??_ƒÈA is a 

regular ring (cf. [13, p. 89]). Hence Y is flat over AƒÁ, because Ys is a pure 

two-dimensional ƒÈ(s)-scheme for every geometric point s of AƒÁ (cf. [1, 

Proposition (15.4.2)]). On the other hand, the generic fiber of Y over AƒÁ can 

be considered as an open subscheme of the generic member of ƒ°. Hence 

the generic fiber is integral by the hypothesis. Thus B is an integral domain 

fl at over k[T1,•c,Tr]. We denote A_??_ƒÈA[T2,•c,Tr] by A_??_ƒÈA[T], and set 

I=A_??_ƒÈA(f'1-f'1',•c,f'ƒÁ-f"ƒÁ). Then I is a semi-prime ideal whose prime 

divisors are of 1ieight 2, because U•~pƒÁU=Spec A_??-ƒÈA/I is etale over U. 

Let p be a prime ideal of height 1 of B. If p_??_IB, then Bp is normal by the 

following (1<j•…ƒÁ):

(4.6)

Assume that p•½IB, i.e. there is a prime ideal _??_ of height 2 of A_??_ƒÈA[T] 

such that _??_•½IA_??_ƒÈA[T] and _??_B=p. By the remark above, there is a prime 

divisor P of I such that PA_??_ƒÈA[T]=_??_. Hence, noting that I is semi-prime,

6) To be exact, we do not use this property before Lemma 4.3, and prove in Lemma 

4.3 the possibility of choosing {f1,•c,fr} with this property. Thus we may assume this 

property after Lemma 4.3.
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one sees easily the following:

(4.7) 2A®kA[T]Z(f;-f7)T.
j=2

Thus Bp is regular (cf. [13, Theorem (25.18)]), whence B is normal (cf. [13, 
Theorem (12.9)]). q.e.d.

We denote by P1,•c,PS the prime divisors of I in A_??_ƒÈA given in the 

above proof, and also denote by pj, the ideal PjB (j=1,•c,s), where s=

#{Spec R(X)_??_R(z)R(X)}. Then:

LEMMA 4.3. We can take an element g of V-ƒÈ such that g'-g" is 

prime in A_??_®ƒÈA. Assume that f'2-f"2 is prime in A®ƒÈA. The prime divi

sors of f'2  f"2 in B are p1,•c, and ps, in the case ƒÁ=2; p1,•c,ps, and an 

ideal p0 such that po _??_ IB and the multiplicity of f'2-f"2 at p0 is 1, in the case 

ƒÁ >2.

PROOF. The second part is immediate, and we omit the proof. Let 

be ƒµ the morphism of Y to AƒÁ-1 such that ƒµ*:ƒÈ[T2,•c,TƒÁ]B nat.(cf (4.5)). 

Since ƒµ-1(a)_??_Spec A_??_ƒÈA/(g'-g") with g=f1+ƒ°ƒÁ j=2 ƒ¿jfj for every ƒÈ-rational 

point ƒ¿=(ƒ¿2,•c,ƒ¿r)•¸AƒÁ-1, we have only to prove that ƒµ-1(t) is geometrically 

integral over ƒÈ(t) for the generic point t of AƒÁ-1 (cf. [16, p. 123]). Fur

thermore it suffices to show that {f'l-f"1,•c,f'ƒÁ-f"ƒÁ}_??_ƒÈ(Q(B)p) and 

tr. degƒÈƒÈ(f'1-f"1,•c,f'ƒÁ-f"ƒÁ)•†2, where Q(B) denotes the quotient field of 

B of characteristic p (cf. [9, p. 213•`p. 214]). Now both of them are the 

case, by (4.6) and the fact that A_??_ƒÈA/I is etale over A (cf. the proof of 

Lemma 4.2). q.e.d.

Now, as mentioned before, we may assume that f'2-J"2 is prime in 

A_??_ƒÈA hereafter. Furthermore we assume that ƒÁ>2 hereafter, because 

similar arguments can be applied to the case ƒÁ=2. With these prelimi

naries, we can calculate Cl B.

LEMMA 4.4. We have:

(4.8)  ~~0A®kA-±C1B(thz)cij=1

where Cl A_??_ƒÈAC1 B is induced by the morphism Y=H•~AƒÁH_??_U•~ƒÈU

•~ƒÈAƒÁp12U•~ƒÈU.

