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Abstract. We extend our previous proof of the positive mass conjecture to
allow a more general asymptotic condition proposed by York. Hence we
are able to prove that for an isolated physical system, the energy momentum
four vector is a future timelike vector unless the system is trivial. Furthermore,
we allow singularities of the type of black holes.

In our recent solution of the positive mass conjecture, we assumed that the initial
data on the three-dimensional manifold is asymptotically spherical up to terms
of quadratic decay. This was the classical formulation of the conjecture. However,
in a recent paper, York [5] pointed out that physically it would be very desirable
to push this classical formulation to a more general setting. York's condition
seems to be the most general condition that may arise from an isolated physical
system. In this paper, we prove the positive mass conjecture assuming merely
York's condition. Our method depends on the construction of a new initial data
set which verifies our previous asymptotic condition and which has approximately
the same energy. Thus the positivity of the energy in the most general setting
follows from the result of our previous paper.

Let us now recall York's formulation of the positive mass conjecture. An
initial data set for a space-time consists of a three-dimensional manifold N, a
positive definite metric gip a symmetric tensor ft.., a local mass density μ, and a
local current density Jι. The constraint equations which determine N as a space-
like hypersurface in a space-time with second fundamental form htj are given by

μ = 2
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where R is the scalar curvature of the metric g(j. As usual, we assume that μ and
Jι obey the local energy condition

1/2

An initial data set will be said to be asymptotically flat if for some compact
set C, N\C consists of a finite number of components Λ^,..., Nk such that each
iVα is diffeomorphic to the complement of a compact set in R3. Under such diffeo-
morphisms, the metric tensor will be required to be written in the form

where

and

The components of htj and Vhtj will be required to be 0{r 2) and 0{r 3) respecti-
vely. Furthermore, R and VJR will be assumed 0(r~4).

Under the above asymptotic assumptions, one defines the ADM [1] mass
of each asymptotic regime Na to be

where "oo" denotes the euclidean sphere r = constant in the asymptotic regime
Na in the limit r -> oo.

Similarly, one can define the total linear momentum Pa of each asymptotic
regime Na. Together with MΛ, we obtain a four momentum vector. The positive
mass conjecture says that this four momentum vector is a future-pointing timelike
vector for each asymptotic regime unless the space time evolved by our initial
data set is the Minkowski spacetime. In this letter, we demonstrate how to reduce
this more general form of the positive mass conjecture to our previous theorem
[3].

Since the four momentum vector is invariant under Lorentz transformations,
we have only to prove that for each a, Ma > 0 unless the spacetime is the Minkowski
spacetime. In order to show this fact, we prove that, starting from an initial data
set which satisfies the more general condition of York, we can create a time-
symmetric initial data set satisfying our previous asymptotic condition whose
energy is not more than the original energy plus an arbitrarily small amount.
This will prove that for each α, Mα ^ 0. When Mα = 0, our previous arguments
[3] show that the spacetime is the Minkowski spacetime.

More precisely we shall prove the following statement: Given ε > 0, there
exists a metric gtj on N with zero scalar curvature so that on each asymptotic regime
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Na we have

M

where Ma ^ Mα + ε.
To prove this statement we use the method of our previous paper and a con-

formal method which was used by Lichneriwicz and O'Murchadha-York [2].
We first note that the method of [4], which works under the more general
asymptotic conditions, allows us to assume that the scalar curvature R = 0.

By removing all the asymptotic regimes, except JVα, outside a convex ball,
we may assume N has only one asymptotic regime iVα with mass M = Ma. Note
that the methods of [3] allow compact boundary dN with positive mean curvature.
We now write gV} on Na in the form

where gtJ = O(r~ι), \Vgi}\ = O(r~2), and

That gtj can be written in this form follows easily from the assumptions and
the definitions of Mα. For a large number σ > 0, we choose a smooth real valued
function ζσ satisfying

0 for r<σ

1 for r > 2 σ

0 S ζσ(r) S 1, IVCJ ^ q ( l + r)- \ | VVCj S cx(l + r 2 ) " 1 .

We then define a slightly modified metric #?. by

We clearly have on Na

l ^ - δ y l ^ c ^ H - r Γ M V ^ I ^ c ^ l + r2)-1- (1)

We stress that the c.'s are independent of σ. Since Ĵ  = 0, we also have

R° = 0 for r < σ , i ^ σ = 0 for r > 2 σ ,

| K σ | ^ c 3 ( l + r 3 ) - 1 for σ ^ r ^ 2 σ . (2)

in particular, we have

\ J ) ^ (3)
N /

so for large σ we may apply [3, Lemma 3.3] to assert the existence of a function
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φσ > 0 satisfying

Δσφσ-±Rσφσ = 0 on N

dn
= 0 on dN

A0

on JVα

where

32π

It follows that the metric (φσ)4gϊj has zero scalar curvature, and mass Mσ = M + Aσ.
We show that Aσ -• 0 as σ -• oo . In fact, if we set i/7 = φ σ — 1, we have

so we multiply by vσ, integrate by parts as in [3, p. 65], and use the Sobolev
inequality [3, Lemma 3.1] together with (3) to get

We now estimate

1 ,

32π; 3 2 π

5/6

By (1), (2), and (4) this implies

1

We see directly from (1), (2), and the definition of R°

1

(4)

l/6

= c η σ

By the divergence theorem and the definition of g°. we have

j 2_stofi , ~~ Qi' ij)dx = \ Σ(θi' i~ On ')dS• ~ 16πM

where Sσ = {r = σ}. It follows directly from the definition of M that

_ i — ̂ f.. .̂)ίiS. — 16πM ^ c 8 σ~ x .
sσ ij

Combining this with (5), (6), and (7) we get

(5)

(6)

(7)



Positive Mass Theorem 51

from which it follows that Mσ ^ M + c9σ~1. Our assertion now follows by taking

σ so large that c9σ~* <̂  ε, and taking g.. = (φσ)4gr so that φ = φσl 1 H ) on

N α . This completes the demonstration of our assertions.
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