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The energy equation for solidifying dendritic alloys that includes the effects of heat of mixing 

in both the dendritic solid and the interdendritic liquid is derived. Calculations for Pb-Sn alloys 

show that this form of the energy equation should be used when the solidification rate is rel- 

atively high and/or  the thermal gradients in the solidifying alloy are relatively low. Accurate 

predictions of transport phenomena in solidifying dendritic alloys also depend on the form of 

the solute conservation equation. Therefore, this conservation equation is derived with particular 

consideration to an accounting of the diffusion of  solute in the dendritic solid. Calculations for 

Pb-Sn alloy show that the distribution of the volume fraction of interdendritic liquid (gL) in the 

mushy zone is sensitive to the extent of the diffusion in the solid. Good predictions of gL are 

necessary, especially when convection in the mushy zone is calculated. 

I. I N T R O D U C T I O N  

THE modeling of dendritic solidification has become 

more sophisticated than the modeling done I0 to 20 years 

ago in that today the continuity equation, the momentum 

equation, the energy equation, and the solute conser- 

vation equation are simultaneously applied. The most 

comprehensive exposition of the conservation equa- 

tions that can be used to model dendritic solidification 

was given by Hills et al.  [~] Numerical works include 
Bennon and Incropera, t2'3'41 Beckermann and Viskanta, tsl 

Voller and Prakash, [61 Nandapurkar et  al.,  [7] Heinrich 

et al.,[8] and the earliest work of this type done by Szekely 

and Jassal. t9] In all of  the numerical works, the overall 

concept of solving for temperature, velocity, and solutal 

concentration has been shared, but there have also been 

assumptions peculiar to each. In addition, the origins of 

transport properties, assigned in the two-phase region, 

have not been consistendy exposed. 

Several different forms of  the momentum equation, as 

applied to dendritic solidification or closely related sce- 

narios, have been used by various investigators. Re- 

cently, Ganesan and Poirier [1~ revealed that nonlinear 

terms in the volume fraction of the liquid phase should 

be included in the momentum equation. Calculations by 
Nandapurkar et  al. tm showed that the added terms sig- 

nificantly affect thermosolutal convection in both the all- 
liquid zone and the underlying mushy zone in vertical 

directional solidification. 
The major intent of  this article is to present derivations 

of the energy and solute conservation equations that re- 

veal the origins of  appropriate thermodynamic and trans- 

port properties for treating mushy zones in dendritic 

solidification processes, although our derivations and re- 

sulting mathematical formulations are not nearly as com- 

plete as those of Hills et al. I~1 A recent contribution 
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pertaining to the conservation equations is that of Rappaz 

and Voller. t12J However, all of  the terms in their mo- 

mentum equation do not agree with the momentum equa- 

tion of Ganesan and Poirier, ~1~ with the exception of the 

body force term and the pressure gradient term. Simi- 

larly, their energy equation and solute conservation 

equation differ in some respects from the equations that 

follow in this article. Where it is appropriate, we com- 

pare our conservation equations to those of Hills et al. ~ 

for their "metallurgical model." 

II .  T I l E  E N E R G Y  E Q U A T I O N  

Consider a unit element of constant volume within the 

mushy zone. With respect to a stationary origin, the unit 

element is located at (x, y, z). Only the interdendritic liq- 

uid convects with velocity V(x, y, z, t), where t is time 

and V is the local average velocity of  the interdendritic 

liquid. The temperatures, T(x,  y ,  z, t), in both solid and 

liquid, are assumed to be equal. Energy flows into 

and out of the unit element by conduction, with flux q, 

and by the advection of the interdendritic liquid, that has 

a volumetric enthalpy of QL. Then the energy balance 

can be written 

O 
- -  ~ _  . - -  

Ot (gsQ, + gLQL) - V q t7. (grQL V ) [1] 

where g, and gc are the volume fractions of solid and 

liquid, respectively, and Q, is the volumetric enthalpy of 
the solid. 

Usually, the superficial velocity U is used, with 

U = gLV [2] 

and the enthalpies are expressed in terms of energy per 

mass. Therefore, 

Qs = p, I t ,  [3] 

and 

QL = PLHL [41 

where Ps and PL are the mass densities of the solid and 
liquid, respectively. The composition of the inter- 

dendritic liquid, at a given temperature, is assumed to 
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be uniform. Consequently, within the unit element, the 

intensive enthalpy of the interdendritic liquid, HL, is also 
uniform. Notice, however, that Hs is written with an 

overbar to emphasize that there is microsegregation of 
solute in the local dendritic solid, so that its intensive 

enthalpy is an average. 

The enthalpies should be expressed with the same 

thermodynamic reference state, so that at a given 

temperature, 

L =-- HL - A~ [5] 

where L is an effective latent heat. 

For the conduction flux, we assume that Fourier's law 
applies and write 

q = - K V T  [6] 

where K is the effective thermal conductivity of the solid 

plus liquid mixture. This conductivity can be evaluated 

according to whatever model for two-phase mixtures is 

thought to be appropriate, t~3`~aj Notice that the Dufour 

effect is neglected in Eq. [6], and that the conduction 

energy flux associated with the overall enthalpy flux can 

be neglected when it is compared to the advective en- 

thalpy fluxes. 

Now by substituting Eqs. [2] through [6] into Eq. [1], 

the energy equation is written as 

O 
~t (fiAs + pLgLL) = V. (KgrT) -- pLU" [V(Hs + L)] 

- (As + L)V" [pLU] [7] 

where fi is the average density of the solid plus liquid 

mixture, defined as 

fi = Psgs + PLgL [8] 

Equation [7] can be simplified somewhat; specifically, 

if no pores form during solidification, then dg~ = -dgL. 