PROOF. First we have a commutative diagram with exact rows:
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(4.9)

As for the definition of the homomorphisms and the exactness of the first: 

row, it is sufficient to note that B1X.(A®JCA1X

f2~f2'f2`f2/(cf.

(4.6) and Lemma 4.3). ƒÁ is an isomormphism because f2'-f2" is prime in. 

A_??_ƒÈA (cf. [17, Chapter I, Theorem 6.3]), and ƒÂ is an isomorphism by 

(4.6) (cf. [17, Chapter I, Theorem 6.5]). Since (A®kA['])Xf
2-f2/ 

is generated by (A_??_ƒÈA)•~ and f2'-f2", one immediately derives (4.8) from (4.9) 

(cf. Lemma 4.3). q.e.d.

We consider the following diagram of natural homomorphisms:

(4.10)

where we identify Spec ƒÈ[T1,•c,TƒÁ] with an open set of P(V'*) by (t1,•c,tƒÁ)

_??_(t1:1:t2:•c:tƒÁ). We note that a is surjective by [17, Chapter I, 

Theorem 6.3], and ƒÀ and ƒÁ are surjective by the definition of the corre

spondence rings.7) Thus (4.4) in Proposition 4.1 is proved by the diagram, 

(4.10).

Let us assume furthermore that ƒ° enjoys the property (IR). Then we 

may assume that U was taken so small at the beginning of the proof of 

Proposition 4.1 that U•¿Dy was geometrically integral for every y•¸P(V*) 

of codimension 1. The homomorphism ƒ¿ in (4.10) is an isomorphism, if we 

show that FB is prime for every prime element F•¸ƒÈ[T1,•c,TƒÁ] (cf. [17,

7) This follows from the following well known fact: For an open set R of a locally 

factorial integral scheme S, there is a natural isomorphism, Pic S/ƒ°IZIPic R, where:

 I runs over the irreducible components of S-R of codimension 1.
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Chapter I, Theorem 6.3]). However, this follows from the fact that 

(DynU)•~k(y)(Dy(1U) is integral for the point yeP(V*) corresponding to F, 

because B is flat over k[T1,•c,Tr] by Lemma 4.2. Thus both ƒ¿ and ƒÂ 

are isomorphisms. Since Ker ƒÀ=p1* Pie (U)•~p2* Pie (U) and Ker ƒÁ=

p1* Pie (D~(1U)•~p2* Pic (D~flU), ƒÃ in (4.10) is an isomorphism by the follow

ing lemma. Hence Proposition 4.1 is proved.

LEMMA 4.5. We have a natural surjection,

(4.11) PieU-Pic(D1flU).

PROOF. We note that:

(4.12)

Hence (4.11) is a surjection because we have that U=Spec A and that

(4.13)

(cf. [17, Chapter I, Theorem 6.3 and 6.5]). q.e.d.

We can interpret Proposition 4.1 in terms of homomorphisms of abelian 

schemes.

THEOREM 4.6. We have:

(4.14) Homk(,)(J(X),J(DJ/X))=Homk(~)(J(D,/X),J(X))=0,

(4.15) rk EndƒÈ(ƒÅ)(J(DƒÅ/X))•…e(ƒ°).

The equality holds in (4.15) if furthermore ƒ° enjoys the property (IR).

PROOF. By Proposition 2.4, (ii), we have an exact sequence:

(4.16) 
HomƒÈ0(ƒÅ)(Alb(X),J(X))HomƒÈ0(ƒÅ)(Alb(X),J(D))

HomƒÈ0(ƒÅ)(Alb(X),J(DƒÅ/X))0.

Hence HomƒÈ0(ƒÅ)(Alb(X),J(DƒÅ2/X))=0 (cf. Proposition 2.1 and Proposition 

4.1), whence HomƒÈ0(ƒÅ)(f(DƒÅ/X),J(X))=0, where f(DƒÅ/X) denotes the dual 

abelian scheme (over ƒÈ(ƒÅ)) of J(DƒÅ/X). By these two equations, (4.14) is 

proved because Alb(X) and f(DƒÅ/X) are isogeneous over ƒÈ to J(X) and 

J(DƒÅ/X), respectively (cf. [GIT, Proposition 6.13] and [10, p. 62]), and 

the terms in (4.14) are torsion free (cf. [10, Chapter IV, Theorem 3]). 

