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Expressed on the endothelial cell (EC) surface of blood vessels, the glycocalyx

(GCX), a mixture of carbohydrates attached to proteins, regulates the access of

cells and molecules in the blood to the endothelium. Besides protecting endothelial

barrier integrity, the dynamic microstructure of the GCX confers remarkable functions

including mechanotransduction and control of vascular tone. Recently, a novel

perspective has emerged supporting the pleiotropic roles of the endothelial GCX

(eGCX) in cardiovascular health and disease. Because eGCX degradation occurs in

certain pathological states, the circulating levels of eGCX degradation products have

been recognized to have diagnostic or prognostic values. Beyond their biomarker

roles, certain eGCX fragments serve as pathogenic factors in disease progression.

Pharmacological interventions that attenuate eGCX degradation or restore its integrity

have been sought. This review provides our current understanding of eGCX structure

and function across the microvasculature in different organs. We also discuss disease or

injury states, such as infection, sepsis and trauma, where eGCX dysfunction contributes

to severe inflammatory vasculopathy.
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INTRODUCTION

The vascular endothelial surface is coated by the GCX matrix that confers important functions
in circulatory homeostasis (Weinbaum et al., 2007). The endothelial GCX (eGCX), first visualized
in the late 1960s after the invention of transmission electron microscope (Luft, 1966), is mainly
formed by proteoglycans and glycoproteins, core proteins anchored to the ECmembrane that serve
as a foundation for the rest of the glycocalyx constituents. Proteoglycans, principally syndecans
and glypicans, are decorated by glycosaminoglycan (GAG) chains such as heparan sulfate and
chondroitin sulfate (Li et al., 2012). GAGs are characterized by long linear polysaccharides
of repeating disaccharide units with a hexosamine and either an uronic acid or a galactose

Abbreviations: BBB, blood–brain barrier; DAMP, danger-associated molecular pattern; EC, endothelial cell; eNOS,
endothelial nitric oxide synthase; eSOD, endothelial superoxide dismutase; GAG, glycosaminoglycan; eGCX, endothelial
glycocalyx; LPS, lipopolysaccharide; NO, nitric oxide; ROS, reactive oxygen species; SAE, sepsis–associated encephalopathy;
TRPs, transient receptor potential channels.
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(Esko et al., 2009). The amount of GAG chains, length and
molecular modifications by sulfation and/or (de)acetylation
provide the eGCX an extensive source of structural
rearrangements. Notably, heparan sulfate proteoglycans are
the most prominent members expressed on the surface of
the endothelial cells, accounting for 50–90% of the total
endothelial proteoglycans (Ihrcke et al., 1993). The majority
of the interactions between syndecans and extracellular matrix
molecules, growth factors and cell adhesion molecules seem to
be mediated by their heparan sulfate chains through electrostatic
interaction (Bernfield et al., 1992; Stringer and Gallagher, 1997).
Unlike other eGCX constituents, hyaluronic acid is a linear,
non-sulfated GAG that interacts with the cell surface receptor
CD44, a glycoprotein (Aruffo et al., 1990). The glycoproteins
are highly branched short carbohydrate chains (2–15 sugar
residues) capped with sialic acid or a fucose, which mainly
function as either endothelial adhesion molecules or components
of the coagulation system (e.g., selectins, immunoglobulins, and
integrins) (Figure 1). Further detailed structure and specific
components of the eGCX are reviewed elsewhere (Pries and
Kuebler, 2006; Tarbell and Pahakis, 2006; Reitsma et al., 2007;
Weinbaum et al., 2007; Esko et al., 2009). It is worth noting that
the eGCX composition is subject to a highly dynamic regulation
and constant replacement or re-arrangement of molecules,
ranging from enzymatic degradation (“shedding”) to de novo
biosynthesis of new molecules and to recruitment of circulating
molecules from the blood.

In the following sections, we will focus our discussion on the
eGCX as an active component of the EC barrier, its functions, and
structural variations within the vascular tree and across organs.
Furthermore, we will also summarize the new findings from
eGCX research with respect to how eGCX degradation leads to
certain vascular pathologies.