Recalling that the solid is assumed not to convect, con- 

tinuity requires 

Off 
- -  = - V "  (pLU) [9] 
Ot 

and then by combining Eqs. [7] through [9], the final 

result is 

3A~ OL 3 
+ gLPL - -  - L - -  (g~p~)  

r i o t  Ot Ot 

= V" (KVT) - pLU(VA~ + VL) [10] 

It is preferable to keep the terms with enthalpy as they 

appear in Eq. [10], because the substitutions 

oAs OT 
= c . - -  i l l ]  

at 

and 

VA s = CpVT [ 12] 

are not generally valid if the specific heat of the solid, 

Cp, is not carefully considered. Because temperature and 

composition both change during solidification and the 

enthalpy of the solid depends on temperature and com- 

position, then Cp, as used in Eqs. [11] and [12], is not 

the thermodynamic heat capacity. By accounting for Hs 

during solidification, it is possible to define Cp so that 
Eqs. [11] and [12] are applicable, but in so doing, it 

should be recognized that Cp is not the thermodynamic 

one. Detailed calculations of the enthalpy of a binary 

alloy, as it solidifies, were given by Poirier and 
Nandapurkar. tl51 

The latent heat in Eq. [10] is not treated as a constant, 

and it is carefully defined in Eq. [5] to avoid any am- 

biguity. It is known that the latent heat varies during 

solidification of alloys, tlSj As an example, during the 

dendritic solidification of Pb-15 wt pct Sn, the effective 

latent heat of fusion varies from approximately 51 to 

28 J.  g-i from the beginning to the end of solidifica- 
tion, 05,t61 whereas the latent heat of lead is 23 J- g-~ at 

its freezing point. 

Equation [10] is similar to the Boussinesq form of the 

energy equation derived by Hills et al. m (their 

Eq. [6.24]) in which they eliminated the Soret effect from 

their more general result, assumed PL = Ps = r = p, and 

took the mixture conductivity, K, as uniform. Addition- 

ally, if the heat capacity is consistent with Eqs. [11] and 

[12], then Eq. [10] agrees with Eq. [6.24] in Hills 

et al. ~u Their result includes the possibility of a con- 

vecting solid, whereas it is assumed herein that the solid 

does not convect. For equiaxial dendritic solidification, 

in which the solid convects, the additional terms intro- 
duced by Hills et al. and later by Bennon and Incropera t2,41 

should be considered. Equation [10] is more explicit, 

however, in exposing terms with the latent heat of fusion. 

The energy equation for the all-liquid zone of a solid- 

ifying alloy can be derived from Eq. [10]. This can be 

seen by reinserting 

H L = I 4 s +  L 

from Eq. [5] and simplifying with gL = 1, gs = 0, and 

K = KL. The result is 

OHL 1 
- V. (KLVT) - U- VHL [13] 

Ot PL 

Again, substitutions for the terms containing the en- 

thalpy should be carefully made, taking into account that 

both the composition and the temperature of the liquid 

in the all-liquid zone can vary. 

For the all-solid zone, it is more convenient to start 

with Eq. [1] and substitute gL = 0 and g~ = 1 and 

Eqs. [3] and [6]. The result is 

0 
- -  (p ,H, )  = V .  ( r , V T )  [14] 
Ot 

The solid can comprise more than one constituent (e.g., 

a primary phase with microsegregation plus an eutectic). 

Again, before a substitution for Hs is made, Cp should 

be carefully defined. 

III. T H E  S O L U T E  

CO N S ERV A TIO N  E Q U A T I O N  

Solute enters and leaves the unit element (fixed vol- 

ume) by Fickian diffusion through the liquid and by ad- 

vection of the interdendritic liquid. Within the unit 
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element, there can be diffusion in the local solid, but 

there is no diffusion into or out of the unit element via 

the solid.* For these assumptions, the basic solute bal- 

*Within the unit element itself, the length scale for diffusion in the 

solid is on the order of  tens or hundreds of microns, depending on 

the local dendrite ann spacings. On the other hand, the length scale 

for diffusion into or out of  the unit element is on the order of  ones 

or tens of centimeters, depending on the average thermal gradient across 

the mushy zone. 

ance is 

V . j  + V. (pLCLU) + 7 (pC) = 0 [15] 
Ot 

where j = Fickian flux of solute, in the interdendritic 
liquid, g(solute) �9 cm -2. s-~; 

CL = mass fraction of the solute in the interden- 

dritic liquid; and 

pC = mass of the solute per unit volume of the solid 

plus liquid mixture. 

The flux is related to the gradient of the solute mass 

fraction in the liquid by 

j = --pLDeVCL [16] 

D e is an effective diffusivity that is defined as 

D, = gLD/T  [17] 

where D is the diffusivity of  the solute in the inter- 

dendritic liquid and r is a tortuosity factor to account for 

the fact that the boundary of the interdendritic liquid is 

highly irregular within the dendritic mushy zone. By as- 

suming Fickian diffusion and writing the mass flux as 
Eq. [16], other contributions to mass flux tl,17j (especially 

the Soret effect) are neglected. 

By combining Eqs. [15] and [16], we get the solute 

conservation equation in terms of C: 

O __  
Ot (pC) + ~" (pLCLU) ~ (pLDe~CL) [18]  

To make use of Eq. [18], the extent of  diffusion in 

the local solid must be estimated in order to account for 

the partitioning of the solute between the local dendritic 
solid and the interdendritic liquid. In turn, this parti- 

tioning controls the local value of gL, which directly af- 
fe__._cts U and De and, consequently, the time derivative of  

pC in Eq. [ 18]. 
The effect of the extent of diffusion in the solid is 

examined by considering three cases: (1) complete dif- 

fusion, (2) no diffusion, and then (3) some diffusion in 

the local dendritic solid. 

A.  Complete  Diffusion in the Solid 

For this case, the concentration of the solute in the 

local dendritic solid is uniform, and the transient term 

in Eq. [18] can be written as 

0 - -  0 0 

Ot ( p C )  = ~ (p~g~C~) + Ot (PLgLCL) [19] 

where Ca is the mass fraction of solute in the solid. For 

a reason to be explained later, both terms on the right- 

hand side (RHS) of Eq. [19] can be expanded, and 

Eq. [19] becomes 

O _ _  ~CL 0 Op~ 
-- = - -  + CL (PLgL) + k C L g ~ -  
Ot (pC)  PLgL Ot Ot Ot 

~3g~ OCL 
+ kpsCL-~t + kp~g5 0--7 [201 

For the third, fourth, and fifth terms on the RHS of 

Eq. [20], CL = C f f k  has been used; k is the equilibrium 

partition ratio. 