Furthermore, by the same equalities and Proposition 2.4, (ii), one easily 

obtains the following exact sequence:
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(4.17)

Then (4.15) and the last assertion are proved by (4.17) and Proposition 4.1, 
by the same argument above. q.e.d.

REMARK 4.7. In order to compare Theorem 4.6 with the assertion II 

in [19], we express e(ƒ°) for a net ƒ° (i.e. dimk V=3) in another way: The 

restriction to D~ of the rational map associated with ƒ° induces a morphism 

of D0 to Y=P(V)_??_kk(v). We denote by E the divisorial part of the closed 

subscheme D2•~YD0 of D~•~k(~)D~. Then E> the diagonal 4 of D~•~k(2)D
2 

and E-•¢ is the "correspondence (n-1, n-1)" appearing in the assertion I 

in [19]. Furthermore e(ƒ°) is the number of the irreducible components of 

(E-•¢)red in D~•~k(7)D7. To prove the assertion II, O. Zariski calculated 

EndƒÈ0(ƒÅ) (J(DƒÅ)) after having quoted a result by F. Seven, "EndƒÈ0(ƒÅ) (J(DƒÅ))

EnJ0(J(D0))" which holds only under some additional assumption (cf. 

Remark 6.2). Thus it should be noted that (4.15) is already obtained in [19] 

if H1(X,D1)=0 and dimk V=3.

•˜ 5. The proof of Theorem 1.3

Now, by the results in the preceding sections, Theorem 1.3 is proved 

immediately. Indeed, we may assume that enjoys the property (NO) 

(Remark 1.4). Then J(D0) satisfies the condition E (Theorem 3.2), whence 

so does J(X)•~kJ(DJX) (Proposition 2.4, (i) and (iii)). Hence Theorem 1.3 

follows from Theorem 4.6.

As a supplement to Theorem 1.3, we have:

PROPOSITION 5.1. (i) Let X and ƒÈ be as in Theorem 1.3, and ƒ°=

(D,V) a linear system on X defined over ƒÈ with the properties (N,), (IR) 

and (GS). Then:

(5.1)

(ii) In the case char k=0, the conclusions of Theorem 1.3 hold good 

under a weaker assumption on ƒ°, "ƒ° enjoys the properties (N1), (SRO) and 

(GS)."

PROOF. (i) is an immediate corrollary to Theorem 4.6. By Remark 
3.3, (ii) is proved by the same argument as above. q.e.d.

We formulate as a corollary a special case of Theorem 1.3.
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COROLLARY 5.2. Let X be a smooth projective surface in PC such that 
J(H(1X/X)*0 for the generic hyperplane H. Then there is a subset of 
the first category of the dual space PN(C) such that every H of PN(C) 
intersects transversally with X and satisfies the conditions,

(5.2) End J(H•¿X/X)=Z,

(5.3) Hom (J(X),J(H•¿X/X))=0.

PROOF. We may assume that X is not contained in any hyperplane. 

Let ƒ° be the linear system on X induced by |&(1)| on PNC. Then ƒ° enjoys 

the properties (N0), (GS), and (SR) (cf. [5, Expose XVIII]), and we see: 

that e(ƒ°)<1. Hence the generic hyperplane H satisfies the conditions (5.2) 

and (5.3) by virtue of Theorem 1.3. Let U be the maximal open subscheme

•‚ƒÓ of PNC such that the morphism ƒ¡(ƒ°)PNC is smooth on g-1(U) (cf. 

Remark 1.7). Let AU be the cokernel abelian scheme of the homomor 

phism of abelian schemes over U,J(X)•~U=Pic0(X•~U/U)Pic0(g-1(U)/U). 

The points of End(A/U) which do not represent multiplications by integers 

form an open and closed subscheme S (Proposition 2.3). Similarly to 

End(A/U), the scheme HomU(J(X)•~U,A) of U-homomorphisms of J(X)•~U 

to A is a disjoint union of countably many schemes which are finite over U. 

The set-theoretic image W of SiLHomU(J(X)•~U,A)U is a union of count

ably many proper closed subsets of U because it does not contain H (Propo

sition 2.3). Then ={the closed points of PNC contained in WU(PNC-U)} is 

the required one. q.e.d.

