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THE ENERGY CONTENT OF A WHITE DWARF AND ITS
RATE OF COOLING

L. Mestel and M. A. Ruderman
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Summary

It is known that in a zero-temperature ¢ black dwarf’ star, the ions arrange
themselves in a nearly rigid lattice structure, with the associated Coulomb
energy reducing the total energy somewhat below that of the Chandrasekhar
model. In a white dwarf of moderate internal temperature the lattice structure
is preserved, and besides the zero-point oscillation energy of the lattice there
is a thermal oscillation energy, partly kinetic and partly Coulomb. At higher
temperatures the lattice begins to melt, but since the melting takes place at
nearly constant volume, there should be no discontinuous change in the
specific heat. Over the whole temperature range of interest for most white
dwarfs it is probably correct to use the Dulong-Petit specific heat: only at
temperatures high enough for vapourization will the ionic specific heat
become that appropriate to a classical gas.

As the star cools and contracts slightly, gravitational energy is released
comparable to the change in the thermal energy; however, almost all of it is
absorbed by the increase in exclusion energy accompanying the density
increase, so that it is semantically correct to speak of a white dwarf as radiating
at the expense of its thermal energy. Because of the Coulomb contribution to
the thermal energy, the computed lifetimes are twice earlier estimates.

1. Energy change in a cooling white dwarf. As a white dwarf cools towards its
final zero-temperature state there is a slight decrease in its radius; in addition to
its loss of thermal energy, there is a consequent decrease in gravitational potential
energy and an increase in electron degeneracy energy as the electron Fermi level
is raised. All three of these energy changes are generally of the same order of
magnitude, although they are not usually considered together in estimates of the
energy budget and cooling time for white dwarfs. We shall present some elementary
considerations on the relations among these energy changes, and upon the net
expendable energy, which bear on white dwarf evolution times. Only spherically-
symmetric models are considered—centrifugal and magnetic perturbations are
ignored.

We define in the usual way the total gravitational energy Q of a white dwarf
and similarly o for a zero-temperature black dwarf. The total kinetic energy U
is the sum of separate contributions from electrons and ions:

U=U(e)+ U(3), (1)
where the main contribution to U(e) is the zero-point exclusion or degeneracy
energy Ug(e) of the electrons. There is also an important contribution from the
Coulomb interaction energy V, the sum of electrostatic interactions among electrons
and ions. This Coulomb energy V) for the black dwarf is the (negative) difference
between the Coulomb energy of the ions in a lattice and that of a uniform charge
distribution (Auluck & Mather 1959, Salpeter 1961), together with the average
potential energy associated with the quantum zero-point motion of the ions in the
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lattice. Because of vibrations, V" for the white dwarf depends on temperature as
well as on density—the thermal energy includes a contribution from ¥V as well as
from U.* The ratios V/U and V/Q are numerically of order Z2Br,/ap, where Z
is the ion atomic number, 7, the inter-electron spacing and @ the Bohr radius.
This number is always well below unity over the ‘ pressure-ionized ’ bulk of a
white dwarf (Salpeter 1961); however, we shall see that the change in V between
black and white dwarf states is comparable with the changes in Q and U, and
cannot be ignored.

Because of its finite thermal energy, a white dwarf has slightly lower densities
than a black dwarf. For small changes we may write

AU=U~— Up=ArU+ATT, (2)

where AT refers to the thermal change in U from the black dwarf value Uy cal-
culated with the density distribution fixed at that of the black dwarf, and A~
refers to the change in U contributed by the change in density alone evaluated at
fixed temperature T'=o0. Similarly

AV=ArV + ATV, (3)
Because Q depends explicitly only upon the density distribution
AQ=ArQ. (4)
The total change in energy is given by
AE=AT(U+V)+ A/ (U+V +Q). (5)

But in any small deviation from the black dwarf equilibrium state, the change in
the total energy (U+ V + Q), computed at zero temperature, must vanish to the
first order:

A (U+V+Q)=o. (6)
This particular application of a general principle may be readily verified; if the
radius 7 of the mass sphere m is altered by Az, the first-order change in Q for a

star of mass M is

Ms
A= [ G Ardm
7

0

__ ("
=— fo o (47r2Ar)dm
—fM: d (47r2Ar)dm
=1, ?
Ms (g
SRe
o " \p
=—A/U+V), (7)

where use has been made of the thermodynamic relation for pressure p at zero
temperature in terms of the kinetic energy density # and the Coulomb energy

density v
i;—) ®)

)

* This point was made to one of us indirectly by Dr E. E. Salpeter.

p=_
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In the last line mass conservation has been applied in the form 1/p=4mr2 or/om.
From equations (5) and (6) we have for small changes from the black dwarf state

AE=AZ(U+V). (9)

Thus the first-order change in energy of the white dwarf is just the change with
temperature in the Coulomb plus kinetic energies evaluated at fixed density, i.e.