The second term on the left-hand side (LHS) of 

Eq. [18] is expanded and then combined with Eqs. [8] 

and [9]. The result of these operations is 

Op~ 
V . (pLCLU) = pLU " VCL - CLg~ - -  

Ot 

Og~ 0 

-- CLp~ -~t -- CL Ott (gLPL) [211 

Finally, Eqs. [18], [20], and [21] are combined to yield 

the solute conservation equation for the case of complete 

diffusion in the local solid; it is 

[l+k(P'g~)] oCL k)CL( g~ t op~ 
\PLgLI J ~ - ( 1  - \PLgL/  -~t 

og, 

- \PLgL/  (1 -- k ) O t  

+ - -  U.  V G  = �9 (pLDeVG) [221 
gL 

For many alloys, OpffOt can be neglected so Eq. [221 is 

simplified somewhat, leaving OCL/Ot as the only tran- 

sient term to be estimated in a numerical solution. 

By defining the average density of  the solid plus liquid 

mixture by Eq. [8], the average mass fraction of the sol- 

ute in the mixture, C, is 

P~g, kCL + PL gLCL 
C = [231 

P~g~ + PL gL 

Bennon and Incropera ~:,3,43 cleverly avoided the formu- 

lation in terms of CL and numerically solved for the new 
value of C. Then the local volume fraction of liquid is 

obtained from Eq. [23]. Because CL is known by the 
temperature, Eq. [23] can be used to obtain gc (with g~ = 

1 - g L ) .  

B. No  Diffusion in the Solid 

For this case, the local solid does not have a uniform 

concentration of solute. The concentration at the inter- 

face is denoted as C* and Ca r C*, where (~s is the 

average mass fraction of solute in the solid. Because there 

is no diffusion in the solid, then 

Ca 1 fo e, = -- Ca(r/, t) drl [24] 
g~ 

where r / i s  the coordinate for the local fraction of solid 

(i .e. ,  0 <-- 77 ~ gs) and values of Ca in the integral are 
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the previous interfacial concentrations that formed when 
solidification started (r/ = 0) to the present fraction of 

solid (r/ = g,). 
By applying Leibnitz's rule to Eq. [24], noting that 

OC,/Ot = 0 (no diffusion) and C* = Cs(gs), it can be 
shown that 

0 - ~ t  Og, 
Ot (P~g'ff') g,C, + p, kCL Ot [251 

Then the time derivative in Eq. [18] can be expanded as 

follows: 

o _  o Q  o 
. . . . . .  + C L -  (PLgL) 
Ot (pC) PLgL Ot at 

Op, Og, 
+ g,C, - -  + p, kCL - -  

Ot Ot 
[26] 

Finally, by combining Eqs. [18], [21], and [26], we 
get the solute conservation equation for no diffusion in 

the solid. The result is 

. . . . .  OCL g~ Op~ psCL (1 k) 
Ot (CL -- Cs) ~ \PLg& Ot 

1 (~)V 
+ - -  U "  V C L  = " ( p L D e V C L )  

gL 

[27] 

The first term in Eq. [27] differs from the first term 
in Eq. [22]; all other terms in both equations are exactly 
the same. The second terms compare by recognizing that 

C, = Cs when there is complete diffusion in the solid. 

In applying Eq. [27], it should be realized that C~ is 
not uniquely related to CL so that it must be continually 

evaluated (Eq. [24]). Fortunately, OpffOt can be ne- 
glected for many alloys; in such cases, the second term 

is not needed. 
Equation [271 reduces to the "local solute redistribu- 

tion equation," first presented by Flemings and Nereo. vSj 
Specifically, they assumed that p, is constant, and they 
did not include diffusion in the liquid (in the direction 
of the temperature gradient). With these added assump- 
tions, Eq. [27] reduces to 

--+OCLot [ (1-~k)CL] (P  2 ) "  gL _1 --+OgLot ( 1 )  U'VCL = 0  

[281 

Normally, in dendritic solidification processes, the ef- 

fect of the diffusion term on solute redistribution is not 
important. However, thermosolutal convection can play 

a strong role in the exchange of solute at the transitional 

region between the mushy zone and the all-liquid zone. 
Consequently, the very small amount of solute in the 
vicinity of dendrite tips, in excess of the concentration 

of the bulk liquid, is critically important in determining 
the convective stability of the solidifying systemY ] Hence, 

the inclusion of this term, as in Eq. [27], is recom- 
mended for modeling dendritic solidification. 

To further check Eq. [27], consider the simplification 

of PL = P, = constant so that the volume fractions of the 

phases are the same as the mass fractions (g~ = f~ and 
gL = fL)" Also, if we ignore both convection and diffu- 
sion, then Eq. [27] correctly reduces to the differential 
form of the well-known Scheil equation, rl91 which is often 

applied as a first approximation to describe micro- 
segregation in dendritic alloys. 

On the other hand, solute conservation given by Hills 

et al. m (Eq. [6.22] in their article) does not reduce to 
the Scheil equation but, instead, reduces to the differ- 

ential form of the "lever rule." Hence, in their solute 

conservation equation, it is assumed that the concentra- 

tion of solute in the local solid is uniform and should be 
comparable to Eq. [22]. Indeed, our Eq. [22] and their 

Eq. [6.22] are the same when the densities of the two 
phases are equal and constant, except for the diffusion 

term. 
By substituting Eq. [17] for D,, we get the following 

term for diffusion: 

whereas the diffusion term (in our notation) from Hills 
et al. m results in 

D' 
- -  V" (gtVCL) 
gL 

where D' is called the "material diffusion coefficient." 
By the flux definition given in their Eq. [5.25], it ap- 

pears that D'  = D/~. However, the two diffusive terms 
are only equivalent provided D / r  is spatially uniform 
and D / r  = D'/gL. The lack of agreement on this detail 

between the two models is not apparent. Perhaps, our 
deduction that D' and D/T are equivalent in the two models 

is in error, or the difference could be explainable with 
a better descriptive definition of D' by Hills et al. 