§6. Examples and applications

To begin with, we give an example:

PROPOSITION 6.1. Let be the linear system (COP(6),V) on P2k(=
Proj k[X0, X1, X2]) defined over an algebraically closed field of characteristic 
0 such that V=kX61+kX20X21X22+kX60+kX30X32+kX62. Then enjoys the prop
erties (N0), (IR') and (GS); the generic member C of ', defined over K=
R(P(V*)), enjoys the properties:

(6.1)

(6.2)

where S is an indeterminate over Q.

PROOF. The proof of the assertions except (6.1) and (6.2) is straight-



126 SHIGEFUMI MORI

forward, hence we omit it. Setting Z=the image of the morphism as

sociated with ƒ°, we see that:

(6.3)

where U is an indeterminate over R(P2). Since ƒ° enjoys the properties 

(N0), (IR) and (GS), we see, by Theorem 4.6, that rk EndƒÈ(J(C))=6. Fur

thermore, we see that an automorphism ƒÐi(i=0,•c,5) of P2 over Z, defined 

by ƒÐ*iX0=ƒÆ0iX0, ƒÐ*iX1=X1 and ƒÐ*iX2=ƒÆ-iX2 (ƒÆ is a primitive 6-th root of unity), 

induces an automorphism (denoted also by ƒÐi) (i=0,...,5) of J(C); these 

ƒÐi'5 form a basis over Q of End0K (J(C)) (cf . Proposition 2.1 and §4). Hence 

(6.1) follows immediately. On the other hand, C is defined by an equa

tion aX61+bX20X21X22+cX60+dX30X32+X62=0, hence K=k(a,...,d). Let PiE 

Aut (J(C)) (i=0,...,5) be induced by a K(c1/6)-automorphism of P2 (denoted 

also by pi) defined by p*iX0=0ic-1/6X2, p*iX1=X1, p*iX2=8-ic1/6X0. Now p1op0-1=

al, whereas ƒÏl is a conjugate of ƒÏ0 over K. Thus ƒÏ0 AutK (J(C)), hence we 

have (6.2). q.e.d.

REMARK 6.2. Proposition 6.1 shows the insufficiency of the assump

tion of the assertion in [18, p. 539] to the effect that, if a linear system ƒ°=

(D,V) on a smooth projective surface (both defined over C) enjoys the prop

erties (N0), (IR') and (GS), then D0, being the generic point of P(V*), satis

fi es the condition: End0ƒÈ(ƒÅ)(J(DƒÅ))End0(J(DƒÅ)).

Let ƒÕ:E1E2 be an etale double covering of an elliptic curve E2 defined 

over an algebraically closed field ƒÈ such that char kƒ°2. Taking an in

vertible sheaf L of degree g (g•†3) on E2, we define a complete linear system 

ƒ°2=(D,V) on X2=E2•~P1 associated with D=pr*1L®pr*2D(2) (i.e. V=

H0(X2,D)). We define, furthermore, a linear system 1=(*D,*V) on 

X1=E1•~P1, where ir=cp•~1p. Then, as is easily seen, ƒ°2 induces a Lefschetz 

immersion (cf. [5, Expose XVII]). Thus ƒ°1 and ƒ°2 enjoy the properties 

(N0), (SR) and (GS) because jr is an etale morphism. Hence, by applying 

the adj unction formula, we see that the generic member C1(or C2) of ƒ°1(or

 ƒ° 2) is a smooth projective curve of genus 2g+1 (or g+1, respectively) defined 

over K=R(P(V*)). Therefore, the Prym variety P(C1/C2) associated with 

the etale double covering C1C2 is g-dimensional. Now we assert:

THEOREM 6.3. We have

(6.4) End (P(C1/C2))=Z.

PROOF. Since e(ƒ°1)=2 and e(ƒ°2)=1, it follows from the above prelimi-
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varies that End J(C2/X2)=Z and rk End J(C1/X1)•…2. Then we have a 

commutative diagram of natural homomorphisms

(6.5)

with exact rows (in the category of commutative group schemes over K). 

Since ƒ¿ is dominant and Ker ƒÀ is a finite group scheme, KerƒÁ is also a finite 

group scheme. Hence the abelian schemes Coker ƒÀ and Coker ƒÁ are iso

genous to each other, and end (CokerƒÁ)=Z. On the other hand, P(C1/C2) 

is isogenous to Coker ƒÀ, whence End (P(C1/C2))=Z. q.e.d.