%,: f dvCy(T), (10)

where Cy(T) is the heat capacity per unit volume evaluated at fixed volume and
the integral is over the entire volume of the star. It is thus correct to speak of a
white dwarf without nuclear sources as radiating at the expense of the thermal
energy (kinetic and potential); with a decline in temperature the star contracts
slightly and some gravitational energy is released, but most of it is absorbed by
the increase with density in the kinetic plus electrostatic potential energy (chiefly
the electron exclusion energy, from (6) and (12) below).

At sufficiently high temperatures the ion lattice structure is dissolved completely,
and any further change in density will not yield any corresponding changes in
APV and ArU(z): use of the black dwarf formulae is no longer valid. However,
we shall see in (23—25) below that AE, A?U(e) and ArQ are usually comparable.
Since numerically

ArU®) <APV < APU(e) (11)

for the white dwarf, there is a fractional error in AE only of order Z23r,/aq in
assuming both
ArU(i)=o,
APV =0 (12)

at all temperatures, and we shall now make these approximations. Equation (g)
is valid as long as | Ap/p| < 1 relative to the black dwarf state, and it may be applied
to the difference in energy between any two states of a white dwarf which satisfy
this criterion.

2. Relations among changes in gravitational, Coulomb and kinetic energies. We
now give estimates of the relevant magnitude of AQ, A?U(e), and AE for a cooling
white dwarf.

. The dominant term in the pressure which balances the self-gravitation is that
of a fully degenerate gas of free electrons (Chandrasekhar 1939)

4,5
pa= A (9) =T [+ ) a{2"—3) + 3 sinh L], (13)
with x related to the mass density p by
8
p=DBid= f;fc‘gff A8, (14)

Here m, is the electron mass, My the proton mass, ¢ the velocity of light, # Planck’s
constant, and p.=A[Z is the ratio of the mean atomic weight to the mean ionic
charge of the nuclear species present. The associated degeneracy energy density is

ud=Ag<x)s”~';§§ff{8x3[<x2+1>112—x]—-f<x)}. (15)
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We write
& =]_(.(ﬁ2= E X 16

where 7(x) decreases monotonically from unity for x <1 (non-relativistic energies)
to 4 at x> 1 (relativistic energies).

In the Chandrasekhar approximation to a black dwarf, the degenerate electron
pressure is the only force opposing gravity. The virial thorem therefore yields
for the gravitational energy

=— 3fpddV= - zfnuddV

=— zﬁfuddV= —2aUg, (r7)

where the integrals are over the volume of the star; Ug is the total ‘ exclusion’
energy, and the average 7 is defined by equations (17). The total energy Eo is
therefore

Eo=Ug+ Q= —Ug(2n—1)=Q(1—1/27). (18)

In black dwarfs of low mass the electrons are everywhere non-relativistically
degenerate, so that 5~ 1, and the relations (18) reduce to E= — Ug={/2, as for a
non-degenerate star of monatomic gas. As the mass approaches the Chandrasekhar
limit M., 7—>%, while simultaneously the radius goes to zero; although Uy and Q
each becomes infinite, the total energy (18) decreases to a finite limit

—GM 2[2-018];

(Savedoff 1963). Here I; is the natural length unit (24/7G)!2/B, and the factor
2-018 comes from the =73 polytrope, which is the limit of the density distribution
as M—->M,. For a normal hydrogen-free star, pe=2, M,=1-44Mp and the
limiting energy is —7 x 10%0 erg.