C. Some Diffusion in the Solid 

For complete diffusion in the local solid, the time de- 
rivative of the amount of solute in the solid is given by 
the last three terms on the RHS of Eq. [20]. With kCL 
replaced by C, (which is valid when there is complete 
diffusion in the solid), those terms are repeated: 

~t (p,g,C,) = = Op, Ogs OCL 
g,Cs -~t + pskCL ~ t  + p,g,k Ot [29] 

The first term on the RHS exists only if p, is not con- 
stant. The second term accounts for the rejection of the 

solute at the local interface as solidification proceeds by 

the increment Og,. The third term accounts for the dif- 

fusion in the solid. 

The third term of Eq. [29] does not appear in Eq. [25], 
which applies for no diffusion in the solid. Thus, by 
comparing Eqs. [25] and [29], we can write 

O(p~gf~,) _ Op~ Og, OCL 
gsC~-~t + pskCL z + 2a*p,g~k Ot 

[301 

where a* is the instantaneous diffusion parameter de- 
fined by Ganesan and Poirier. I2~ For a* = 0, there is 
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no diffusion, and Eq. [30] reduces to Eq. [25]. For a* = 
0.5, there is complete diffusion, and Eq. [30] is the same 

as Eq. [29]. More generally, 0 -< a* -< 0.5, and the third 

term of the RHS of Eq. [30] accounts for some diffusion 

in the solid. 
Ganesan and Poirier I2~ showed that 

a* = f (a, k,fs) 

where f~ is the weight fraction of solid and a is the Fourier 

diffusion number, defined as 

a = Dstf/A 2 

with Ds as the diffusivity in the solid, tf as the local so- 

lidification time, and A as one-half of the characteristic 
dendrite ann spacing. 

Equation [30] leads to a slight modification of  

Eq. [22] that is obtained after introducing the factor of 

2a* and replacing C~ by Cs. The result is the solute con- 

servation equation for some diffusion in the local solid: 

\oLgL/ --~t + -~L " VCL 

= ~ �9 (pLDeVG) [31] 

Conceptually, Eq. [31] is useful in that it reduces to 

Eq. [22] and to Eq. [27] with the values of a* that apply 

for complete diffusion (a* = 0.5) and no diffusion 

(a* = 0), respectively. Practically, however, the eval- 

uation of a* for the case of some diffusion in the solid 

poses some difficulty to the overall problem of satisfying 

the momentum and energy equations, as well as the sol- 

ute conservation equation. 

Rather than incorporating the term containing a* in 

Eq. [30], it is better to formulate the effect of diffusion 

in the solid by seeking the solution to Fick's second law 

for diffusion with appropriate conditions for dendritic 

solidification. Numerical techniques have been used to 

make such estimates; previous works include Brody and 
Flemings, [2q Flemings et al. ,[221 Nurminen and Brody, t23~ 
Basaran, lz41 Kirkwood, 1251 Ogilvy and K i r k w o o d ,  [26] Battle 

and Pehlke, t27~ and Yeum et al. t28j The third term on the 

RHS of Eq. [30] represents the increase of solute in 

the solid because of diffusion. This increase of solute in 

the solid can be obtained by Fick's second law for dif- 
fusion and Eq. [24]. First, when Leibnitz's rule is ap- 

plied, Eq. [30] is replaced with 

(p~g~C~) = g~Cs ap~ ags --I. g' OC~ drl 0 

05 -fit + o,kc -fit + o, 0--7 

[32] 

In order to estimate the integral in Eq. [32] during the 

period At from time t~ to time t2, Fick's second law can 

be used because temperature within the unit element is 

uniform. Accordingly, 

OC~ D~ O2C~ 
. . . .  [33] 
3t h 2 OTI 2 

where 7/extends from 77 = 0 (the center of  the dendrite) 

to 77 = g, (the solid/liquid interface), A is a characteristic 

dimension of the dendrites (e.g., dendrite arm spacing), 

and Cs is the concentration of solute within the local solid. 

Also during the period At, C~ must satisfy 

oc, 
- 0  a t e / = 0  [34] 

O7/ 

and 

C , = C * = k C L  a t T / = g s  [35] 

The conditions given by Eqs. [34] and [35] represent no 

flux at the center of the dendrite and equilibrium at the 

solid-liquid interface, respectively, and have been in- 
voked in all previous works t2~ on estimating the extent 

of diffusion in the solid during solidification of  alloys. 

In most of the previous estimates of  the extent of  dif- 

fusion in the local solid, one dimensional diffusion and 
a fixed dendrite ann spacing have been assumed, t21-23,281 

The characteristic dimension, A, has been adjusted by a 

factor less than one to compensate for the fact that the 
dendrites undergo coarsening during solidification, t2~-23,28j 

In the estimates presented by Basaran, t241 Ogilvy and 
Kirkwood, I25,261 and Battle and Pehlke, t271 the dendrite 

arm spacing varies during solidification, so in this way, 

these latter models are more sophisticated than the for- 

mer. None of the models attempts to treat the complex 

geometry of the dendrites; therefore, each gives only an 

estimate of the extent of diffusion in the solid. 

During the period At, the local interface advances by 

the distance AAgs, with Ags = g~2 - g,l.* However, g,2 

*With convection in the mushy  zone, there can be remelting even 

as the temperature is decreasing because of  advection of  the solute in 

the interdendritic liquid. Then Ag s < 0. 

is not known and can only be estimated, e.g., by extra- 

polation from a previous time step. In addition, at time 

t2, the solute mass balance must be satisfied; i.e., 

C,f~ + CL(1 --fs) = C [36] 

Unfortunately, the problem of solving for diffusion in 

the solid is a numerical procedure in itself and adds to 

the overall computational time for obtaining tempera- 

ture, velocity, and concentrations in a solidifying alloy. 
To this end, Yeum et al. t28] developed an algorithm for 

estimating diffusion in the solid so that the integral in 

Eq. [32] can be evaluated efficiently. It should be noted, 
however, that the algorithm was written for the usual 

case of solidification with no remelting. 