Let ƒ³' be the normal surface Proj (k[X,Z,Y]) over a field k (char k=

p•†0) with deg X=deg Z=1 and deg Y=g+1 (geN) and ƒ°' the linear sys

tem (D',V'), where D'=U5,(2g+2) and V'=H0(Z',U5,(2g+2)) . 'D' has a 

unique singular point P=(0:0:1), and by blowing up l' with the defining 

ideal IP of P, we obtain a smooth surface ƒ³ with a morphism ƒÎ:ƒ³ƒ³'. We 

denote ƒÎ*ƒ°'=(ƒÎ*D',ƒÎ*V') by =(D,V). For a polynomial H=ƒ¿Y2+

G(X,Z)Y+F(X,Z)eV'-{0} (aek,G(X,Z)ek[X,Z]g+1 and F(X,Z)

 k[X,Z]2g+2), we denote by DH and D'H the corresponding members of ƒ° and 

ƒ° '
, respectively. If ƒ¿•‚0, obviously DHD'H. If ƒ¿=0, DH can be ex

pressed, in a neighborhood of ƒÎ-1(P), as follows: ƒÎ-1(P) is covered by two 

open sets U1 and U2 of ƒ³. U1_??_Spec k[X1,Z1] with X1=Xg+1/Y and Z1=

Z/X. DH•¿U1 is defined by (H1•ß)G(1,Z1)X1+F(1,Z1)X21=0. U2_??_

Spec k[X2,Z2] with X2=X/Z and Z2=Zg+1/Y. DH•¿U2 is defined by (H2•ß) 

G(X2,1)Z2+F(X2,1)Z22=0. Hereafter we fix these notation and terminology.

LEMMA 6.4. enjoys the properties (N0), (SR) and (GS).

PROOF. It is obvious that enjoys the properties (N0) and (GS). Then 

we may assume that ƒÈ is algebraically closed. In view of the above pre

liminaries, we have:

(6.6) SR(S){K•~H|a=0, G(X, Z) has no double factors, and F(X,Z) 
and G(X,Z) has no actors in common }=~.

Thus SRC()z5{k•~H|a=0}. If p2, we have:

(6.7) SR(X) (1 {k•~H|a~0}C{k•~H|4aF-G2 has a triple factor, a~0},
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and the right side of (6.7) is a proper closed subset of {ƒÈ•~H|the discriminant 

of (4ƒ¿F-G2)=0, ƒ¿•‚0}.8) On the other hand, in the case ƒÏ=2, we have:

(6.8) SR(S)•¿{ƒÈ•~H|ƒ¿•‚0}_??_{ƒÈ•~H|ƒ¿•‚0, the discriminant of G=0}.

By considering the element ƒÈ•~(Y2+Xg+1Y+X2g+2+XZ2g+1), one easily sees 

that the inclusion in (6.8) is strict. Hence ƒ° enjoys the property (SR) in 

each case. q.e.d.

Thus we have:

THEOREM 6.5.9) The generic member DƒÅ of ƒ° is a smooth hyperelliptic 

curve of genus g and satisfies the following condition.

(6.9) End (J(DƒÅ))=Z.

PROOF. The first assertion is obvious. By the base change ƒÈƒÈ, we 

may assume that ƒÈ is algebraically closed. Since dimk V>3 and ƒ°' induces 

an immersion of ƒ³', e(ƒ°)=1. Hence (6.9) follows from Theorem 1.3 and 

Lemma 6.4 (J(X)=0 since ƒ³ is a rational surface). q.e.d.

We have a more concrete example at least in the case ƒÏ=0 (Proposition 

6.6, (iii)).

PROPOSITION 6.6. If ƒÈ is an infinite field such that ƒÏ•‚2, we have:

(i) Let A(X,Z)eƒÈ[X,Z]2g+2 be such that Z2•~A and d/dX A(X,1)•‚0.

 We denote by ƒ°0 the linear subsystem of ƒ° corresponding to the ƒÈ-vector sub

space V0 of V generated by Y2+A(X,Z), Zg+1Y, and Z2g+2 Then ƒ°0 enjoys 

the properties (N1) and (GS), and e(ƒ°) is the number of the distinct prime 

factors of 1/X-Z{A(X,1)-A(Z,1)} in ƒÈ[X,Z].

