
The Energy Case for Graph Processing on Hybrid CPU
and GPU Systems

Abdullah Gharaibeh, Elizeu Santos-Neto, Lauro Beltrão Costa, Matei Ripeanu

The University of British Columbia

{abdullah,elizeus,lauroc,matei}@ece.ubc.ca

ABSTRACT
This paper investigates the power, energy, and performance

characteristics of large-scale graph processing on hybrid (i.e.,

CPU and GPU) single-node systems. Graph processing can be

accelerated on hybrid systems by properly mapping the graph-

layout to processing units, such that the algorithmic tasks exer-

cise each of the units where they perform best. However, the

GPUs have much higher Thermal Design Power (TDP), thus

their impact on the overall energy consumption is unclear. Our

evaluation using large real-world graphs and synthetic graphs

as large as 1 billion vertices and 16 billion edges shows that a

hybrid system is efficient in terms of both time-to-solution and

energy.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles –

Heterogeneous (hybrid) systems. G.2.2 [Discrete Mathemat-

ics]: Graph Theory – Graph Algorithms.

General Terms
Measurement, Performance, Experimentation

Keywords

Graphics Processing Units, GPUs, Hybrid Systems, Graph Pro-

cessing, Energy Efficiency, Energy Delay Product

1. INTRODUCTION
Efficient graph processing requires the whole graph to be pre-

sent in memory. Large real graphs, however, can occupy giga-

bytes to terabytes of space; for example, a snapshot of the Twit-

ter follower network has over 500 million vertices and 100 bil-

lion edges, and requires at least 0.5TB of memory. As a result,

the most commonly adopted solution to cost-efficiently process

massive scale graphs is to partition them and use shared-noth-

ing cluster systems [21].

Similar to Rowstron et al. [26], we start from the observation

that, today, more efficient solutions are achievable: it is feasi-

ble to assemble single-host graph processing platforms that ag-

gregate 100s of GB to TBs of DRAM and massive computing

power [26, 28] all from commodity components and for a rela-

tively low budget. Compared to clusters, single-node platforms

are easier to program, and promise to offer better performance

and energy efficiency for a large class of real-world graph

problems. In fact such single-node graph processing platforms

are currently being used in production: Twitter’s ‘Who To Fol-

low’ (WTF) service, which uses the follower network to rec-

ommend connections to users, is deployed on a single node

[12].

At the same time, GPU-acceleration emerged as an appealing

technique and has successfully been applied to regular (e.g.,

linear algebra) and irregular (e.g., sequence alignment [11])

processing problems, including graph processing [15]. In the

context of graph processing, the key advantage GPUs bring is

massive hardware multithreading: GPUs support orders of

magnitude more in-flight memory requests while still perform-

ing useful work and thus masking memory access latency – the

major performance hindrance for graph processing problems.

Although current GPUs have limited memory, previous work

demonstrate that large-scale graphs can still benefit from GPU

acceleration by partitioning the graph to be processed concur-

rently on the CPU and the GPU [9, 10].

Although nothing prevents manufacturers from adding more

memory to GPUs to solve this memory limitation, it is unclear

how using GPUs affects power consumption. On the one hand,

GPUs are known to have higher FLOP/watt rate than CPUs.

However, graph processing workloads are memory bound, and

hence do not benefit from this characteristic. Moreover, GPUs

have high thermal design power (TDP) (~200W), typically

double that of CPUs which may make an accelerated solution

efficient in terms of time-to-solution but not in terms of energy.

On the other hand, GPU-acceleration offers tangible perfor-

mance benefits for workloads that fit their computational

model. This allows a faster ‘race-to-idle’, enabling power sav-

ings that are sizeable for newer GPU models which are power-

efficient in idle state (as low as 25W [24]).

This work builds on our previous work that demonstrates that

GPUs can be effectively used to accelerate graph processing

[9, 10]. Here we evaluate whether the performance benefits of

the techniques we have proposed translate in the power and en-

ergy space as well. Concretely, we focus on the following

high-level research questions:

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full ci-

tation on the first page. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Permis-

sions@acm.org.

IA3 '13, November 17 2013, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights li-

censed to ACM.

ACM 978-1-4503-2503-5/13/11…$15.00.
http://dx.doi.org/10.1145/2535753.2535755

 Is it energy-efficient to partition the graph to be processed

concurrently on a GPU and a CPU?

