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ABSTRACT 
This paper investigates the power, energy, and performance 

characteristics of large-scale graph processing on hybrid (i.e., 

CPU and GPU) single-node systems. Graph processing can be 

accelerated on hybrid systems by properly mapping the graph-

layout to processing units, such that the algorithmic tasks exer-

cise each of the units where they perform best. However, the 

GPUs have much higher Thermal Design Power (TDP), thus 

their impact on the overall energy consumption is unclear. Our 

evaluation using large real-world graphs and synthetic graphs 

as large as 1 billion vertices and 16 billion edges shows that a 

hybrid system is efficient in terms of both time-to-solution and 

energy. 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles – 

Heterogeneous (hybrid) systems. G.2.2 [Discrete Mathemat-

ics]: Graph Theory – Graph Algorithms. 

General Terms 
Measurement, Performance, Experimentation 

Keywords 

Graphics Processing Units, GPUs, Hybrid Systems, Graph Pro-

cessing, Energy Efficiency, Energy Delay Product 

1. INTRODUCTION 
Efficient graph processing requires the whole graph to be pre-

sent in memory. Large real graphs, however, can occupy giga-

bytes to terabytes of space; for example, a snapshot of the Twit-

ter follower network has over 500 million vertices and 100 bil-

lion edges, and requires at least 0.5TB of memory. As a result, 

the most commonly adopted solution to cost-efficiently process 

massive scale graphs is to partition them and use shared-noth-

ing cluster systems [21].  

Similar to Rowstron et al. [26], we start from the observation 

that, today, more efficient solutions are achievable: it is feasi-

ble to assemble single-host graph processing platforms that ag-

gregate 100s of GB to TBs of DRAM and massive computing 

power [26, 28] all from commodity components and for a rela-

tively low budget. Compared to clusters, single-node platforms 

are easier to program, and promise to offer better performance 

and energy efficiency for a large class of real-world graph 

problems. In fact such single-node graph processing platforms 

are currently being used in production: Twitter’s ‘Who To Fol-

low’ (WTF) service, which uses the follower network to rec-

ommend connections to users, is deployed on a single node 

[12]. 

At the same time, GPU-acceleration emerged as an appealing 

technique and has successfully been applied to regular (e.g., 

linear algebra) and irregular (e.g., sequence alignment [11]) 

processing problems, including graph processing [15]. In the 

context of graph processing, the key advantage GPUs bring is 

massive hardware multithreading: GPUs support orders of 

magnitude more in-flight memory requests while still perform-

ing useful work and thus masking memory access latency – the 

major performance hindrance for graph processing problems. 

Although current GPUs have limited memory, previous work 

demonstrate that large-scale graphs can still benefit from GPU 

acceleration by partitioning the graph to be processed concur-

rently on the CPU and the GPU [9, 10].  

Although nothing prevents manufacturers from adding more 

memory to GPUs to solve this memory limitation, it is unclear 

how using GPUs affects power consumption. On the one hand, 

GPUs are known to have higher FLOP/watt rate than CPUs.  

However, graph processing workloads are memory bound, and 

hence do not benefit from this characteristic. Moreover, GPUs 

have high thermal design power (TDP) (~200W), typically 

double that of CPUs which may make an accelerated solution 

efficient in terms of time-to-solution but not in terms of energy. 

On the other hand, GPU-acceleration offers tangible perfor-

mance benefits for workloads that fit their computational 

model. This allows a faster ‘race-to-idle’, enabling power sav-

ings that are sizeable for newer GPU models which are power-

efficient in idle state (as low as 25W [24]). 

This work builds on our previous work that demonstrates that 

GPUs can be effectively used to accelerate graph processing 

[9, 10]. Here we evaluate whether the performance benefits of 

the techniques we have proposed translate in the power and en-

ergy space as well.  Concretely, we focus on the following 

high-level research questions: 
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 Is it energy-efficient to partition the graph to be processed 

concurrently on a GPU and a CPU? 

 Given a graph/algorithm workload and a fixed-power or en-

ergy budget, what is the (empirically determined) optimal 

balance between traditional and massively-parallel proces-

sors?   

 What is the impact of increasing the graph scale on energy 

consumption and efficiency? 