The eGCX: An Active Layer Without a
Passive Role
The eGCX matrix is an integral component of the vascular
wall. Apart from being a physical barrier, the eGCX also
plays an effective role in modulating vascular homeostasis.
Historically, the eGCX was considered to function as an
additional physical barrier between the vessel lumen and
the EC membrane (Curry and Adamson, 2012); however,
solid experimental evidence has shown an important
physiological role for the eGCX in performing a variety of
microvascular functions such as regulating vascular permeability,
mechanotransduction and leukocyte transmigration (Ihrcke
et al., 1993; Davies, 1995; Baldwin and Thurston, 2001;
Constantinescu et al., 2003; Curry, 2005; Tarbell and Ebong,
2008; Lopez-Quintero et al., 2009; Lennon and Singleton, 2011;
Curry and Adamson, 2012).

The eGCX is one of the major determinants in maintaining
endothelial barrier function by acting as an additional molecular
filter for the endothelium. The eGCX modulates vascular
permeability and hydraulic conductivity by limiting the flux of
water and macromolecules (Curry and Michel, 1980; Adamson,
1990; Curry, 2005; Lennon and Singleton, 2011; Curry and

Adamson, 2012). It also acts as a vascular barrier through
modulation of molecular binding to the EC surface due to the
high density of anionic charges on its GAGs side chains. The
net negative charge of the eGCX carried by sulfate residues
along the GAG chains favors the docking (adsorption) of
positively charged molecules (Schnitzer, 1988; Lieleg et al., 2009).
Thus, the eGCX regulates vascular permeability by restricting
circulating molecules from strongly attaching to the endothelium
based on their net charge. Importantly, the molecular size (70–
kDa cutoff) is also relevant in determining the penetration
of molecules into the eGCX layer, as much as chemical
binding (Henry and Duling, 1999; Vink and Duling, 2000;
Curry and Adamson, 2012).

Previous studies using perfusion models or intravital
microscopy techniques found that eGCX damage by heparinase
causes microvascular leakage (Rehm et al., 2004; Jacob et al.,
2006). Similar results were found using genetic knock down
of a specific eGCX component (Voyvodic et al., 2014). In this
regard, increased hydraulic conductivity (Lp) of microvessels
after removal of the eGCX or plasma proteins has also been
shown (Huxley and Curry, 1985; Adamson and Clough, 1992;
Weinbaum et al., 2007).

The eGCX plays a pivotal role in mechanotransduction
together with other sensors in the endothelium, including G–
protein–coupled receptors (Zou et al., 2004; Mederos y Schnitzler
et al., 2008), Piezo and transient receptor potential (TRP)
channels (Martinac, 2004; Coste et al., 2010; Dragovich et al.,
2016), caveolar structures (Rizzo et al., 1998), and integrins and
focal adhesions (Ringer et al., 2017). Blood flow exertsmechanical
tangential forces to the endothelial surface such as shear stress,
which is sensed by the eGCX and triggers the production of nitric
oxide (NO), an important modulator of vascular tone (Davies,
1995; Dimmeler et al., 1999; Tarbell and Ebong, 2008; Fu and
Tarbell, 2013; Zeng et al., 2018). The ability of the eGCX to
reorganize the actin cytoskeleton under shear forces has been
demonstrated in studies using EC monolayers as well as in vivo
approaches. The eGCX core protein syndecan-1 interacts with
cytoskeletal proteins through a highly conserved tyrosine residue
in the syndecan family (Carey et al., 1996). Also, syndecan-
4 acts synergistically with integrins to assemble and rearrange
actin stress fibers to orchestrate cell adhesion and focal contact
formation (Echtermeyer et al., 1999; Bass et al., 2007; Multhaupt
et al., 2009). Interestingly, while syndecans are the main effector
in cell adhesion or shape changes via their interaction with
the cytoskeleton, glypicans mediate flow–induced endothelial
NO synthase (eNOS) activation, based on their location at
the endothelial membrane microdomains where caveolae reside
(Ebong et al., 2014; Zeng and Liu, 2016; Bartosch et al., 2017).
Prior studies with cultured ECs have shown that breakdown of
heparan sulfate alters shear stress and impairs NO production
(Florian et al., 2003); similar responses were also observed
in vivo on canine femoral and rabbit mesenteric arteries, where
infusion of hyaluronidase (to degrade hyaluronic acid GAGs)
or neuraminidase (to remove sialic acid residues), respectively,
reduced flow–dependent vasodilation, which is mediated by NO
release (as in the majority of vascular beds) (Pohl et al., 1991;
Mochizuki et al., 2003).
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FIGURE 1 | Structure and functions of the eGCX. Schematic representation of the main components and functions of the endothelial glycocalyx. The eGCX is

composed of proteoglycans, with long glycosaminoglycan side-chains (GAG-chain) and glycoproteins, with short branched carbohydrate side-chains. The eGCX

modulates coagulation, inflammation and mechanotransduction processes.