 Given a graph/algorithm workload and a fixed-power or en-

ergy budget, what is the (empirically determined) optimal

balance between traditional and massively-parallel proces-

sors?

 What is the impact of increasing the graph scale on energy

consumption and efficiency?

Addressing these questions is important to inform the design of

graph workload partitioning solutions that aim to optimally

harness heterogeneous computing platforms. In the context of

current hardware trends, as the cost of energy continues to in-

crease relative to the cost of silicon, future systems will host a

wealth of different processing units. In this hardware land-

scape, the key issue will become partitioning the workload and

assigning the partitions to (possibly, a subset of) the existing

processing elements where the workload can be executed most

efficiently in terms of power, energy, or time.

Contributions. We use experiments to show that such hybrid

systems bring advantages even today. Using large-scale real-

world and synthetic workloads, we show that: First, GPU ac-

celeration, i.e., adding new components, can contribute to bet-

ter time-to-solution and can reduce the energy footprint for

graph processing. Second, when maintaining the number of

components constant, a hybrid (one CPU and one GPU) system

is generally more energy efficient than a symmetric dual-CPU

one while drawing similar power. Third, hybrid systems are at-

tractive at scale, that is, both when increasing graph size and

increasing the number of GPUs. Finally, to the best of our

knowledge, this is the first work to evaluate graphs as large as

1 billion vertices and 16 billion edges on a single-node com-

modity machine.

2. BACKGROUND
This section briefly discusses opportunities and challenges of

graph processing on hybrid systems (§2.1), introduces TOTEM:

the framework we developed that facilitates implementation of

graph algorithms on hybrid systems (§2.2), and places this

work in the context of our own past work (§2.3).

2.1 Graph Processing on Hybrid Systems
The opportunities: GPUs not only have much higher memory

bandwidth than traditional CPU processors, but also massive,

hardware-supported multithreading that can mask memory ac-

cess latency – by enabling orders of magnitude more in-flight

memory requests.

Our own previous work demonstrates that partitioning graph

workloads and processing them concurrently on both the CPU

and the GPU offers tangible benefits [9]. Moreover, properly

mapping the graph-layout and the algorithmic tasks between

the CPU(s) and the GPU(s) enables exercising each of these

computing units where they perform best: CPUs for fast se-

quential processing and GPUs for the bulk parallel processing.

The challenges: Large-scale graph processing poses two major

challenges to hybrid systems: First, a large memory footprint

since efficient graph processing requires the whole graph to be

in memory. This is a major challenge for GPUs considering

1 TOTEM is an open source project, the code can be found at: http://netsyslab.ece.ubc.ca

that device memory is limited in space (roughly an order of

magnitude less than the host). Second, an irregular and data-

dependent memory access pattern which significantly reduces

caching effectiveness on CPUs and increases thread divergence

on GPUs. Additionally, most graph algorithms perform little

computation, lowering the chance to hide memory access la-

tency; thus, the major overhead for graph processing is gener-

ated by fetching the state of vertices (or edges) from memory,

i.e. graph processing applications are memory bound.

Finally, it is unclear whether the advantage GPUs offer in terms

of high processing rates can be preserved for irregular,

memory-bound problems like graph processing as partitioning

the graph over different memory spaces (the host and the ac-

celerators) may lead to communication overheads over the

PCI-E bus that render GPUs ineffective.

2.2 The Totem Framework
We have designed and implemented the TOTEM1 framework [9]

to enable developing graph algorithms for hybrid (CPU +

GPU) platforms. TOTEM adopts a Bulk Synchronous Parallel

(BSP) computation model [30]. In a nutshell, BSP processing

performs in rounds of three phases executed in order (Figure

1): computation (CPUs and GPUs asynchronously process

their local partitions), communication (processors exchange

messages via boundary edges), and synchronization (guaran-

tees the delivery the messages before the start of a new round).

We note that since TOTEM is algorithm agnostic, better perfor-

mance can likely be obtained using algorithm-specific imple-

mentations.

Figure 1 shows how BSP is used. The developer specifies a set

of callback functions. TOTEM partitions the graph, transfers

the partition to the GPU, and launches the computation accord-

ing to the callbacks provided by the developer. Both proces-

sors, CPU and GPU, execute the user defined algo_com-

pute_func on their own partitions concurrently (computation

phase). Then, TOTEM uses msg_reduce_func to aggregate the

messages sent to the same remote vertex, and bulk transfer

messages to the destination processor (finishing a round/ BSP

superstep). Invocations of algo_compute_func and msg_re-

duce_func continue for each round until the algorithm con-

verges to termination.