Addressing these questions is important to inform the design of 

graph workload partitioning solutions that aim to optimally 

harness heterogeneous computing platforms. In the context of 

current hardware trends, as the cost of energy continues to in-

crease relative to the cost of silicon, future systems will host a 

wealth of different processing units. In this hardware land-

scape, the key issue will become partitioning the workload and 

assigning the partitions to (possibly, a subset of) the existing 

processing elements where the workload can be executed most 

efficiently in terms of power, energy, or time. 

Contributions. We use experiments to show that such hybrid 

systems bring advantages even today. Using large-scale real-

world and synthetic workloads, we show that: First, GPU ac-

celeration, i.e., adding new components, can contribute to bet-

ter time-to-solution and can reduce the energy footprint for 

graph processing. Second, when maintaining the number of 

components constant, a hybrid (one CPU and one GPU) system 

is generally more energy efficient than a symmetric dual-CPU 

one while drawing similar power. Third, hybrid systems are at-

tractive at scale, that is, both when increasing graph size and 

increasing the number of GPUs. Finally, to the best of our 

knowledge, this is the first work to evaluate graphs as large as 

1 billion vertices and 16 billion edges on a single-node com-

modity machine.  

2. BACKGROUND 
This section briefly discusses opportunities and challenges of 

graph processing on hybrid systems (§2.1), introduces TOTEM: 

the framework we developed that facilitates implementation of 

graph algorithms on hybrid systems (§2.2), and places this 

work in the context of our own past work (§2.3). 

2.1 Graph Processing on Hybrid Systems 
The opportunities: GPUs not only have much higher memory 

bandwidth than traditional CPU processors, but also massive, 

hardware-supported multithreading that can mask memory ac-

cess latency – by enabling orders of magnitude more in-flight 

memory requests.  

Our own previous work demonstrates that partitioning graph 

workloads and processing them concurrently on both the CPU 

and the GPU offers tangible benefits [9]. Moreover, properly 

mapping the graph-layout and the algorithmic tasks between 

the CPU(s) and the GPU(s) enables exercising each of these 

computing units where they perform best: CPUs for fast se-

quential processing and GPUs for the bulk parallel processing.   

The challenges: Large-scale graph processing poses two major 

challenges to hybrid systems: First, a large memory footprint 

since efficient graph processing requires the whole graph to be 

in memory. This is a major challenge for GPUs considering 

                                                                 

1 TOTEM is an open source project, the code can be found at: http://netsyslab.ece.ubc.ca 

that device memory is limited in space (roughly an order of 

magnitude less than the host). Second, an irregular and data-

dependent memory access pattern which significantly reduces 

caching effectiveness on CPUs and increases thread divergence 

on GPUs. Additionally, most graph algorithms perform little 

computation, lowering the chance to hide memory access la-

tency; thus, the major overhead for graph processing is gener-

ated by fetching the state of vertices (or edges) from memory, 

i.e. graph processing applications are memory bound.  

Finally, it is unclear whether the advantage GPUs offer in terms 

of high processing rates can be preserved for irregular, 

memory-bound problems like graph processing as partitioning 

the graph over different memory spaces (the host and the ac-

celerators) may lead to communication overheads over the 

PCI-E bus that render GPUs ineffective.  

2.2 The Totem Framework 
We have designed and implemented the TOTEM1 framework [9] 

to enable developing graph algorithms for hybrid (CPU + 

GPU) platforms. TOTEM adopts a Bulk Synchronous Parallel 

(BSP) computation model [30]. In a nutshell, BSP processing 

performs in rounds of three phases executed in order (Figure 

1): computation (CPUs and GPUs asynchronously process 

their local partitions), communication (processors exchange 

messages via boundary edges), and synchronization (guaran-

tees the delivery the messages before the start of a new round).  

We note that since TOTEM is algorithm agnostic, better perfor-

mance can likely be obtained using algorithm-specific imple-

mentations. 

Figure 1 shows how BSP is used. The developer specifies a set 

of callback functions. TOTEM partitions the graph, transfers 

the partition to the GPU, and launches the computation accord-

ing to the callbacks provided by the developer. Both proces-

sors, CPU and GPU, execute the user defined algo_com-

pute_func on their own partitions concurrently (computation 

phase). Then, TOTEM uses msg_reduce_func to aggregate the 

messages sent to the same remote vertex, and bulk transfer 

messages to the destination processor (finishing a round/ BSP 

superstep). Invocations of algo_compute_func and msg_re-

duce_func continue for each round until the algorithm con-

verges to termination. 