Additionally, the eGCX also controls the interaction
between the endothelium and circulating cells by preventing
the latter from approaching the endothelium under basal
conditions. Upon inflammatory stimulation, the glycans are
shed from the EC surface allowing slow rolling and adhesion of
leukocytes (Constantinescu et al., 2003; Lipowsky et al., 2011).
Similarly, breakdown of the eGCX increases platelet–vessel wall
interactions, further demonstrating an anti-coagulant effect by
the eGCX layer (Vink et al., 2000).

The Endothelium Is Heterogenous, So Is
the eGCX
The morphology of the microvascular endothelium and
associated gene expression vary across different vascular beds in
different tissues, therefore showing a remarkable heterogeneity
(Aird, 2007; Jambusaria et al., 2020). Likewise, different GAG
chain arrangements and eGCX compositions result in great
biochemical or structural variations, further contributing to
the eGCX heterogeneity. With reference to the thickness and
microstructure of the eGCX, it is now well established that both
vary across different species, vascular beds, organs and shear
stress rates.

The estimation of the eGCX thickness extends from 0.2 to
0.5µm in capillaries (van den Berg et al., 2003) and venules (Yoon
et al., 2017), to 2–3 µm in small arteries (van Haaren et al., 2003;
Yen et al., 2015), and 4.5 µm in conductance arteries (Megens
et al., 2007). These studies used different methods of eGCX
visualization and measurements, including alcian blue staining
for transmission electron microscopy, dye–exclusion of different
sized tracers, and fluorescently labeled lectins for microscopic

imaging (Roth, 1983; Vink and Duling, 2000; van den Berg
et al., 2003). Still, there is a large discrepancy when it comes
to reporting eGCX thickness, making experimental observations
particularly difficult to be reconciled. The reason for this
variability, which might not be entirely attributed to differences
in themicrostructure and composition of the eGCX, might rather
be due to a poor preservation of such a fragile structure during
fixation and tissue handling (de Mesy Bentley, 2011; Ebong
et al., 2011). Comparatively, direct in vivo measurements using
bright-fieldmicroscopy also embody challenges. The close optical
refractive index of the eGCX to the surrounding blood makes it
very difficult to visualize the eGCX limits, also contributing to
bias in the results. In vitro, ECs in culture exhibit slightly different
eGCX in comparison to the complex structure found in in vivo
vessels (Potter and Damiano, 2008; Potter et al., 2009). Recently,
super resolution fluorescence microscopy (STORM) has been
applied to identify the spatio-chemical organization of the eGCX
in vitro (Fan et al., 2019). Also, glycomic analysis by liquid
chromatography coupled to mass spectrometry has emerged as
a novel method providing a more detailed and comprehensive
characterization of eGCX in cells and tissues (Li et al., 2019, 2020;
Riley et al., 2020).

A close view of the eGCX using both scanning and
transmission electron microscopy has revealed different
eGCX thickness among continuous, fenestrated and sinusoidal
capillaries in the heart, kidney, and liver, respectively (Okada
et al., 2017). The eGCX layer in both continuous and fenestrated
capillaries is thicker than in the sinusoids. In the heart, the eGCX
covers the entire luminal endothelial surface. In the kidney, the
eGCX appears to occlude the endothelial pores of the fenestrated
capillaries. In the hepatic sinusoids, however, the eGCX covers
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FIGURE 2 | Mechanisms of eGCX degradation and pathogenic consequences of released GCX fragments. Representation of enzymatic degradation of GCX

components. The structure of the eGC is the result of a balance between the enzymatic degradation and de novo biosynthesis of new molecules and adsorption of

circulating components from blood. Several enzymes mediate this degradation. Heparinase, hyaluronidase, MMPs and ADAMs are activated by pro-inflammatory

cytokines and ROS promoting the damage and shedding of one or more of its components. This degradation releases eGCX components (such as short heparan

sulfate chains, low-molecular weight hyaluronan fragments, and chondroitin sulfate fragments) into the circulation. As a result of its degradation, the eGC becomes

thinner allowing the extravasation of albumin, leukocyte adhesion and dysregulated vasodilation. Once in circulation, eGCX components such as heparan sulfate

fragments can act as DAMPs leading to cognitive impairment (Hippensteel et al., 2019a). Gray box areas summarize major pathophysiologic features of eGCX

degradation. DAMPs, danger-associated molecular patterns; MMP, metalloproteinase; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α. Scissors symbol means

“degradation”.

both the luminal side and opposite side facing the perisinusoidal
space (Okada et al., 2017).