Figure 1: BSP model and its implementation in TOTEM [10].

The framework is customized for a specific algorithm by

implementing callback functions; some are invoked on each

partition concurrently (e.g., alg_compute_func during the

computation phase).

Using the BSP model offers two major advantages. First, it pro-

vides a simple framework to implement graph algorithms on

distributed memory systems. Second, and more importantly, it

allows circumventing the high-latency of the PCI-E bus by

batching message transfers in the communication phase. For

details on TOTEM we refer the reader to [9].

2.3 Relationship with Our Prior Work
We have used TOTEM to demonstrate the feasibility of graph

processing on hybrid systems [9], and explored the effective-

ness of various graph partitioning strategies for performance

[10]. This work expands our investigation to include an energy

evaluation.

Compared to past published work, this work also explores new

optimizations (for both TOTEM and the various graph algo-

rithms implemented on top of it), evaluates on newer CPU and

GPU models, and uses real-world and significantly larger syn-

thetic graphs.

We briefly present here three of the new optimizations done for

this work that are generic for TOTEM: (To maintain a consistent

‘storyline’ focused on energy, we do not evaluate in detail these

optimizations here, yet, for each of them, we present a situation

which highlights its impact).

 Improved load balancing between the CPU and the GPU

for large graphs. The GPU’s limited memory space con-

strains the size of the offloaded partition. Current GPUs,

which support at most 6GB of memory, can host at most

1.5Billion edges considering 4bytes edge identifiers (note

that this estimate does not take into account the space

needed for the vertices’ state, hence this limit is even

lower). This is a major challenge when targeting multi-bil-

lion scale graphs. To enable offloading a larger partition to

the GPU, we allocate part of the state on host memory and

map it into the GPU’s address space. The tradeoff is an ex-

tra communication overhead over the high latency PCI-E

bus. We reduce this overhead by taking the following

measures: First, we avoid the high latency of the bus by

restricting the use of mapped memory to allocate the part

of the state that is (i) read-only, and (ii) can be accessed

sequentially in batches; particularly, we used mapped

memory to allocate the edges array since we assume static

graphs. Second, we maximize transfer throughput by en-

suring that the edges of a vertex are read in a coalesced

manner when the vertex iterates over its neighbors. Finally,

a side-effect of using mapped memory is that it naturally

supports overlapped communication of a vertex’s edge list

with the computation of another vertex.

This optimization speeds up the overall computation by up

to 2x for hybrid configurations for the two largest work-

loads we use in our evaluation (i.e., RMAT29 and

RMAT30, which we describe in more detail in the next sec-

tion). This is because, for such large workloads, this opti-

mization allows increasing the size of the offloaded parti-

tion from as little as 5% of the original graph (if we are to

allocate the GPU partition state on device memory only) to

up to 60%.

2 The tool can be found at: oprofile.sourceforge.net

 Improved load balance across GPU threads. Early work

on graph processing on GPUs employed parallelism across

vertices [14]; however, this approach creates load-imbal-

ance among threads and can lead to GPU underutilization

since some vertices, in particular the high-degree ones, re-

quire more work than others. To address this problem,

Hong et al. [15] propose to parallelize processing not only

across vertices, but also across the edges of a vertex. Hong

et al. do this by statically allocating a block of threads for

each vertex to process its edges in parallel. Although this

approach improves performance, it does not completely ad-

dress the problem: the fact that threads were being stati-

cally allocated results in some vertices being assigned more

threads than they require (e.g., vertices with degree less

than the configured value), while others will be assigned

less threads. This is especially an issue for scale-free

graphs where the degree varies considerably across verti-

ces. We address this problem by using a new feature intro-

duced recently by CUDA: dynamic parallelism, which al-

lows a GPU kernel to create work from within the GPU.

We employ this feature to create threads dynamically based

on vertex degree for each group of vertices with similar de-

gree, and hence improving GPU utilization.

This optimization speeds up the GPU computation by up to

80% for the Twitter workload (which is more unbalanced

than the RMAT workloads). While this speedup does not

translate to a performance gain for the whole computation

(as the CPU takes longer), this optimization allows the

GPU to run faster to idle, and hence reduces energy con-

sumption.