 
Figure 1: BSP model and its implementation in TOTEM [10].  

The framework is customized for a specific algorithm by 

implementing callback functions; some are invoked on each 

partition concurrently (e.g., alg_compute_func during the 

computation phase).  



Using the BSP model offers two major advantages. First, it pro-

vides a simple framework to implement graph algorithms on 

distributed memory systems. Second, and more importantly, it 

allows circumventing the high-latency of the PCI-E bus by 

batching message transfers in the communication phase.  For 

details on TOTEM we refer the reader to [9]. 

2.3 Relationship with Our Prior Work 
We have used TOTEM to demonstrate the feasibility of graph 

processing on hybrid systems [9], and  explored the effective-

ness of various graph partitioning strategies for performance 

[10]. This work expands our investigation to include an energy 

evaluation.  

Compared to past published work, this work also explores new 

optimizations (for both TOTEM and the various graph algo-

rithms implemented on top of it), evaluates on newer CPU and 

GPU models, and uses real-world and significantly larger syn-

thetic graphs. 

We briefly present here three of the new optimizations done for 

this work that are generic for TOTEM: (To maintain a consistent 

‘storyline’ focused on energy, we do not evaluate in detail these 

optimizations here, yet, for each of them, we present a situation 

which highlights its impact).  

 Improved load balancing between the CPU and the GPU 

for large graphs. The GPU’s limited memory space con-

strains the size of the offloaded partition. Current GPUs, 

which support at most 6GB of memory, can host at most 

1.5Billion edges considering 4bytes edge identifiers (note 

that this estimate does not take into account the space 

needed for the vertices’ state, hence this limit is even 

lower). This is a major challenge when targeting multi-bil-

lion scale graphs. To enable offloading a larger partition to 

the GPU, we allocate part of the state on host memory and 

map it into the GPU’s address space. The tradeoff is an ex-

tra communication overhead over the high latency PCI-E 

bus. We reduce this overhead by taking the following 

measures: First, we avoid the high latency of the bus by 

restricting the use of mapped memory to allocate the part 

of the state that is (i) read-only, and (ii) can be accessed 

sequentially in batches; particularly, we used mapped 

memory to allocate the edges array since we assume static 

graphs. Second, we maximize transfer throughput by en-

suring that the edges of a vertex are read in a coalesced 

manner when the vertex iterates over its neighbors. Finally, 

a side-effect of using mapped memory is that it naturally 

supports overlapped communication of a vertex’s edge list 

with the computation of another vertex. 

This optimization speeds up the overall computation by up 

to 2x for hybrid configurations for the two largest work-

loads we use in our evaluation (i.e., RMAT29 and 

RMAT30, which we describe in more detail in the next sec-

tion). This is because, for such large workloads, this opti-

mization allows increasing the size of the offloaded parti-

tion from as little as 5% of the original graph (if we are to 

allocate the GPU partition state on device memory only) to 

up to 60%.  

                                                                 

2 The tool can be found at: oprofile.sourceforge.net 

 Improved load balance across GPU threads. Early work 

on graph processing on GPUs employed parallelism across 

vertices [14]; however, this approach creates load-imbal-

ance among threads and can lead to GPU underutilization 

since some vertices, in particular the high-degree ones, re-

quire more work than others. To address this problem, 

Hong et al. [15] propose to parallelize processing not only 

across vertices, but also across the edges of a vertex. Hong 

et al. do this by statically allocating a block of threads for 

each vertex to process its edges in parallel. Although this 

approach improves performance, it does not completely ad-

dress the problem: the fact that threads were being stati-

cally allocated results in some vertices being assigned more 

threads than they require (e.g., vertices with degree less 

than the configured value), while others will be assigned 

less threads. This is especially an issue for scale-free 

graphs where the degree varies considerably across verti-

ces. We address this problem by using a new feature intro-

duced recently by CUDA: dynamic parallelism, which al-

lows a GPU kernel to create work from within the GPU. 

We employ this feature to create threads dynamically based 

on vertex degree for each group of vertices with similar de-

gree, and hence improving GPU utilization. 

This optimization speeds up the GPU computation by up to 

80% for the Twitter workload (which is more unbalanced 

than the RMAT workloads). While this speedup does not 

translate to a performance gain for the whole computation 

(as the CPU takes longer), this optimization allows the 

GPU to run faster to idle, and hence reduces energy con-

sumption. 