IV. SENSITIVITY OF 

RESULTS TO ASSUMPTIONS 

A. The Energy Equation 

The energy equation, as represented by Eq. [10], con- 

tains four factors that are often neglected or treated in- 

appropriately. They are OL/Ot, OI~s/Ot, V/~s, and OpffOt. 
Here, the intent is to study the sensitivity of some cal- 

culated results by isolating the manner in which latent 

heat and enthalpy are treated for an alloy with a constant 

Ps. We solve for the characteristics of the mushy zone 
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(volume fraction of liquid, height of the mushy zone, 

and the temperature distribution within the mushy zone) 

for one-dimensional solidification and examine the sen- 
sitivity of these characteristics to the assumptions in the 

energy equation. 

The solidification scenario is shown in Figure 1, which 

shows a binary alloy undergoing vertical solidification. 

The mushy zone moves upward with a constant velocity; 

the isotherms and the isoconcentrates are exactly hori- 

zontal. The only convection considered is that within the 

mushy zone to satisfy continuity (Ps ~ PD. In an earlier 
work, tTj a similar problem was solved to define the one- 

dimensional nonconvecting basic state for a linear sta- 

bility analysis. For details pertaining to the numerical 

techniques used herein, we refer the reader to that article.t7] 

For the concentration field, we use Eq. [27] with 

Ops/Ot = 0. Then 

--q-OCLot [(I--k)CL][P~L]OgtgL d Ot +----gt WOCLoz 

PrgL 3z pLDe 3z / 

where w is the z-component of U. As previously men- 

tioned, the interdendritic liquid convects only to satisfy 

continuity; then, from Eqs. [23] through [25] in Mehrabian 
et al./29] it can be shown that 

w [gL(Ps -- PL) + gE(Pse -- Ps)] 
- -  = [ 3 8 ]  

R Pc 

where R is the solidification speed, gE is the volume 

fraction of eutectic (which forms at the end of solidifi- 

cation), and PsE is the density of the eutectic solid. 

Z 

L 

LS, S 

• 

S 

Zt 

Fig. 1 -  Geometry and coordinate system for directional solidifica- 

tion of a dendritic alloy. 

Because the mushy zone advances with a constant speed 

R, it is convenient to rewrite the energy equation for a 

coordinate system that moves with the velocity R. Then 
the time derivatives in Eq. [10] are transformed to 

OHs OI4s 
- -  = - R  - -  [ 3 9 ]  

Ot Oz 

OL 3L 
- -  = - R  - -  [ 4 0 ]  

Ot Oz 

and 

0 0 
m 

at (g'P') - R  - -  (gsP,) [41] 
Oz 

Then, with these substitutions, along with a constant p,, 

Eq. [10] becomes 

OH, OL 
- - -  + (p w - pLg R) (pLw OR) az 

psLR OgL O ( O T )  
- - -  - K [ 4 2 ]  

Oz Oz 

Without regard for the thermodynamic implications of 

heats of mixing, Eq. [ 12] is combined with Eq. [42]; in 

addition, the latent heat is assumed to be constant so that 

the energy equation is 

OT Og L O ( O T )  
Cp(pLw - fiR) -~z psLR Oz - Oz r ~z [43] 

Solidification calculations were done using the 
thermophysical and transport properties taken from the 

sources listed in Table I. All of these properties are also 

summarized in Yeum and Poirier, [161 except the thermal 

conductivities of the Pb-Sn alloys, which are given in 

the Appendix. 

In the Appendix, the electrical resistivity and thermal 

conductivity of solid and liquid Pb-Sn alloys from sev- 
eral sources [33-361 are used, in order to obtain sensible 

extrapolations for estimating the variation of the thermal 

conductivity of the solid plus liquid mixture during so- 

lidification. The results are presented so that 

K = K(CL, Cs, T, gs) [44] 

can be estimated. 

Calculations were done to compare the results of ap- 
plying either Eq. [42] or Eq. [43] to the solidification of 

T a b l e  I .  S o u r c e s  f o r  

T h e r m o p h y s i c a l  a n d  T r a n s p o r t  P r o p e r t i e s  

Property Reference 

Densities 

Ps, DL(CL) 30 
Viscosity 

/x 31 
Enthalpies 

H,(Cs, T); Ht(CL) 15 
Phase diagram 

CL(T); k(T) 32 
Diffusivity in liquid 

D = 3 • 10 -Scm 2"s -~ 7 
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Pb-Sn alloys. Specifically, the results of the problem posed 

by Eqs. [37] and [42] were compared to that posed by 

Eqs. [37] and [43] under otherwise identical conditions. 

Solidification rates range from 2 • 10 -4 cm.  s -1 to 

0.1 cm.  s -1, compositions include 15, 30, and 50 wt pct 

Sn, and the temperature gradient in the liquid (GL) at the 

dendrite tips (where z = z,) is taken as either 30 or 

1 K . c m  -1. 

Table II lists computed mushy zone height (z,), vol- 

ume fraction liquid at the eutectic isotherm (ge), as well 

as the temperature gradient at the eutectic isotherm, Ge, 

for different solidification rates and concentrations of  Sn 

with GL = 30 K" cm -~. For the relatively high value of 

GL selected, each characteristic of  the mushy zone varies 

with solidification rate, but each hardly exhibits sensi- 

tivity to the choice of  the energy equation, except at the 

highest solidification rate. 

Two characteristics of  the 30 wt pct Sn alloy, zt and 

Ge, are plotted in Figure 2, where it can be seen that the 

computed results are practically insensitive to the choice 

of  the energy equation. At the most, there is a difference 

of only 6 pct between the predicted values of  z,, 

(Figure 2(a)). The gradient at the eutectic isotherm, Ge, 

is underestimated by a maximum of 12 pct with the sim- 

pler energy equation, and that is only for the most rapid 

solidification rate considered (0.1 c m .  s-l) .  Regardless 

of  which energy equation is selected, it is evident that 

the thermal gradient in the mushy zone is approximately 
uniform only if R < 10 -3 c m  -1.  