 Improved vertex access locality. Although graph pro-

cessing is known to have random access pattern, vertex

placement in memory can still improve performance. In

particular, placing vertices in memory close to their neigh-

bors leads to important reduction in TLB cache misses on

the CPU. We employ the techniques used for graph com-

pression [4, 6] to determine the order by which the vertices

are placed in memory for real-world graphs.

This optimization speeds up the performance of CPU ker-

nels (labeled 2S in plots) by up to 2x for both real-world

workloads. As mentioned above, this was due to a major

reduction in TLB misses, which we measured using hard-

ware counters via the OProfile2 profiling tool. This

speedup is reflected on the performance of both, CPU only

and, to a lesser extent, hybrid configurations.

3. EXPERIMENT SETUP
Workloads. We use real-world and synthetic graphs (Table 1).

Note that the memory footprint of all workloads is larger than

the memory space available on a single GPU.

Real-world graphs: We use two of the largest real-world

graphs publicly available: a snapshot of the Twitter network,

and a crawl of about 100 million pages from the .uk domain.

Synthetic graphs: Since the real-world graphs we have access

to are still limited in scale, we also use large synthetic graphs

generated in the same way as those for the Graph500 chal-

lenge3: Recursive MATrix (RMAT) process [7] with the fol-

lowing parameters: (A,B,C) = (0.57, 0.19, 0.19) and an average

vertex degree of 16. We use the SNAP [29] network analysis

library to generate the graphs.

Benchmarks. We evaluate two graph algorithms to stress the

platform and TOTEM in different ways that are representative

for the two ends of the computation-to-communication ratio

spectrum. First, Breadth-First Search (BFS), a traversal-based

algorithm that computes the shortest distance in an unweighted

graph. Second, PageRank produces a ranking of the vertices as

described in [25]. Note that PageRank has a higher compute-

to-memory access ratio than BFS and, unlike BFS, its compu-

tational demands are stable for all computation rounds (in BFS

only the ‘frontier’ vertices are involved in each round and the

frontier size varies). A more detailed description of the algo-

rithms and their implementations using TOTEM can be found in

[10].

Measuring Power. We measure power at the outlet using a

WattsUP meter which collects samples at one second intervals

[31]. To get a representative measurement of the energy con-

sumption, we run each experiment for 10 minutes (e.g., repeat-

ing BFS searches). For accuracy, CPU-only experiments are

conducted after removing the GPUs from the machine (as the

GPU draws power from the PCI-E bus as well).

Testbed Characteristics. We use a host with state-of-the-art

CPU and GPU models (Table 2). To characterize the power

3 The RMAT graphs are described by the log base 2 of the number of vertices (e.g., RMAT30 graph has 230 vertices). Unlike in the

Graph500 challenge, the graphs are directed.

4 TEPS became the accepted performance metric for BFS (see Graph500 benchmark). The corresponding TEPS for PageRank is

computed by dividing the number of edges in the graph by the mean time per PageRank iteration (since, in each iteration, each

vertex accesses the state of all its neighbors).

consumption of the machine we use simple compute and

memory intensive kernels. Figure 2 shows the power consump-

tion at idle, then when stressing one and both CPUs (listed as

1S and 2S in the plot), then the memory, and then each of the

two GPUs. The high idle power consumption, which includes

idle power of CPUs and RAM only, is mainly caused by the

sizeable amount of available RAM (256GB). Note that the two

CPUs consume less power than the DRAM, and less than one

GPU. We highlight two points: (i) at peak load a significant

share of the power is consumed by DRAM, and (ii) when

loaded, GPUs consume significant power compared to other

system components.

Metrics. To address the research questions, we use four perfor-

mance and energy metrics: i) raw processing rate measured in

Traversed Edges Per Second (TEPS)4 (§4.1), ii) power con-

sumption in Watts (§4.2), iii) power-normalized processing

rate in TEPS/Watt similar to GreenGraph500 (§4.3), and, iv)

the energy-delay product, a metric biased for low-time-to-so-

lution while taking into account the energy cost (§4.4).

4. EXPERIMENTAL RESULTS
This section uses the metrics above to compare the character-

istics of four hardware configurations for all workload/bench-

mark combinations. We start (§4.1) by focusing on the time-to-

solution aspect: first, by presenting the performance of a tradi-

tional configuration that uses two processor sockets (labeled as

2S in the plots) to a configuration that replaces one of the pro-

cessors to a GPU (1S1G). We then add data for configurations

that use both processors and add one GPU (2S1G) or two GPUs

(2S2G).