In the next approximation (still at zero temperature) we must include the effect
of the electrostatic forces due to the ionic lattice structure and the associated energy
V. Salpeter (1961) treats these forces as contributing a term pe. s, towards the total
pressure, as in (8). Since the Coulomb energy per electron is ocpl’3, pe s, =49, and
the modified virial theorem, given from (17) by replacing pg by (pa+pe.s.),
becomes

Q+V+2qUg=o. (19)

Thus the electrostatic term appears as a modification to the gravitational—in (17)
and (18), we need only replace Q by (Q+ V). This result is in fact quite general,
because both Q and ¥V are potential energies of an inverse square law force, and
so it can be applied to white dwarfs also. The other corrections to the Chandra-
sekhar models (Salpeter 1961) are smaller and can be ignored.

As the limiting mass is approached, the density becomes so high that the
zero-point kinetic energy of the lattice ions Up(z) exceeds their mutual Coulomb
energy, and the lattice structure dissolves. Savedoff’s limiting energy would have
as a small correction the zero-point energy of an extreme density ionic fluid,
discussed recently by Abrikosov et al. (1963) and Ninham (1963). However, zero-
temperature ‘ pycnonuclear ’ reactions and inverse f-decays in fact preclude the
existence of black or white dwarfs with these densities (Schatzman 1958, Hamada
& Salpeter 1961).
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No. 1, 1967 The energy content of a white dwarf 31

We now turn to the corresponding relations for white dwarfs. An estimate of
AQ and AU(e) may be found from a perturbation analysis of the equation of
hydrostatic support. However the virial theorem supplies sufficient information:

2U(@)+27U(e)+ Q+ V=o, (20)

where the factor 2 before U(r) expresses the fact that at the temperatures of
interest, the ionic energies are non-relativistic. We shall exploit (20) in the ap-

proximate form
2AU(2)+27AU(e) + AQ+ AV ~o, (21)

where (A7)U(e) has been neglected next to nAU(e). (The error vanishes in the
non-relativistic and in the extreme relativistic limits; it is a maximum of 179,
for electrons with energy ~2-4mec2.) As long as the stellar interior remains very
degenerate, with kK T<Ep (the electron Fermi energy), the heat capacity of the
electrons is negligible next to that of the ions and we may take

ATU(e)~o, (22a)
so that
AU(e)~ ArUe). (22b)

Then the combination of the approximate equations (22), (21) and (12) with
equation (6) and equation (9) yields

T 1 T
— APQ~ APT(e) 22 ZI](’);_A 4 (232)
— a7
_ATE 4 ATUG) (23h)
T 1—2 3

In the next section we distinguish two temperature regimes for white dwarf
matter:

T> Ty for which ATU(Z)> ATV, and
T< Ty for which ATU(Z)=ATV.

Correspondingly, for T'> Ty

— A~ AT~ AE_ _ATUO+T)

I—27] (1—27)

» (24)
and for T< Ty

3 AT(TI(
3AE 2 AT(UGE)+T) -
2—47 (1 —27)

Thus except for stars very near the Chandrasekhar limit, | A?Q| = o[AT(U(z) + V)].
If M~ M., so that ~1%, a slight cooling causes large absolute changes | A?Q| and
AU(e), because the radius R—+o as M —~M,. However,

APQ[Q=of[AT(UGE) + V)II(7—H) | 2|}
- 0(AT(U(iH V))
[Eo| )
where Ej is the total black dwarf energy; and this is again small compared with

unity. It will be noted that |AE] is the same as |A?Q| and |[A*U(e)| only for
T> Ty and in the non-relativistic limit (5->1).

—ArQ~ ArU(e)~
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3. Heat capacity of white dwarf matter. For densities near 10 g/cm3 the Fermi
energy of the degenerate electrons in a white dwarf is about 1/10 MeV. At tempera-
tures around 107°K (1 keV)—typical of white dwarf interiors—the heat capacity
of the electrons is much less than that of a non-degenerate electron gas and so
is negligible next to that of the ions. Just because of the enormously high density,
the heat capacity of the ions can be more reliably calculated than is usual for
normal solids. In this high density limit the degenerate electrons have such a
high Fermi energy that they are only very slightly perturbed by the Coulomb
interaction between electrons and between electrons and ions: the screening radius
around an ion is large compared with the interionic spacing. At low temperatures
such ions will form a body-centred cubic lattice (Wigner 1934, Fuchs 1935) whose
excitations and heat capacity can be calculated.