 Improved vertex access locality. Although graph pro-

cessing is known to have random access pattern, vertex 

placement in memory can still improve performance. In 

particular, placing vertices in memory close to their neigh-

bors leads to important reduction in TLB cache misses on 

the CPU. We employ the techniques used for graph com-

pression [4, 6] to determine the order by which the vertices 

are placed in memory for real-world graphs. 

This optimization speeds up the performance of CPU ker-

nels (labeled 2S in plots) by up to 2x for both real-world 

workloads. As mentioned above, this was due to a major 

reduction in TLB misses, which we measured using hard-

ware counters via the OProfile2 profiling tool. This 

speedup is reflected on the performance of both, CPU only 

and, to a lesser extent, hybrid configurations.  

3. EXPERIMENT SETUP 
Workloads. We use real-world and synthetic graphs (Table 1). 

Note that the memory footprint of all workloads is larger than 

the memory space available on a single GPU. 

Real-world graphs: We use two of the largest real-world 

graphs publicly available: a snapshot of the Twitter network, 

and a crawl of about 100 million pages from the .uk domain. 

Synthetic graphs: Since the real-world graphs we have access 

to are still limited in scale, we also use large synthetic graphs 



generated in the same way as those for the Graph500 chal-

lenge3: Recursive MATrix (RMAT) process [7] with the fol-

lowing parameters: (A,B,C) = (0.57, 0.19, 0.19) and an average 

vertex degree of 16. We use the SNAP [29] network analysis 

library to generate the graphs. 

Benchmarks. We evaluate two graph algorithms to stress the 

platform and TOTEM in different ways that are representative 

for the two ends of the computation-to-communication ratio 

spectrum. First, Breadth-First Search (BFS), a traversal-based 

algorithm that computes the shortest distance in an unweighted 

graph. Second, PageRank produces a ranking of the vertices as 

described in [25]. Note that PageRank has a higher compute-

to-memory access ratio than BFS and, unlike BFS, its compu-

tational demands are stable for all computation rounds (in BFS 

only the ‘frontier’ vertices are involved in each round and the 

frontier size varies). A more detailed description of the algo-

rithms and their implementations using TOTEM can be found in 

[10]. 

Measuring Power. We measure power at the outlet using a 

WattsUP meter which collects samples at one second intervals 

[31]. To get a representative measurement of the energy con-

sumption, we run each experiment for 10 minutes (e.g., repeat-

ing BFS searches). For accuracy, CPU-only experiments are 

conducted after removing the GPUs from the machine (as the 

GPU draws power from the PCI-E bus as well). 

Testbed Characteristics. We use a host with state-of-the-art 

CPU and GPU models (Table 2).  To characterize the power 

                                                                 

3 The RMAT graphs are described by the log base 2 of the number of vertices (e.g., RMAT30 graph has 230 vertices). Unlike in the 

Graph500 challenge, the graphs are directed.   

4 TEPS became the accepted performance metric for BFS (see Graph500 benchmark). The corresponding TEPS for PageRank is 

computed by dividing the number of edges in the graph by the mean time per PageRank iteration (since, in each iteration, each 

vertex accesses the state of all its neighbors). 

consumption of the machine we use simple compute and 

memory intensive kernels. Figure 2 shows the power consump-

tion at idle, then when stressing one and both CPUs (listed as 

1S and 2S in the plot), then the memory, and then each of the 

two GPUs. The high idle power consumption, which includes 

idle power of CPUs and RAM only, is mainly caused by the 

sizeable amount of available RAM (256GB). Note that the two 

CPUs consume less power than the DRAM, and less than one 

GPU. We highlight two points: (i) at peak load a significant 

share of the power is consumed by DRAM, and (ii) when 

loaded, GPUs consume significant power compared to other 

system components. 

Metrics. To address the research questions, we use four perfor-

mance and energy metrics: i) raw processing rate measured in 

Traversed Edges Per Second (TEPS)4  (§4.1), ii) power con-

sumption in Watts (§4.2), iii) power-normalized processing 

rate in TEPS/Watt similar to GreenGraph500 (§4.3), and, iv) 

the energy-delay product, a metric biased for low-time-to-so-

lution while taking into account the energy cost (§4.4). 