The experiments presented in §4.1 support our claim that, from

a time-to-solution perspective, GPU acceleration is an appeal-

ing solution for graph processing. The remaining subsections

explore the power (§4.2), and energy aspects (§4.3 and §4.4).

Figure 2: Power characterization of the testbed. The char-

acterization is obtained by incrementally stressing the dif-

ferent components of the system. Note that the GPUs are

removed from the system when characterizing only the

host components. Finally, “Idle” measures the idle power

of the system without the GPUs.

Table 1: Workload Characteristics

Workload |V| |E|

Twitter [19] 41M 1.5B

UK-Web [5] 105M 3.7B

RMAT27 128M 2.0B

RMAT28 256M 4.0B

RMAT29 512M 8.0B

RMAT30 1,024M 16.0B

Table 2: Machine characteristics: two Xeon 2560 proces-

sors and two Tesla Kepler K20 GPUs (connected via PCI-E

2.0 bus, which has a measured bandwidth of 5 GB/s). Total

amount of host memory is 256GB.

Characteristic
Sandy-Bridge

(Xeon 2650)

Kepler

(K20)

Proc. Count 2 2

Cores / Proc. 8 13

Hardware Threads / Core 2 192

Frequency / Core (MHz) 2000 705

LLC / Proc. (MB) 20 2

Main Memory / Proc. (GB) 128 5

Memory Bandwidth / Proc.

(GB/s)
52 208

TDP / Proc. (Watts) 95 225

4.1 Raw Performance
Figure 3 shows BFS (top) and PageRank (bottom) processing

rates as averages over 64 runs. Error bars present the 95% con-

fidence interval, in most cases too narrow to be visible.

First, it is important to stress that the performance for the CPU-

only configuration (2S – for two processor sockets used) is

comparable to the best reported numbers on similar CPU mod-

els [16, 28]. This increases our confidence that we compare to

a meaningful baseline.

Second, the figures show that: rather than employing a second

CPU, it is more performance efficient to use a GPU if available.

Apart for the UK-WEB graph, the hybrid (1S1G – one socket

and one GPU) system performs faster than the dual-socket sys-

tem (2S). This is important considering the fact that the graphs

are large, and the GPU has only limited device memory, which

constrains the size of the partition offloaded (e.g., in the case

of the UK-WEB graph, only 25% of the total number of edges

and vertices of the graph fit in the memory of a single GPU).

Finally, the figures uniformly show the ability of the hybrid

system to harness the extra processing elements for both bench-

marks. Most notably, when adding a second GPU, a larger por-

tion of the graph can be offloaded, and hence better perfor-

mance is obtained.

4.2 Power Consumption
We next turn our attention to power consumption with two key

goals in mind: firstly, we aim to understand the degree to which

additional processing elements lead to additional power con-

sumption (and how this relates to their TDP rating), and sec-

ondly, we aim to characterize the variability in power drawn

during processing.

Figure 4 shows the system power consumption under different

benchmark/workload combinations. To better illustrate the var-

iation in power consumption during execution, the data is pre-

sented as boxplots.

The main differentiating factor in terms of power consumption

is the hardware configuration (i.e., the number and type of pro-

cessing elements used). A second factor is the workload (i.e.,

PageRank draws more power than BFS as the former not only

stresses the memory, but also the FPU pipeline). Finally, we

note that there is no major power difference across workloads

Figure 3: BFS (top) and PageRank (bottom) processing

rates (the higher the better) for different workloads and

hardware configurations. The hardware configurations are

presented in the following format: xS yG, where x is the

number of CPU sockets (processors) used, while y repre-

sents the number of GPUs. Experiments for the configura-

tion with a single socket (i.e., 1S1G) were performed by

binding the CPU threads to the cores of a single socket. For

PageRank, experiments with RMAT30 workload are not

shown as it does not fit in memory (the state required by

PageRank is larger than that for BFS).

Figure 4: Power consumption (the lower the better) for

BFS (top) and PageRank (bottom). The upper and lower

"hinges" of the boxplot correspond to the first and third

quartiles. The middle line corresponds to the median. The

whiskers extend from the lowest data point within 1.5 IQR

of the lower quartile, to the highest data point within 1.5

IQR of the upper quartile (IQR is the Interquartile Range,

which is the distance between the first and third quartiles).