In organs like the brain and heart, where the capillary
endothelium is categorized as continuous (non-fenestrated), the
endothelial eGCX appears to be denser compared to that in
the lung, whose capillaries are also covered by continuous
endothelium (Ando et al., 2018). These differences might be
explained by the mechanotransduction properties of the eGCX in
sensing fluid shear stress, which alters GAGs synthesis (Arisaka
et al., 1995; Gouverneur et al., 2006; Zeng and Tarbell, 2014).
Since the pulmonary circulation is a low fluid shear stress
system (because of its low resistance), a lower rate of GAGs
synthesis renders a thinner eGCX on the pulmonary capillaries
compared to other organs like the heart or the kidney. However,
experimental evidence shows discrepancies in eGCX depth
between pulmonary eGC (>1.5 micrometers) exceeding that of
systemic vessels such as the eGCX in cremaster muscle capillaries
(Schmidt et al., 2012; Han et al., 2016). The same principle
can be applied to the macro vs. microvascular network, where
arteries receiving higher shear stress exhibit greater eGCX depths
compared to venules and capillaries with lower shear stress
(Lipowsky et al., 1978, 1980; van den Berg et al., 2003). In light of

recent discoveries, differences in capillary EC structure and shear

stress might not be sufficient to explain eGCX heterogeneity.
Gene expression profiling and single–cell RNA-sequencing might
yield a more comprehensive picture of the distinct EC subsets
and associated eGCX structures (Jambusaria et al., 2020; Gao and
Galis, 2021).

Severe Inflammation as a Cause of eGCX
Dysfunction
Recently, the eGCX integrity has emerged as an important
determinant of cardiovascular health and disease. Given
the fundamental role of the eGCX in maintaining vascular
homeostasis, one would predict that when components of the
eGCX are lost or degraded, the endothelial function could
be impaired, which has indeed been demonstrated. eGCX
degradation is triggered by inflammatory mechanisms through
the activation of specific enzymes such as metalloproteinases,
heparanase, and hyaluronidase. These enzymes are activated by
reactive oxygen species (ROS) and pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNF-α) and interleukin-
1 beta (IL-1β) (Figure 2) (Chappell et al., 2008; Schmidt et al.,
2012; Lipowsky and Lescanic, 2013; Manon-Jensen et al., 2013;
Becker et al., 2015).
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The lack of an intact eGCX has been observed in several
pathological conditions, the best characterized being sepsis. In
the broad scheme of sepsis, systemic inflammatory injury of
the eGCX leads to capillary leak, adverse immune response,
and impaired vasodilation. Following septic challenge, enzymes
such as ADAM15 (a disintegrin and metalloproteinase 15) and
heparanase can shed glycoproteins (CD44) and heparan sulfate,
respectively, leading to eGCX disruption (Schmidt et al., 2012;
Yang et al., 2018). As a result of eGCX damage, the eGCX layer
becomes thinner and more sparse while its degradation products
are released into the bloodstream, a phenomenon that has been
observed in animal models of sepsis as well as in human patients
with sepsis, trauma or shock (Nelson et al., 2008; Haywood-
Watson et al., 2011; Sallisalmi et al., 2012; Luker et al., 2018;
Uchimido et al., 2019).

Similar to sepsis, sterile inflammation following trauma or
tissue injury also causes shedding of proteoglycans, hyaluronan
and heparan sulfate chains. The eGCX fragments function as
Danger-Associated Molecules Patterns (DAMPs) that activate
toll–like receptor or/and RAGE receptor-dependent pathways
(Johnson et al., 2002) RAGE (Xu et al., 2011, 2013). High
levels of circulating eGCX elements, which propagate sterile
inflammation and drive trauma induced coagulopathy (TIC), are
highly correlated with the severity of injury and clinical outcomes
(Johansson et al., 2011a,b).

Oxidative stress also plays an important role in eGCX
degradation during inflammation. The eGCX along with vascular
ECs are vulnerable to circulating ROS produced during oxidative
stress. In vitro exposure of ROS (superoxide and hydroxyl
radicals) to the eGCX promotes fragmentation of GAGs
and loss of some of its components. Previous studies have
demonstrated that hyaluronan and chondroitin sulfate are the
most susceptible to depolymerization and chemical modifications
by ROS (Halliwell, 1978; Greenwald andMoy, 1980; Bartold et al.,
1984; Moseley et al., 1995, 1997; Lipowsky and Lescanic, 2013;
Singh et al., 2013). Intact eGCX has the capability to quench
free radicals by having binding sites for anti-oxidant enzymes
like xanthine oxidoreductase (Adachi et al., 1993) and endothelial
superoxide dismutase (eSOD) (Becker et al., 1994).