4. EXPERIMENTAL RESULTS 
This section uses the metrics above to compare the character-

istics of four hardware configurations for all workload/bench-

mark combinations. We start (§4.1) by focusing on the time-to-

solution aspect: first, by presenting the performance of a tradi-

tional configuration that uses two processor sockets (labeled as 

2S in the plots) to a configuration that replaces one of the pro-

cessors to a GPU (1S1G).  We then add data for configurations 

that use both processors and add one GPU (2S1G) or two GPUs 

(2S2G).  

The experiments presented in §4.1 support our claim that, from 

a time-to-solution perspective, GPU acceleration is an appeal-

ing solution for graph processing. The remaining subsections 

explore the power (§4.2), and energy aspects (§4.3 and §4.4).  

 

Figure 2: Power characterization of the testbed. The char-

acterization is obtained by incrementally stressing the dif-

ferent components of the system. Note that the GPUs are 

removed from the system when characterizing only the 

host components. Finally, “Idle” measures the idle power 

of the system without the GPUs. 

 

Table 1: Workload Characteristics 

Workload |V| |E| 

Twitter [19] 41M 1.5B 

UK-Web [5] 105M 3.7B 

RMAT27 128M 2.0B 

RMAT28 256M 4.0B 

RMAT29 512M 8.0B 

RMAT30 1,024M 16.0B 

 

Table 2: Machine characteristics: two Xeon 2560 proces-

sors and two Tesla Kepler K20 GPUs (connected via PCI-E 

2.0 bus, which has a measured bandwidth of 5 GB/s). Total 

amount of host memory is 256GB. 

Characteristic 
Sandy-Bridge 

(Xeon 2650) 

Kepler 

(K20) 

Proc. Count 2 2 

Cores / Proc. 8 13 

Hardware Threads / Core 2 192 

Frequency / Core (MHz) 2000 705 

LLC / Proc. (MB) 20 2 

Main Memory / Proc. (GB) 128 5 

Memory Bandwidth / Proc. 

(GB/s) 
52 208 

TDP / Proc. (Watts) 95 225 

 



4.1 Raw Performance   
Figure 3 shows BFS (top) and PageRank (bottom) processing 

rates as averages over 64 runs. Error bars present the 95% con-

fidence interval, in most cases too narrow to be visible.  

First, it is important to stress that the performance for the CPU-

only configuration (2S – for two processor sockets used) is 

comparable to the best reported numbers on similar CPU mod-

els [16, 28].  This increases our confidence that we compare to 

a meaningful baseline.  

Second, the figures show that: rather than employing a second 

CPU, it is more performance efficient to use a GPU if available. 

Apart for the UK-WEB graph, the hybrid (1S1G – one socket 

and one GPU) system performs faster than the dual-socket sys-

tem (2S). This is important considering the fact that the graphs 

are large, and the GPU has only limited device memory, which 

constrains the size of the partition offloaded (e.g., in the case 

of the UK-WEB graph, only 25% of the total number of edges 

and vertices of the graph fit in the memory of a single GPU). 

Finally, the figures uniformly show the ability of the hybrid 

system to harness the extra processing elements for both bench-

marks. Most notably, when adding a second GPU, a larger por-

tion of the graph can be offloaded, and hence better perfor-

mance is obtained. 

4.2 Power Consumption  
We next turn our attention to power consumption with two key 

goals in mind: firstly, we aim to understand the degree to which 

additional processing elements lead to additional power con-

sumption (and how this relates to their TDP rating), and sec-

ondly, we aim to characterize the variability in power drawn 

during processing. 

Figure 4 shows the system power consumption under different 

benchmark/workload combinations. To better illustrate the var-

iation in power consumption during execution, the data is pre-

sented as boxplots.  

The main differentiating factor in terms of power consumption 

is the hardware configuration (i.e., the number and type of pro-

cessing elements used). A second factor is the workload (i.e., 

PageRank draws more power than BFS as the former not only 

stresses the memory, but also the FPU pipeline). Finally, we 

note that there is no major power difference across workloads 

 

 

Figure 3: BFS (top) and PageRank (bottom) processing 

rates (the higher the better) for different workloads and 

hardware configurations. The hardware configurations are 

presented in the following format: xS yG, where x is the 

number of CPU sockets (processors) used, while y repre-

sents the number of GPUs. Experiments for the configura-

tion with a single socket (i.e., 1S1G) were performed by 

binding the CPU threads to the cores of a single socket. For 

PageRank, experiments with RMAT30 workload are not 

shown as it does not fit in memory (the state required by 

PageRank is larger than that for BFS). 