A fixed ion of atomic number Z embedded in a degenerate electron gas is the
source of a screened Coulomb potential (e.g. Pines 1963)

V(r)= ZTe exp (—7/7sc) (26)

(except for some small short-wavelength oscillations). The ratio of the screening
radius 7. to the interionic separation 7; when the electrons are non-relativistic is

given by
7se_90 (@)”2
ri ZB\r,)

The interelectron spacing 7, is defined in terms of the number of electrons per
unit volume 7 by

(27)

gm;=wa (28)

and
ri=Z13y,, (29)

In the very high density limit where the electron Fermi energy becomes much
larger than the electron rest mass

se O
T 7R (30)
Since the ratio ap/r. in a white dwarf is generally about one hundred, the ratio
(30) is characteristic of white dwarf matter.

In first approximation we neglect 7; relative to 7 so that all ions interact with
unscreened Coulomb repulsions and form a bcc. lattice at zero temperature. The
excitation modes in such a lattice (Clark 1958) consist of a longitudinal plasmon
and a pair of transverse phonons. Exact details depend upon the direction of
propagation in the lattice. The typical spectrum of w versus wave number £ is
given in Fig. 1 (Pines 1963, p. 29).

The frequency w is measured in units of the ion plasma frequency

72620 \112 112 or
QpE (477'Mz 3) ~ 5 .4 X Io—lo(_I__pO_e) _i_zg’ (3 I)

where n, and M, are the ion number density and mass (assumed to be 2Z times
the proton mass) and kp is the Debye cut-off defined by

kp®=67n,. (32)
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R T —— —
Longitudinal mode
w

Transverse mode

k *

Fic. 1. Spectrum of excitations for a body-centred cubic lattice with Coulomb interac-
tion and long-range screening, based upon calculations of Clark (1958) and the survey of
Pines (1963). The dashed line is the ideal case of no screening.

The density p is measured in g/cm3.

When the finite screening radius is included the frequency of the longitudinal
wave must approach zero linearly as & goes to zero, i.e. it must behave as a normal
phonon instead of as an (ionic) plasmon. For small & (and non-relativistic electron
Fermi energy Er)

2
w? (longitudinal)—>(2ZEF ) k

M, ) 1+ Bk (33)

(Pines 1963, p. 243). Here ks is the wave number corresponding to (non-relati-
~ vistic) 7ge, 1.€.

2 =
ksc E b (34)

and equation (33) 1s valid for k£ <ks. As k goes to zero this is the dispersion relation
for an acoustic phonon in which the inertia is that of the ions and the pressure
that of the degenerate electrons.

The screening is not expected to affect significantly the spectrum of the trans-
verse waves—their frequencies vanish proportionately with & even in the theory
without screening. Graphs of w(k) for the longitudinal and two transverse phonons
are given by the solid lines in Fig. 1.

The energy content per unit volume of the ionic lattice at temperature T is

given by
3

uy+o= [ 728§ b [ +3) 63)
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with B=(xT)1 and « Boltzmann’s constant. The summation is over the three
possible phonon polarizations. The heat capacity per unit volume in the regime
AQ P
>l @)= 6 .£__ °©
Tz p =0=4x10 '\/106 K (36)
is

7Qp\2
Cy ~3nzx [1_31_6(77?) + ... ] (37)

In the evaluation of the r.h.s. of equation (37) we have used the Kohn sum rule
(Pines 1963, p. 28) for & Zks,:
3

Y, @ i(R)=Qy2 (38)

Thus the Dulong-Petit value for the heat capacity of the ionic lattice is a good
approximation for white dwarf matter with 7'>107°K and p <108 g/cm3. When
the temperature does not satisfy the criterion of equation (36) numerical integration
is generally necessary. However in the special case

T<® (39)
we have
1674 (T)\3
CVN—‘—S‘—‘ (@) KNy, 7 (40)

A more delicate issue is the determination of the regime in which equation (35)
remains valid. At a sufficiently high temperature the lattice will melt. Finally at
still higher temperatures the average Coulomb interaction energy will become
much less than the ion kinetic energy and the heat capacity will approach the
(3/2)«n; of a perfect gas.