The mean is shown as a cross. Note the y-axis starts at

200W.

for the same hardware configuration and benchmark combina-

tion.

We observe that, although the hybrid 1S1G configuration has

higher TDP rating, it draws comparable, sometimes lower,

power to the symmetric configuration 2S, which has the same

number of processing elements. Also, while adding GPUs to

the 2S configuration increases power drawn, the increase is

well below the TDP of the GPU. Adding a GPU increases

power by ~100W, which is ~50% of the GPU’s TDP. The rea-

son is that the GPUs finish processing their partition first and

go in an energy-efficient idle state that consumes only a frac-

tion of their peak power (25W) (see Figure 5).

The hybrid configurations generate more variation in power

consumption than processing on the CPU only. This is because,

for some workloads, the computation is unbalanced between

the CPU and the GPU(s). There are two reasons for this unbal-

ance: First, GPUs do not have enough memory to hold a large

enough partition that would balance the work for some work-

loads. Second, for BFS, the load varies across iterations. The

time-series that presents the active/idle states for each bench-

mark shed more light on this effect (Figure 5).

4.3 Power-normalized Processing Rates
To estimate the energy efficiency of different configurations,

Figure 6 shows the power-normalized performance for BFS

and PageRank respectively (i.e., raw performance divided by

drawn average power). Note that, for each workload, the plots

can also be viewed as a comparison of raw energy consumed

to process the graph.

First, we compare the power-normalized performance of con-

figurations with two processing elements. Apart from the BFS

benchmark on UK-WEB graph, a hybrid 1S1G system im-

proves both raw performance and power-normalized perfor-

mance compared to the symmetric 2S system. In the best case,

the hybrid system achieves 1.9x higher efficiency for the power-

normalized performance metric.

Second, adding more GPUs improves power-normalized per-

formance as the gain in raw performance is higher than the in-

crease in power consumption. Importantly, these gains are pre-

served when processing larger graphs and for all executions of

PageRank and most workloads for BFS (§6 discusses the ex-

ceptions).

4.4 Energy Delay Product
Finally, using a different energy-oriented metric, the energy-

delay product (EDP), would not only support the same qualita-

tive observations, but the relative advantage of the hybrid so-

lution is even higher. Figure 7 presents the results of this ex-

periment normalized to the 2S configuration to make the plot

readable.

5. RELATED WORK
There is no shortage of work on optimizing graph algorithms

on either the CPU or the GPU alone [2, 8, 16, 22]. This past

work is complementary to our approach since we use some of

these techniques as building blocks in our hybrid implementa-

tions.

Previous work on evaluating power efficiency focused on ei-

ther the CPU or the GPU independently [1, 17, 23, 27], and

mainly targeted regular applications that are friendly to GPU’s

SIMT computation model (e.g., dense linear algebra prob-

lems). This work focuses on system-level evaluation of an ap-

plication that harnesses both processing elements. Moreover,

Figure 5: CPU/GPU active/idle state while processing an

RMAT27 graph on a 2S1G setup (time is in milliseconds)

for BFS (top) and PageRank (bottom). For BFS, the

‘frontier’ evolves in unpredictable ways, which results in

having a processing element active in specific rounds and

not in others. For PageRank, the GPU finishes execution

before the CPU in each execution round.

Figure 6: Power-normalized processing rate (the higher the

better) for BFS (top) and PageRank (bottom).

the application domain we target, graph processing, exhibits ir-

regular parallelism, where the power and performance benefits

of GPU acceleration are not intuitive.

Finally, the Graph500 committee has recently introduced a new

challenge, GreenGraph5005, which ranks solutions based on

TEPS/watt. The first rank (June, 2013) was dominated by small

graphs processed on single-node machines. Our submission

was ranked, and it processed the largest graph (scale-28) in its

category (‘Small Data’ category). This paper includes addi-

tional optimizations (the results we report here are not directly

comparable as we use directed graphs unlike the benchmark

which uses undirected graphs).

6. SUMMARY AND DISCUSSION
Summary. This work demonstrates that GPU-acceleration im-

proves both time-to-solution as well as energy consumption for

large-scale graph processing, and that this improvement scales

when increasing the graph size and adding more GPUs. Fur-

ther, although the GPUs we use have one order of magnitude

less memory, our experience shows that a hybrid (one CPU and

one GPU) system can be more power efficient than a dual-CPU

symmetric one.