Computed results, in the form of  variation of  gL (vol- 

ume fraction of interdendritic liquid) and temperature, 

against the nondimensional position in the mushy zone 

are shown in Figure 3. Although the most rapid solidi- 

fication rate has been selected (R = 0.1 cm.  s-~), there 

is very little difference between the results obtained by 

either energy equation, because (as explained below) the 

thermal gradient is rather high. 
It was rather surprising to learn that the predictions of 

the two energy equations are so quantitatively similar, 

especially because the latent heat of  solidification in- 

creases from about 23 J .  g - I  for pure lead (as used in 

Eq. [43]) to about 51 J .  g-~ at the end of  solidification 

for 15 wt pct Sn alloy, a difference of more than 100 pct. 

An order of  magnitude analysis reveals that within the 

mushy zone conduction dominates over the release of  

latent heat of  solidification, and hence, a 100 pct change 

in the latent heat hardly affects the characteristics of  the 

mushy zone, when R is changed by three orders of  

magnitude. 

For the purpose of the order of  magnitude analysis 

within the mushy zone, Eq. [43] is used. Assuming con- 

stant and uniform thermal conductivity and density and 

further recognizing that R -> w from Eq. [38], the energy 

equation simplifies to 

d2T dgL dT 
K -  + pLR + R p C p -  = 0 [45] 

dz 2 dz dz 

Order of magnitude estimates are as follows: 

dT AT 

d z  Z t 

d z  2 Z t Zt 

dgL 1 , 

dz z t 

*Across the eutectic isotherm, this gradient is discontinuous so that 
this estimate is not valid. However, on the mushy zone side of this 
isotherm, this estimate applies. 

where 

a T = T t - T E  

Substituting these estimates into Eq. [45] gives 

KGc + (pL + pCeAT)R = 0 [46] 

For the lead-tin system, typical values of  physical pa- 

rameters are K - 0.025, Cp = O. 1, L ~- 30, AT --~ 100, 

and p -~ 104, all in SI units. Then, 

0.025GL + 4 • 105R --~ 0 [47] 

The first term is the conduction term, and the second is 

a source term that accounts for the energy released dur- 

ing solidification. With GL = 3 • 103 K .  cm -1 (a rel- 

atively high gradient), the source term is only comparable 

Table II. Sensitivity of  Calculated Characteristics of the Mushy 

Zone to the Energy Equation for Pb-Sn Alloys with GL = 30 K .  cm -1 

Solidification 
Conditions 

Case R C~ 
Number (cm. s -~) (Wt Pct Sn) 

Computed Results 

Eqs. [37] and [43] Eqs. [37] and [42] 

Ge zt GE zt 
ge (K" cm -1) (cm) ge (K-cm -l) (cm) 

1 0.0002 50 
2 30 
3 15 
4 0.002 50 
5 30 
6 15 
7 0.02 50 
8 30 
9 15 

10 0.1 30 

0.777 30.075 0.922 0.777 30.10 0.92 
0.386 30.178 2.470 0.389 30.20 2.467 
0.105 30.281 3.62 0.108 30.32 3.622 
0.784 30.609 0.916 0.785 30.70 0.91 
0.406 31.760 2.388 0.409 32.10 2.378 
0. 133 32.70 3.433 0.137 33.02 3.423 
0.785 30.56 0.838 0.785 30.90 0.815 
0.406 47.56 1.861 0.410 50.94 1.80 
0.135 56.96 2.305 0.140 59.65 2.268 
0.403 117.43 1.014 0.408 133.90 0.95 
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Fig. 2 - - E f f e c t  of the energy equation on 30 wt pct Sn alloy: 

(a) height of the mushy zone, z,  and (b) thermal gradient at the eu- 

tectic isotherm. 

to the conduction term when R = 0.02 cm.  s -l .  There- 

fore, at low solidification rates (e .g . ,  10 -4 ---< R -< 10 -3 

cm. s-~), the conduction term dominates the source term, 

and the latent heat of solidification (hence, the choice of 

the energy equation) does not significantly alter the cal- 

culated results with regards to either the mushy zone height 

or the temperature distribution in the mushy zone. This 

is also reflected by the numerical computations. 
Further, Table II also shows that the value of ge is 

almost independent of the energy equation selected. To 

1.0 , , , , 305 , , ~  

08 ~ . j  zso 

~ < 
II: 

0.4 230 hi 

;t;E, Eqs.(3 t.d 
0.2 205 I - -  

o . o  L i I I 180 
0.0 0.2 0.4 0.6 0.8 ~o 

z/zt 

Fig. 3 - - T h e  volume fraction liquid and temperature calculated for 

Pb-30 wt pct Sn solidified with R = 0.1 cm. s- ~ and GL = 30 K- cm- ~. 

explain this, the solute conservation equation, Eq. [37], 

is put into the following form: 

w d Q  ~ (k 1__.~) CL - -  [481 
R -  dz gL dz 

In doing so, the diffusion term in Eq. [37] has been ne- 

glected, because dCL/dz = constant and D e is small. Thus, 

gL is almost uniquely related to CL, and the results are 

almost independent of the energy equation. The 1 pct 

difference in ge is because of the fact that dCL/dZ differs 
slightly between the two models. 

The differences between the two energy equations be- 

come more significant when thermal gradients are re- 

duced. To illustrate this, the calculations were repeated 

for Pb-30 wt pct Sn alloy with GL = 1 K.  cm -~, which 

is a realistic thermal gradient for a casting solidifying in 

a sand mold. The results are given in Table III. Differ- 

ences between predicted characteristics of the mushy zone 

for the two models are greater in Table III (GL = 

1 K ' c m  -~) than the differences in Table II (GL = 

30 K" cm-~). 
It is worthwhile to compare the predicted values of the 

height of the mushy zone vs the heat flux in the solid at 

the eutectic isotherm. This flux relates to the external 

cooling of the solidifying metal, because in casting op- 

erations, most of the heat is extracted through the solid. 

The energy balance at the eutectic isotherm is 

qs = xGE + RgE[psELe + (Pse - P~)Hre]  [49] 

where qs = heat flux in the solid; 

Le = latent heat of the solidifying eutectic; and 

HLe = enthalpy of the eutectic liquid. 