 

 
 

 

 

Figure 4: Power consumption (the lower the better) for 

BFS (top) and PageRank (bottom). The upper and lower 

"hinges" of the boxplot correspond to the first and third 

quartiles. The middle line corresponds to the median. The 

whiskers extend from the lowest data point within 1.5 IQR 

of the lower quartile, to the highest data point within 1.5 

IQR of the upper quartile (IQR is the Interquartile Range, 

which is the distance between the first and third quartiles). 

The mean is shown as a cross. Note the y-axis starts at 

200W. 

 



for the same hardware configuration and benchmark combina-

tion. 

We observe that, although the hybrid 1S1G configuration has 

higher TDP rating, it draws comparable, sometimes lower, 

power to the symmetric configuration 2S, which has the same 

number of processing elements. Also, while adding GPUs to 

the 2S configuration increases power drawn, the increase is 

well below the TDP of the GPU. Adding a GPU increases 

power by ~100W, which is ~50% of the GPU’s TDP.  The rea-

son is that the GPUs finish processing their partition first and 

go in an energy-efficient idle state that consumes only a frac-

tion of their peak power (25W) (see Figure 5). 

The hybrid configurations generate more variation in power 

consumption than processing on the CPU only. This is because, 

for some workloads, the computation is unbalanced between 

the CPU and the GPU(s). There are two reasons for this unbal-

ance: First, GPUs do not have enough memory to hold a large 

enough partition that would balance the work for some work-

loads. Second, for BFS, the load varies across iterations. The 

time-series that presents the active/idle states for each bench-

mark shed more light on this effect (Figure 5).  

4.3 Power-normalized Processing Rates  
To estimate the energy efficiency of different configurations, 

Figure 6 shows the power-normalized performance for BFS 

and PageRank respectively (i.e., raw performance divided by 

drawn average power). Note that, for each workload, the plots 

can also be viewed as a comparison of raw energy consumed 

to process the graph. 

First, we compare the power-normalized performance of con-

figurations with two processing elements. Apart from the BFS 

benchmark on UK-WEB graph, a hybrid 1S1G system im-

proves both raw performance and power-normalized perfor-

mance compared to the symmetric 2S system. In the best case, 

the hybrid system achieves 1.9x higher efficiency for the power-

normalized performance metric. 

Second, adding more GPUs improves power-normalized per-

formance as the gain in raw performance is higher than the in-

crease in power consumption. Importantly, these gains are pre-

served when processing larger graphs and for all executions of 

PageRank and most workloads for BFS (§6 discusses the ex-

ceptions). 

4.4 Energy Delay Product  
Finally, using a different energy-oriented metric, the energy-

delay product (EDP), would not only support the same qualita-

tive observations, but the relative advantage of the hybrid so-

lution is even higher.  Figure 7 presents the results of this ex-

periment normalized to the 2S configuration to make the plot 

readable.  

5. RELATED WORK 
There is no shortage of work on optimizing graph algorithms 

on either the CPU or the GPU alone [2, 8, 16, 22]. This past 

work is complementary to our approach since we use some of 

these techniques as building blocks in our hybrid implementa-

tions.  

Previous work on evaluating power efficiency focused on ei-

ther the CPU or the GPU independently [1, 17, 23, 27], and 

mainly targeted regular applications that are friendly to GPU’s 

SIMT computation model (e.g., dense linear algebra prob-

lems). This work focuses on system-level evaluation of an ap-

plication that harnesses both processing elements. Moreover, 

 

 

Figure 5: CPU/GPU active/idle state while processing an 

RMAT27 graph on a 2S1G setup (time is in milliseconds) 

for BFS (top) and PageRank (bottom). For BFS, the 

‘frontier’ evolves in unpredictable ways, which results in 

having a processing element active in specific rounds and 

not in others. For PageRank, the GPU finishes execution 

before the CPU in each execution round. 

 

 

 

 

 

Figure 6: Power-normalized processing rate (the higher the 

better) for BFS (top) and PageRank (bottom). 

 



the application domain we target, graph processing, exhibits ir-

regular parallelism, where the power and performance benefits 

of GPU acceleration are not intuitive. 