The rest of this section discusses few related questions.

5 http://green.graph500.org/

Why not use DVFS to lower energy footprint? On the CPU

side, a recent analysis [27] shows that, for recent Intel proces-

sors (e.g., Intel’s Sandy Bridge), both memory latency and

bandwidth strongly depend on processor frequency (we con-

firmed this result on our platform). This limits the opportunity

to use DVFS to save energy on the CPU side. On the GPU side,

however, recent GPU models support setting different frequen-

cies for the memory and the compute cores. Previous work [1,

17] shows that energy consumption can be reduced by lowering

the core frequency for memory-intensive kernels. This is a di-

rection we aim to investigate to lower the power drawn by the

GPUs.

What other factors that could improve the performance/watt

ratio of hybrid systems? On the algorithmic side, we aim to

investigate the feasibility of graph partitioning techniques that

target to minimize energy consumption. On the hardware side,

we believe that having more memory on the GPU would sig-

nificantly improve performance as a larger partition can be of-

floaded. Also, we aim to investigate the use of low-voltage

DRAM, which reduces the power drawn by the large memory

space. Finally, high-bandwidth, low-power SSDs are now

available (e.g., Intel’s 900 family, supports 1GB/s sequential

read and draws as little as 25W); such storage can be used to

offload part of the read-mostly graph state (e.g., the graph data

structure), and hence reduce power drawn by memory.

Do all graphs look like UK-WEB and thus make our points

invalid for BFS? No. The UK-WEB workload has a long di-

ameter. It has two orders of magnitude longer than the other

workloads, e.g. social networks, although the average path

length stayed about the same. This topology leads to a large

number of BSP rounds and stresses a limitation in the relatively

simple design of TOTEM’s communication layer. In particular,

TOTEM communicates the entire ‘ghost-zone’ at the frontier be-

tween the CPU and the GPU, which results in extra communi-

cation over the PCI-E 2.0 bus. This limitation manifests only

for BFS because of its minimal computation per vertex com-

pared to other graph algorithms (e.g, PageRank and Between-

ness Centrality), which is not enough to hide this overhead.

This limitation can be addressed in two non-exclusive ways: (i)

improving the design of TOTEM’s communication layer by

keeping track of changes and communicating only these ones,

and (ii) connecting the GPU via a PCI-E 3.0 bus, which offers

double the bandwidth. Note that other important large-scale

networks, such as social networks [18, 19] and the Web itself

[3], are known to have a shorter diameter.

Here is my graph, what platform offers the best tradeoff be-

tween acquisition cost, energy and performance? Our experi-

ence supports recommending the following simple decision

process: If the graph is small and fits GPU memory, we recom-

mend processing it on GPU only (a single GPU draws power

comparable to a dual-socket CPU, but it is at least 2x faster).

For larger graphs, we recommend boosting the host’s memory,

adding GPUs and using TOTEM to implement algorithms on

such a hybrid setup. Finally, for massive many-billion vertices

graphs, if energy is the main concern, we speculate that a sin-

gle-node solution along the lines of GraphChi [20], which pro-

cesses the graph from SSDs, will be most advantageous. If

time-to-solution is the primary concern then we conjecture that

Figure 7: Normalized energy-delay product (the lower the

better). The baseline is the configuration that uses both

processors (2S). BFS (top) and PageRank (bottom).

a cluster composed of as few fat nodes as possible, where each

node is provisioned with as much memory and GPUs as possi-

ble, will be the most efficient setup (compared to a cluster of

many low-end commodity nodes as used today).

7. REFERENCES
[1] Abe, Y., Sasaki, H., Peres, M., Inoue, K., Murakami, K.

and Kato, S. Power and performance analysis of GPU-

accelerated systems. HotPower ’12.

[2] Agarwal, V., Petrini, F., Pasetto, D. and Bader, D.A.

Scalable Graph Exploration on Multicore Processors.

SC’10.

[3] Albert, R., Jeong, H. and Barabasi, A.-L. 1999. Internet:

Diameter of the World-Wide Web. Nature. 401, 6749

(Sep. 1999), 130–131.

[4] Boldi, P., Rosa, M., Santini, M. and Vigna, S. Layered

Label Propagation: A Multiresolution Coordinate-Free

Ordering for Compressing Social Networks. WWW ’11.