Values of qs were generated using the values of GE, R, 

and ge in Tables II and III for Pb-30 wt pct Sn. When 

Eq. [43] was the applicable energy equation, then LE and 

HLE were the respective values for pure lead at the eu- 

tectic temperature (456 K). 

The calculated height of the mushy zone vs the heat 

flux is plotted in Figure 4. With GL = 30 K" cm -~, the 

difference between the values of z, predicted by the two 
models is apparent only when R > 2 • 10 -3 cm.  s -1. 

For example, with a flux of 100 kW- m -2, the difference 

is only 6 pct. However, with GL = 1 K" cm -~, the dif- 
ferences are apparent when R > 2 • 10 -4 cm" s - ' ,  and 
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Table III. Sensitivity of  Calculated Characteristics of the Mushy 

Zone to the Energy Equation for Pb-Sn 30 Wt Pct Sn with GL = 1 K .  cm -t 

Solidification 
Conditions 

Computed Results 

Eqs. [37] and [43] Eqs. [37] and [42] 

Case R C= G e z, G e z, 

Number (cm. s -]) (Wt Pct Sn) gE (K. cm -1) (cm) ge (K" cm -~) (cm) 

11 0.0002 30 0.407 1.176 67.48 0.413 1.209 66.53 
12 0.002 30 0.405 2.747 38.76 0.408 3.087 36.70 
13 0.02 30 0.403 18.367 9.50 0.403 21.77 8.78 

with a flux of 50 k W .  m -2, the models differ by ap- 

proximately 30 pct. Clearly, the more comprehensive form 

of the energy equation (Eq. [42]) should be used, par- 

ticularly when the solidification rate is relatively high 

and/or the thermal gradients are low. The results pre- 

sented herein are restricted to situations when the cross- 

couplings of  the Dufour and Soret effects are not 

significant. In the calculations, the temperature gradient 

in the liquid at the liquidus isotherm has been restricted 
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o 
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Eqs.(37) 8, (42) 

. . . . .  Eqs  (37)  8, ( 4 5 )  

~ ~ .  R=2 xlO'4crns'l 

2X10-3 2 

10- 

GL=50 K'cm -i " ~  

R=O.I crn S - I ~  

t r J t i t l l  i i i t I l t l l  i t t 
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F L U X ,  k W . m  -2  

F i g .  4 - - C a l c u l a t e d  h e i g h t  o f  t h e  m u s h y  z o n e  in  P b - 3 0  w t  p c t  S n  v s  

the  h e a t  f l u x  a t  t he  e u t e c t i c  i s o t h e r m .  

to GL ---< 30 K" cm -~ and the solidification speed to 2 • 

1 0  - 4  --< R --< 0.1 c m .  s -1. These are conditions that typify 

most dendritic solidification processes. In rapid solidi- 

fication processes, much steeper thermal gradients and 

very much faster solidification speeds are encountered, 

so that cross-coupling effects should be examined. 

B. The Solute Conservation Equation 

Next, the effect of  diffusion in the dendritic solid on 

the characteristics of  the mushy zone is considered. Nu- 

merical computations, similar to those presented in the 

previous section, were done, except that complete dif- 

fusion in the solid was assumed. Thus, Eq. [22] was 

used as the solute conservation equation, while the same 

energy equation, Eq. [42], was kept. In this way, the 

two extreme situations of  no diffusion in the solid (pre- 

sented in the previous section) and complete diffusion in 

the solid were compared. 

The calculated results are presented in Table IV. For 

all cases given in Table IV, the effects of  diffusion in 

the solid on the height of  the mushy zone (z,) and on the 

thermal gradient (GE) at the eutectic isotherm are rela- 

tively minor or insignificant. The volume fraction of eu- 

tectic liquid (gE), however,  is substantially reduced by 

incorporating the effect of  diffusion in the solid during 

solidification of the Pb-30 wt pct Sn alloy. As the con- 

centration of the alloy itself approaches the eutectic con- 

centration (61.9 wt pct Sn), the difference between gE 

for no diffusion and ge for complete diffusion is reduced. 

This is evident for the calculated values of  gE for the 

Pb-50 wt pct Sn alloy. 
For the case of  R = 2 • 10 -3 cm S -1, GL = 

30 K" c m - ' ,  and an alloy composition of 30 wt pct Sn, 

calculated results for gL and temperature are shown in 

Table IV. Sensitivity of  Calculated Characteristics of the Mushy Zone to the Extent 

of Diffusion in the Solid during Solidification for Pb-Sn Alloys with GL = 30 K .  cm -I 

Solidification 
Conditions 

Computed Results 

Eqs. [37] and [42] Eqs. [28] and [42] 

Case R C= Ge zt Ge zt 
Number (cm" s -1) (Wt Pct Sn) ge (K. cm -1) (cm) ge (K. cm -j) (cm) 

1 0.0002 50 0.777 30.10 0.92 0.766 30.10 0.924 
2 30 0.389 30.20 2.467 0.286 30.23 2.467 
4 0.002 50 0.785 30.70 0.91 0.773 30.86 0.915 
5 30 0.409 32.10 2.378 0.317 32.27 2.378 
7 0.02 50 0.785 30.90 0.815 0.775 38.48 0.809 
8 30 0.410 50.94 1.80 0.316 52.6 1.78 

10 0. I 30 0.408 133.90 0.95 0.308 142.7 0.932 
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Figure 5. As mentioned above, the mushy zone height 

and GE hardly differ. By far the most important effect 

of the extent of diffusion in the solid is on the variation 

of gL within the mushy zone. With no diffusion in the 

solid, the mushy zone would also have a greater perme- 

ability; p71 thus, if convection within the mushy zone had 

been considered, it would have been enhanced. In ad- 

dition, with faster solidification rates and steeper thermal 

gradients (as in rapid solidification processing), the cross- 

coupling should be examined. 