Finally, the Graph500 committee has recently introduced a new 

challenge, GreenGraph5005, which ranks solutions based on 

TEPS/watt. The first rank (June, 2013) was dominated by small 

graphs processed on single-node machines. Our submission 

was ranked, and it processed the largest graph (scale-28) in its 

category (‘Small Data’ category). This paper includes addi-

tional optimizations (the results we report here are not directly 

comparable as we use directed graphs unlike the benchmark 

which uses undirected graphs). 

6. SUMMARY AND DISCUSSION  
Summary. This work demonstrates that GPU-acceleration im-

proves both time-to-solution as well as energy consumption for 

large-scale graph processing, and that this improvement scales 

when increasing the graph size and adding more GPUs. Fur-

ther, although the GPUs we use have one order of magnitude 

less memory, our experience shows that a hybrid (one CPU and 

one GPU) system can be more power efficient than a dual-CPU 

symmetric one.  

The rest of this section discusses few related questions. 
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Why not use DVFS to lower energy footprint? On the CPU 

side, a recent analysis [27] shows that, for recent Intel proces-

sors (e.g., Intel’s Sandy Bridge), both memory latency and 

bandwidth strongly depend on processor frequency (we con-

firmed this result on our platform). This limits the opportunity 

to use DVFS to save energy on the CPU side. On the GPU side, 

however, recent GPU models support setting different frequen-

cies for the memory and the compute cores. Previous work [1, 

17] shows that energy consumption can be reduced by lowering 

the core frequency for memory-intensive kernels. This is a di-

rection we aim to investigate to lower the power drawn by the 

GPUs. 

What other factors that could improve the performance/watt 

ratio of hybrid systems? On the algorithmic side, we aim to 

investigate the feasibility of graph partitioning techniques that 

target to minimize energy consumption. On the hardware side, 

we believe that having more memory on the GPU would sig-

nificantly improve performance as a larger partition can be of-

floaded. Also, we aim to investigate the use of low-voltage 

DRAM, which reduces the power drawn by the large memory 

space. Finally, high-bandwidth, low-power SSDs are now 

available (e.g., Intel’s 900 family, supports 1GB/s sequential 

read and draws as little as 25W); such storage can be used to 

offload part of the read-mostly graph state (e.g., the graph data 

structure), and hence reduce power drawn by memory.   

Do all graphs look like UK-WEB and thus make our points 

invalid for BFS? No. The UK-WEB workload has a long di-

ameter. It has two orders of magnitude longer than the other 

workloads, e.g. social networks, although the average path 

length stayed about the same. This topology leads to a large 

number of BSP rounds and stresses a limitation in the relatively 

simple design of TOTEM’s communication layer. In particular, 

TOTEM communicates the entire ‘ghost-zone’ at the frontier be-

tween the CPU and the GPU, which results in extra communi-

cation over the PCI-E 2.0 bus. This limitation manifests only 

for BFS because of its minimal computation per vertex com-

pared to other graph algorithms (e.g, PageRank and Between-

ness Centrality), which is not enough to hide this overhead. 

This limitation can be addressed in two non-exclusive ways: (i) 

improving the design of TOTEM’s communication layer by 

keeping track of changes and communicating only these ones, 

and (ii) connecting the GPU via a PCI-E 3.0 bus, which offers 

double the bandwidth. Note that other important large-scale 

networks, such as social networks [18, 19] and the Web itself 

[3], are known to have a shorter diameter.   

Here is my graph, what platform offers the best tradeoff be-

tween acquisition cost, energy and performance? Our experi-

ence supports recommending the following simple decision 

process: If the graph is small and fits GPU memory, we recom-

mend processing it on GPU only (a single GPU draws power 

comparable to a dual-socket CPU, but it is at least 2x faster). 

For larger graphs, we recommend boosting the host’s memory, 

adding GPUs and using TOTEM to implement algorithms on 

such a hybrid setup. Finally, for massive many-billion vertices 

graphs, if energy is the main concern, we speculate that a sin-

gle-node solution along the lines of GraphChi [20], which pro-

cesses the graph from SSDs, will be most advantageous. If 

time-to-solution is the primary concern then we conjecture that 

 

 

Figure 7: Normalized energy-delay product (the lower the 

better). The baseline is the configuration that uses both 

processors (2S). BFS (top) and PageRank (bottom). 



a cluster composed of as few fat nodes as possible, where each 

node is provisioned with as much memory and GPUs as possi-

ble, will be the most efficient setup (compared to a cluster of 

many low-end commodity nodes as used today).  
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