[5] Boldi, P., Santini, M. and Vigna, S. A Large Time-Aware

Web Graph. ACM SIGIR ’08.

[6] Boldi, P. and Vigna, S. The Webgraph Framework I.

WWW ’04.

[7] Chakrabarti, D., Zhan, Y. and Faloutsos, C. R-MAT : A

Recursive Model for Graph Mining. SDM ’04.

[8] Chhugani, J., Satish, N., Kim, C., Sewall, J. and Dubey,

P. Fast and Efficient Graph Traversal Algorithm for

CPUs: Maximizing Single-Node Efficiency. IPDPS ’12.

[9] Gharaibeh, A., Beltrão Costa, L., Santos-Neto, E. and

Ripeanu, M. A Yoke of Oxen and a Thousand Chickens

for Heavy Lifting Graph Processing. PACT ’12.

[10] Gharaibeh, A., Costa, L.B., Santos-Neto, E. and Ripeanu,

M. On Graphs, GPUs, and Blind Dating: A Workload to

Processor Matchmaking Quest. IPDPS ’13.

[11] Gharaibeh, A. and Ripeanu, M. Size Matters: Space/Time

Tradeoffs to Improve GPGPU Applications Performance.

SuperComputing ’10.

[12] Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D. and

Zadeh, R. WTF: The Who to Follow Service at Twitter.

WWW ’13.

[13] Han, W.-S., Lee, S., Park, K., Lee, J.-H., Kim, M.-S.,

Kim, J. and Yu, H. TurboGraph: A Fast Parallel Graph

Engine Handling Billion-Scale Graphs in a Single PC.

KDD ’13.

[14] Harish, P., Narayanan, P., Aluru, S., Parashar, M.,

Badrinath, R. and Prasanna, V. Accelerating Large Graph

Algorithms on the GPU Using CUDA. HiPC ’07.

[15] Hong, S., Kim, S.K., Oguntebi, T. and Olukotun, K.

Accelerating CUDA Graph Algorithms at Maximum

Warp. PPoPP ’11.

[16] Hong, S., Oguntebi, T. and Olukotun, K. Efficient Parallel

Graph Exploration on Multi-Core CPU and GPU.

PACT ’11.

[17] Jiao, Y., Lin, H., Balaji, P. and Feng, W. Power and

Performance Characterization of Computational Kernels

on the GPU. GREENCOM ’10.

[18] Kumar, R., Novak, J. and Tomkins, A. Structure and

Evolution of Online Social Networks. KDD ’06.

[19] Kwak, H., Lee, C., Park, H. and Moon, S. What is Twitter,

a social network or a news media? WWW ’10.

[20] Kyrola, A., Blelloch, G. and Guestrin, C. GraphChi:

Large-Scale Graph Computation on Just a PC. OSDI ’12.

[21] Malewicz, G., Austern, M.H., Bik, A.J.., Dehnert, J.C.,

Horn, I., Leiser, N. and Czajkowski, G. Pregel: A System

for Large-Scale Graph Processing. SIGMOD ’10.

[22] Merrill, D., Michael, G. and Grimshaw, A. Scalable GPU

Graph Traversal. PPoPP’12.

[23] Molka, D., Hackenberg, D., Schone, R. and Muller, M.S.

Characterizing the Energy Consumption of Data

Transfers and Arithmetic Operations on x86−64

Processors. ICGC ’10.

[24] NVIDIA 2013. TESLA K20 GPU active accelerator board

specification.

[25] Page, L., Brin, S., Motwani, R. and Winograd, T. The

PageRank Citation Ranking: Bringing Order to the Web.

Stanford InfoLab ’99.

[26] Rowstron, A., Narayanan, D., Donnelly, A., O’Shea, G.

and Douglas, A. Nobody ever got fired for using Hadoop

on a cluster. HotCDP ’12.

[27] Schöne, R., Hackenberg, D. and Molka, D. Memory

Performance at Reduced CPU Clock Speeds: An Analysis

of Current x86 Processors. HotPower ’12.

[28] Shun, J. and Blelloch, G.E. Ligra: A Lightweight Graph

Processing Framework for Shared Memory. PPoPP ’13.

[29] Stanford Network Analysis Project,

http://snap.stanford.edu: .

[30] Valiant, L.G. A Bridging Model for Parallel Computation.

Communications of the ACM ’90.

[31] WattsUP Meter, http://www.wattsupmeters.com: .