V. CONCLUSIONS 

Numerical modeling of dendritic solidification is often 

done to elucidate macrosegregation associated with con- 

vection of interdendritic liquid. As mentioned earlier, 

different conservation equations have been proposed for 

this purpose in the literature, each with its peculiar set 

of  assumptions. Our aims were to derive the energy 

equation and the solute conservation equation and to in- 

vestigate the sensitivity of results to assumptions. 
For the simplified problem (one-dimensional mushy 

zone), we observed the following: 

1. With low solidification rates, a rigorous accounting 

of enthalpy in the energy balance formulation does 

not significantly affect the height of the mushy zone, 

the volume fraction of interdendritic liquid, nor the 
temperature distribution. This insensitivity is caused 

by the dominant conduction term in the energy equa- 

tion compared to the heat of solidification term. 

However, as the solidification velocity increases and/ 

or the thermal gradient decreases, differences be- 

tween the predicted characteristics of the mushy zone 

become more pronounced. Although momentum 

transport was not considered in this work, it is rea- 

sonable to suggest that the effects of using the more 

comprehensive form of the energy equation would be 

even more apparent, because the advection of the liq- 

uid would account for substantially more transport of 

enthalpy relative to the conduction within the mushy 

zone. Therefore, it would be more important to prop- 

erly account for the intensive enthalpies of the liquid 

and the solid. 

2. The effect of diffusion in the dendritic solid is to re- 

duce the volume fraction of interdendritic liquid (gD. 

This is important when convection of interdendritic 
liquid is considered, because the permeability of the 

mushy zone is strongly dependent on gL. 

A P P E N D I X  

Thermal conductivity of Lead-Tin alloys 

1. Solid Alloys 

The thermal conductivity of the dendritic solid is a 

function of temperature and the average composition of 
the solid. As suggested by Turkdogan, p31 the electrical 

resistivity of a conducting phase comprises an intrinsic 

resistivity, which depends upon temperature, and a de- 

fect resistivity, which depends upon the concentration of  

defects. It is assumed that the thermal resistivity follows 

similar behavior; therefore, 

6 = K s  I = 6pb(T  ) + 60(Xsn ) [A1] 

where 6 is the thermal resistivity, K, is the thermal con- 

ductivity of the solid, 6Vb is the temperature-dependent 

thermal resistivity of pure lead (solid), 6o is the 

concentration-dependent part of the thermal resistivity, 

and Xs, is the atom fraction of  Sn. 

The thermal conductivity of lead (solid) is given in 

Touloukian et al. p4j from which the following relation- 

ship for the thermal resistivity was derived: 

~,b = exp [0.01708 In T + 0.06294] [A2] 

where T = temperature, K; and 

~b = thermal resistivity, cm.  K .  W-1. 

The thermal conductivities of both solid lead and solid 

tin can be represented with linear functions of In K vs In 
T, with T in kelvins. {341 It is assumed that both solid so- 

lutions, the lead-rich phase (a) and the tin-rich phase 

(/3), follow the same behavior. At 327 K, the thermal 
conductivities of Pb-Sn two-phase alloys {34,351 follow 

In K = f ,  In K, + ft3 In Kt3 [A3] 

where the subscripts refer to a and/3. Extrapolations of 

the data for two phases given at 327 K to higher tem- 

peratures were based upon the differentiation of  

Eq. [A3]. Specifically, 

0 1 n T )  = f t 3 ~ + f ~ - - O l n K #  01nK~, 

O In c O In T O In T 

Oftj Of~ 
+ In K ~ -  + In K~ - -  [A4] 

0 In T 0 In T 

where 

and 

O In K,, 8 In Kpb 

8 In T 0 In T 

0 1 n K ~ _ 0 1 n u s , _  

0 In T 0 In T 

0.1708 

0.2087 
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The partial derivatives in the third and fourth terms on 

the RHS of  Eq. [A4] were evaluated by an accounting 

of the relative amounts and the compositions of a and 

/3 on heating, as computed from the Pb-Sn phase 
diagram, t32~ 

The extrapolation procedure yielded a set of thermal 

conductivities, temperatures, and concentrations for the 
Pb-rich phase (c0, from which the concentration-dependent 

term in Eq. [A1] could be determined. The set of extra- 

polated values was estimated by a linear polynomial 

regression; the result is 

6o = 1.2581 x 10 -3+  0.18536X~/4 

+ 6.9496 X 10-2X~/2 [A5] 

The standard error of fit for 60 in Eq. [A4] is 

0 .0086 cm.  K.  W -~ (less than 8 pct error for all values 

of 60). Together, Eqs. [A1], [A2], and [A5] were used 

to calculate the thermal conductivity of the Pb-rich phase 

(a),  in W .  cm -1. K - l ,  as a function of T(K) and atom 

fraction of tin, Xsn. 

2. Liquid Alloys 

Data for the liquid alloys comprise the thermal con- 

ductivities of lead, tin, and Pb-62 wt pct Sn. I341 Based 

upon the behavior of the electrical conductivity of Pb-Sn 
melts, t361 it was assumed that 

K L = C O "[- CICSn [A6] 

where Co and Cl are temperature-dependent constants and 

Csn is in wt pct Sn. Furthermore, it was found that the 

values of Co and c~ agreed very closely with the terminal 

values. Thus, 

K L = Kpb -]- (KSn -- Kpb ) (Cs./100) [A7]  

From Touloukian et al. ,t34] the thermal conductivities of  

the melts are linear when plotted as In K vs In T; thus, 

In Kpb = - 6 . 6 7 7 7  + 0.7521 In T [A8] 

and 

In Ks, = - 3 . 7 5 1 8  + 0.4109 In T [A9] 

with Kpb and KSn in W" cm- t  �9 K-~ and T in kelvins. To- 

gether, Eqs. [A7] through [A9] are used to calculate the 
thermal conductivity of the liquid as a function of  com- 

position and temperature during solidification. 

3. Liquid Plus Solid Alloys 

The thermal conductivity of  the mixture of solid and 

liquid in the mushy zone was assumed to follow a model 

of  two resistors in series, so that 

1 gs gL 
- + [AIO] 

K K s K L 

where gs and gL are the volume fractions of solid and 

liquid, respectively. It is K in Eq. [A10] that was ulti- 

mately used as the effective thermal conductivity in the 

mushy zone. 
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