In the absence of a definitive theory of melting we apply Lindemann’s rule
(Lindemann 1910) to the ionic lattice to estimate its melting temperature: the
lattice is expected to melt when the thermally-caused mean square fluctuation in
position of an ion, {8r;2), satisfies

Or?) 1
rig “"E’ (41)

This rule is empirically satisfactory at normal densities. For normal modes of the
lattice with /

kT szp = K@,
kp b2 3
o «T ([*D k2R I .
<o >_Mz7lz fo 272 = w/\z(k). (42,
We approximate (cf. Fig. 1) by taking
k
‘“1,2~°‘7E‘Qp> (43
D
wg~O0* 7 Qp. (4_4
The Kohn sum rule (38) is satisfied exactly for £~o0-7 kp. Then
I4KT
<8ri2> NMzsz' (4.‘
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The predicted lattice melting temperature T, is given by
Tp~3x10% (_,,_)1/3 Z5B°K (46)
m 106 ]

in good agreement with indications of melting in computer models of a Coulomb
gas (Brush, Sahlin & Teller 1965, Van Horn 1966). For Z>2, T generally
exceeds ® and the classical approximation of equation (42) is acceptable. (For the
case of He they are about equal, and one would expect that if oscillation amplitude
alone is the criterion that determines melting, then the zero-point fluctuations
should be included in estimating (87;2) for use in Lindemann’s formula. However,
for the transition between liquid and solid helium at normal density with the
observed T, much less than the Debye temperature, it is found that Lindemann’s
rule with {8r;2> given by equation (42) agrees much better with experiment,
implying that the zero-point fluctuations make virtually no contribution to melting.
A plausible qualitative explanation is that the zero-point oscillations are more
concentrated into shorter wavelengths than the thermal oscillations (Domb &
Dugdale 1957).)

Of course within the core of a white dwarf the lattice volume is pretty much
fixed by the gravitationally-determined density of the degenerate electron environ-
ment. Since the melting takes place at essentially fixed volume (rather than pressure)
the transition temperature is smeared; the temperature 7y, defines a regime and
there is no discontinuous phase change at a specific temperature.

There is no model for the liquid state that permits a confident estimate of the
heat of melting associated with the above solid-liquid transition and the change
in heat capacity. The significant difference between liquids and solids is the
absence of shear forces over macroscopic distances in the liquid, so that transverse
phonons of small k certainly are not present in the liquid state. However these
contribute only a very small part of the heat capacity except in the regime T'< 0.
Over short distances (a few 7;), i.e. with &> kp/3, the description of the liquid may
well be almost the same as that of the solid: long-range order disappears but very
short-range order remains. This is suggested by the observation that the two-
particle correlation function for near neighbours is not much affected by melting.
In this model the heat capacity in the solid and liquid would be similar. (Even
if wy(k) changed at large k the heat capacity would be unchanged as long as
kT ZFhiw(k).) This expected equality is compatible with the fact that at normal
" pressures there is, in general, less than 109, change in heat capacity between
the liquid and solid forms of the elements which melt at temperatures greater than
their Debye temperatures.

When simple monatomic solids melt at constant normal pressure the change
in entropy is characteristically ASy, ~2 cal/mol/°K so that the heat of fusion (at
constant pressure), is Ly(p) ~ «Ts. But the major part of this can be attributed
to work done against attractive forces when the solid expands as it makes a constant-
pressure transition to the liquid. Work done in theoretically squeezing the liquid
back to its solid volume is about the same as Ly(p). Also the unchanged heat
capacity implies no significant change in the number of degrees of freedom which
must be ‘filled’ to «7 so that almost all of L,(p) goes into stretching energy.
Thus in the continuous transformation from solid to liquid at essentially constant
volume, which is the case in the white dwarf interior, there should be only a
relatively small entropy change beyond that associated with raising the temperature
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of the liquid-solid with the heat capacity of equation (37).* In the absence of a
definitive description of melting and the liquid state we assume that equation
(37) is appropriate in the solid-liquid transition region and also in the liquid
state, until the temperature becomes so high that the ion kinetic energy exceeds
its average vibrational potential energy and the lattice model can be replaced by
that of a dense imperfect gas with

Cy~ % KM (47)

This will certainly happen when the ratio {67;2)/ri2~1 which corresponds to a
temperature Ty:
Ty~ 107 Z508 (_”_)1'3 °K (48)
9= 108 ) 4
To summarize: we adopt the Dulong-Petit value of the heat capacity in the
regime ®LTLTy, which includes almost all of the range of interest for white
dwarfs with cores composed of carbon or heavier elements. Although there will
be melting around the temperature T, of equation (46) which may fall in this
regime (for carbon at p~3x 108 g/em8, Ty ~107°K) it is expected to have an
insignificant effect on the energy content.