Viral infections, such as those caused by dengue, hanta
and the novel severe acute respiratory syndrome (SARS)-CoV-
2 (COVID-19), are also accompanied by eGCX disruption.
In the case of the dengue virus, in particular, the secreted
dengue virus (DENV) non-structural protein 1 (NS1) disrupts
the eGCX on human pulmonary capillaries by increasing the
expression of sialidases, heparanase and metalloproteinases. All
these events cause systemic microvascular leakage leading to
hypovolemic shock and potentially fatal complications in severe
dengue infections (Luplertlop and Misse, 2008; Puerta-Guardo
et al., 2016; Glasner et al., 2017; Suwarto et al., 2017; Tang
et al., 2017; Chen et al., 2018; Wang et al., 2019). Hantavirus
infection is also associated with endothelial dysfunction and
elevated circulating levels of syndecan-1, allowing a clinical
association of disease severity with eGCX damage (Marsac
et al., 2011; Connolly-Andersen et al., 2014). In contrast,
other viruses do not seem to cause eGCX shedding, but
they exploit eGCX components on the host cell surface as a

binding site to infect target cells. For example, Influenza A
uses sialic acid as a receptor (Weis et al., 1988; Matrosovich
et al., 1993; Suzuki, 2003; Russell et al., 2008) while HIV
lentivirus (Saphire et al., 2001; Bobardt et al., 2003; Gallay,
2004) and SARS-CoV-2 (Clausen et al., 2020) interact with
heparan sulfate. Also, several recent studies have emphasized
the implications of eGCX damage and endothelial dysfunction
in the pathogenesis of COVID-19 (Jung et al., 2020; Kaur
et al., 2020; Libby and Luscher, 2020; Teuwen et al., 2020;
Yamaoka-Tojo, 2020).

Previous research on fluid resuscitation for critical illness
management has shown mixed results, some show attenuating
eGCX degradation while others show inducing eGCX disruption
(Hippensteel et al., 2019b). However, there is consensus that
colloids (e.g., albumin), or fresh frozen plasma, reduce eGCX
damage following sepsis, hemorrhagic shock and traumatic brain
injury (Zehtabchi and Nishijima, 2009; Haywood-Watson et al.,
2011; Kozar et al., 2011; Peng et al., 2013; Mica et al., 2016;
Nikolian et al., 2018).

Endothelial GCX in Blood–Brain Barrier
(BBB) Injury
The diagnostic utility of eGCX degradation products as a
biomarker of disease is supported by the correlation between
circulating eGCX fragments and clinical outcomes [reviewed
by Uchimido et al. (2019)]. Compared to the cardiac and
pulmonary capillaries, cerebral capillaries have a thicker eGCX
layer which is better preserved following lipopolysaccharide
(LPS) administration (Ando et al., 2018). Additionally, the
eGCX joins astrocyte endfeet and basement membrane in
reinforcing BBB properties as a part of a newly defined
“tripartite” BBB layered structure (Kutuzov et al., 2018).
During sepsis, heparan sulfate fragments released from the
injured eGCX can circulate in the bloodstream for days
and penetrate into the hippocampal area, interfering with
long-term potentiation (LTP) and contributing to sepsis–
associated encephalopathy (SAE), a common neurological
complication of sepsis in the absence of direct brain infection
(Hippensteel et al., 2019a). Circulating eGCX fragments
predicted cognitive impairment in septic patients, however,
whether they have potential diagnostic utility as biomarkers to
predict cognitive dysfunction in sepsis survivors, still remains
to be confirmed.

CONCLUSION

The eGCX, a complex and fragile structure that protects
endothelial barrier integrity, plays a crucial role in maintaining
microcirculatory homeostasis and blood-tissue exchange.
Disruption of eGCX is a consequence as well as cause
of microvascular injury, as eGCX degradation products
act as pathogenic factors capable of inducing endothelial
hyperpermeability and microvascular leakage during
inflammation. Further studies are required to understand
eGCX structure and function in order to maximize its protective
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contribution to endothelial cell stability while minimizing its
pathological role in vascular disease and injury.
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