(ii) If we set A=X2g+1Z-XZ2g+1, ƒ°0 in (i) enjoys the properties (N1), 

(IR) and (GS), and satisfies the following conditions: SR(?0) is a hyper

plane if ƒÏ•~g; e(ƒ°)=1 if ƒÏ•~(2g+1); e(ƒ°)=2g if ƒÏ=2g+1.

(iii) Let DƒÌ be the generic member of ƒ°0 in (ii), ƒÌ being the 

generic point of P(V*0). Then: If ƒÏ=0, End (J(D1))=Z; if ƒÏ=2g+1,

8) Note that this set and the one on the right side of (6.8) are irreducible alge

braic sets. This is due to the following fact: For a positive integer n, the set of 

points (ƒ¿1,•c,ƒ¿)eAnƒÈ defined by the vanishing of the discriminant of the polynomial 

Xn+>n i=1 ƒ¿iXn-i is an irreducible closed set.

9) We have used ƒ³ and ƒ° in order to use them again in Proposition 6.6. It is pos

sible to give a simpler proof by applying Theorem 1.3 to the complete linear system 

|ƒÏ*1_??_(2)_??_ƒÏ*2_??_(g+1)| on P1k•~P1k.
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rk End (J(DƒÌ))>e(~1),10)

(iv) Let ƒ°1 be the linear subsystem of ƒ° corresponding to the ƒÈ-vector 

subspace V1 of V generated by Y2, Z2g+1, X2g+1Z, XZ2g+1, and Z2g+2, Then ƒ°1 

is a simple linear system (i.e. ƒ°1 induces a birational map of to its image) 

with the properties (N1), (IR) and (GS); if p=2g+1, the generic member 

DƒÄ of ƒ°1,ƒÄ being the generic point of P(V*1), satisfies the condition: 

rk End (J(DƒÄ))>p.

PROOF. (i): It suffices to show that, if we set ƒµ0=the image of the 

rational map induced by ƒ°0, we heve:

(6.10) the total quotient ring of

where X, X', Y, Y' are indeterminates over ƒÈ.

Since the proof of (ii) is straightforward, we omit it.

(iii): The first assertion follows from (ii) and Proposition 5.1, (ii). If 

p=2g+1, we see the (D~)kNC«,, where C is the curve of ƒ³' defined by 

Y2+XpZ-XZp=0. Since P=SL2(F~) acts on C (hence on De) on the left 

by 6*Y=Y, 6*X=aX+bZ and 6*Z=cX+dZ6=abe we have a ,

 homomorphism p:PAutk~)(J(D1)). On the other hand, p=(1 1 0 1 (•‚1)
J(DƒÌ)) 

generates Endk0(ƒÌ)(J(DƒÌ)) as a Q-algebra (cf. the proof of Proposition 6.1), 

whence Autk(ƒÌ)(J(DƒÌ)) is abelian. Hence, if the second assertion were false, 

Autk«) (J(DƒÌ)) (hence ƒÏƒ¡) is abelian. Now ƒÏƒ¡_??_ƒ¡ or PGL2(FƒÏ), whence ƒÏƒ¡ 

is not abelian in any case. Thus (iii) is proved .

(iv): This assertion is obvious, because (Dc)ku )N Ck~) with C given in 

(iii). q.e.d.

REMARK 6.7. (i) Proposition 6.6, (ii) and (iii) show that the assertion 

5.1, (ii) is no longer true if char ƒÈ>0.

(ii) O. Zariski asserted in [19] that, for a simple linear system on a 

smooth projective surface X (both defined over C) such that H1(X,VX)=0, 

the generic member C of ƒ° satisfies the condition: End (J(C))=Z. How

ever, the author couldn't understand the proof, and found, at least, that the 

above assertion cannot be generalized to the case char ƒÈ>0 (Proposition 6.6, , 

(iv)).

Finally we remark that we have restricted ourselves to linear systems

10) More generally, we can show that End (J(DƒÌ))=Z if ƒÏƒÏ2g(2g+1) . We will pub

lish the proof somewhere.
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on surfaces due to the following fact (cf. [14]): If a linear system ƒ° on 

a smooth projective variety X, both defined over C, is free from base points 

and the image of the associated morphism is at least of dimension 3
, then 

we have J(D/X)=0 for every smooth member D of ƒ° .
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