4. Cooling times. Because of the high thermal conductivity of a degenerate
electron gas, the bulk of a white dwarf has a nearly uniform temperature 7. The
energy leak L through the thin but opaque, non-degenerate envelope is given
(Mestel 1952a, Schwarzschild 1958, Schatzman 1958) by

L=KMT, (49)

where K depends primarily on the opacity of the envelope. It is known (Ledoux
& Sauvenier-Gofhin 1950, Mestel 1952b, 1965, Schatzman 1958) that the hypothesis
of nuclear generation as the source of a white dwarf’s luminosity leads to severe
physical difficulties from secular and vibrational instabilities, as well as astro-
nomical difficulties in explaining the origin of white dwarfs on plausible evolu-
tionary grounds. No physical (and to date no overwhelming astronomical) diffi-
culties follow from the cooling hypothesis, in which the luminosity is supplied
by a decline in the total energy E. For most white dwarfs, equations (10), (37)
and (49) yield as the equation of cooling

d ( 2MT

AN

2% being the gas constant /Mg and A the mean atomic number. Because of the
strong L-T dependence, most of the cooling time is spent near the present tem-
perature T: (50) yields a white dwarf lifetime

1., 2M T (s1)

Hal) 5
where I is the present luminosity KMT7/2, This differs by a factor 2 from the
older formula (Kaplan 1950, Mestel 1952a) because of the inclusion of the thermal

)-Kxmrs, (50)

* Brush, Sahlin and Teller (1965), on the contrary, do find evidence for a possible heat
of melting of about «Tw. However, their computer model uses only thirty-five ions, and
does not (for example) predict the correct zero-temperature lattice. The effect of a significant
heat of melting in stabilizing the temperature of a cooling white dwarf has been studied by
Van Horn (1966).
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part of the lattice potential energy. With T computed using the improved opacity
of Schwarzschild (1958), the age of Sirius B now becomes 3 x 109/4 years. This
agrees with the estimated age of 108 years for Sirius A provided 4=~ 30, implying
that substantial nucleosynthesis beyond carbon and oxygen has occurred in the
pre-white dwarf star. However, an error of 2—e.g. a doubled lifetime for Sirius A, or
halved internal temperature for Sirius B—would reduce 4 to 15, in the C-O range.

Luyten and Zwicky have recently reported the discovery of pygmy stars
(Zwicky 1966) whose density is greatly in excess of that normally found in white
dwarfs. The white pygmy star LP 101-16 is thought to be a hot star of solar mass
and density of order 10° g/cm3, about the maximum which could be stable against
K-capture of electrons. Such a star would have ® ~1-2x 108°K and

Ty~ Z58x 108°K.
The zero-point ionic motion is so large that the stellar core may be a quantum

fluid down to T'=o0 if Z=2. Application of equation (40) (which can be applied
with confidence only if the ions do form a lattice) gives instead of equation (50)

4 (T\3
L@
The lifetime for cooling of such a star to a present internal temperature T and
luminosity L is
327t (T\3 ((To\1/2 2MT
=5\ \I7) ) A (53)

where T (To< ©) is the initial temperature from which the pygmy star has cooled.
This is shorter than the ¢ classical ’ result (51) if 7/® < 1071 approximately.*

A possible neutrino luminosity would decrease the calculated cooling time,
and could reduce still further the lifetimes of pygmy stars. However the present
luminosity <3 x 1073L, of normal white dwarfs exceeds the hypothetical but
unconfirmed neutrino radiation (Inman & Ruderman 1964) by well over three
orders of magnitude at temperatures T'<1-1x 107 °K, and so should not signifi-
cantly alter the cooling time (51).
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* Greenstein (1963) has reported on two very faint white dwarfs in the Hyades cluster,
with lifetimes as given by (51) longer than that of the cluster (as determined from the
turn-off point from the main sequence). One possible explanation is that their densities are
high enough for (53) to be the relevant formula,
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