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A major goal of neuroscience is understanding how neurons arrange themselves

into neural networks that result in behavior. Most theoretical and experimental efforts

have focused on a top-down approach which seeks to identify neuronal correlates of

behaviors. This has been accomplished by effectively mapping specific behaviors to

distinct neural patterns, or by creating computational models that produce a desired

behavioral outcome. Nonetheless, these approaches have only implicitly considered

the fact that neural tissue, like any other physical system, is subjected to several

restrictions and boundaries of operations. Here, we proposed a new, bottom-up

conceptual paradigm: The Energy Homeostasis Principle, where the balance between

energy income, expenditure, and availability are the key parameters in determining the

dynamics of neuronal phenomena found from molecular to behavioral levels. Neurons

display high energy consumption relative to other cells, with metabolic consumption

of the brain representing 20% of the whole-body oxygen uptake, contrasting with

this organ representing only 2% of the body weight. Also, neurons have specialized

surrounding tissue providing the necessary energy which, in the case of the brain, is

provided by astrocytes. Moreover, and unlike other cell types with high energy demands

such as muscle cells, neurons have strict aerobic metabolism. These facts indicate that

neurons are highly sensitive to energy limitations, with Gibb’s free energy dictating the

direction of all cellular metabolic processes. From this activity, the largest energy, by far,

is expended by action potentials and post-synaptic potentials; therefore, plasticity can

be reinterpreted in terms of their energy context. Consequently, neurons, through their

synapses, impose energy demands over post-synaptic neurons in a close loop-manner,

modulating the dynamics of local circuits. Subsequently, the energy dynamics end

up impacting the homeostatic mechanisms of neuronal networks. Furthermore, local

energy management also emerges as a neural population property, where most of

the energy expenses are triggered by sensory or other modulatory inputs. Local
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energy management in neurons may be sufficient to explain the emergence of behavior,

enabling the assessment of which properties arise in neural circuits and how. Essentially,

the proposal of the Energy Homeostasis Principle is also readily testable for simple

neuronal networks.

Keywords: homeostasis, energy, neuronal networks, behavior, emergent properties

INTRODUCTION

Throughout evolution, the development of the nervous system
has enabled animals with the capacity to manifest ever-
growing complex behavior, which has helped them survive in
a changing environment. Understanding how neurons arrange
themselves into neural networks that work at producing different
behaviors has always been a major goal of neuroscience.
Various conceptual frameworks have aimed to explain how
behavior emerges from neuronal activity. Arguably, the most
relevant is the Neuron Doctrine, proposed by Santiago Ramón
y Cajal and further developed by Heinrich Waldeyer-Hartz and
Horace Barlow (Barlow, 1972; Bock, 2013). Since then, the
same logic has spread into coding paradigms (Lettvin et al.,
1959; Fairhall, 2014; Yuste, 2015), especially in information
processing frameworks (Fodor, 1983; Friston, 2002; Robbins,
2010; Lorenz et al., 2011), and has been scaled from neurons
up to neural networks (Yuste, 2015). A common and key
element of these conceptual approaches has been to find
neuronal correlates of behaviors, effectively associating specific
behaviors with distinct neural patterns. This top-down approach
(using behavior as a reference to be mapped into neuronal
circuits) has been very successful in providing single-unit or
network models that can implement the observed behaviors, yet
simultaneously, may make difficult the capture of the emergence
of behavior, which is by-large a bottom-up phenomenon. This
methodological approach also limits our capacity of predicting
the boundaries of the capabilities or the spectrum of behaviors
of a given system, because we map or associate only those
behaviors that have been well-characterized. More importantly,
all theoretical approaches, to our knowledge, have only implicitly
addressed the fact that neural tissue, like any other physical
system, is subjected to several restrictions and boundaries
of operations.

Cells use energy to stay alive and at the same time,
maintain some reserves to respond and adapt to dynamic
situations, maintaining their homeostasis. For neurons, energy
availability would be further important, as their energy expenses
are high, as compared to other somatic cells (Attwell and
Laughlin, 2001; Shulman et al., 2004). Indeed, the metabolic
consumption of the brain, which represents 20% of whole-
body oxygen consumption, contrasts with the neural tissue
representing only 2% of whole body weight (Shulman et al.,
2004). Interestingly, the total brain energy consumption increases
proportionally with the number of neurons among different
species, including humans (Herculano-Houzel, 2011), and
the total energy expenditure associated to a neuron during
the signaling and resting states is constant in different
mammalian species (Hyder et al., 2013). Thus, neurons seem

to present a highly specialized system for managing their
energy demands.

Several evidences demonstrate that it is reasonable to assume
a constant value for energy availability for neurons over the long
term (energetic homeostasis). For instance, cultured neurons
exhibit a steady value for free adenosine triphosphate (ATP)
in basal conditions, which transiently decrease during the
induction of glutamatergic synaptic activity through various
energy challenges (Marcaida et al., 1995, 1997; Rangaraju et al.,
2014; Lange et al., 2015). This tight energy management suggests
a relevant role for neuronal energy homeostasis on neuronal and
network functional properties.

Here, we propose a new bottom-up conceptual paradigm
for neuronal networks: The Energy Homeostasis Principle.
Under this principle, the condition of maintaining neuronal
homeostasis triggers synaptic changes in the individual but
connected neurons, resulting in the local energy balance
scaling up to a network property. This conceptual framework
supposes that energy management might be critical in
determining plasticity, network functional connectivity,
and ultimately behavior.

CELLULAR HOMEOSTASIS AND GIBBS
FREE ENERGY

In this article, we propose that behavior may raise as an emergent
property rooted in energy requirement of neurons, thus, we
would like to start from the level of biochemistry andmetabolism.
As such, we will begin with the fact that cells are dynamic
molecular machines that require the nutrient intake to stay alive.
Many biological processes are thermodynamically unfavorable,
and through metabolism, cells draw energy from nutrients, and
generate metabolic resources necessary to drive their cellular
activities (Hofmeyr and Cornish-Bowden, 2000) (for a schematic,
see Figure 1A). Cellular homeostasis can be defined as a state
where the production and consumption of metabolic resources
balance each-other, and thus their concentration is constant
in time. For our specific context, balancing the intake and
consumption of metabolic resources will unavoidably have a
global impact on the cellular processes. The network of metabolic
processes is large and complex, limiting, to some extent, our
capacity to predict cellular behavior using basic principles.
Nonetheless, biochemical reactions must be consistent with the
laws of thermodynamics.

Thermodynamics can help us understand how a system
evolves in time through the comparison of the thermodynamic
potential between an initial and final state. For processes
at a constant temperature and pressure, the thermodynamic

Frontiers in Computational Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 49

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Vergara et al. The Energy Homeostasis Principle

FIGURE 1 | Homeostasis requires a balance between ATP production (metabolism) and ATP consumption (synaptic activity): (A) Production of energy molecules by

metabolism supports neuron activity, in addition to cell maintenance processes, most notably by ATP [A(t)]. Neuronal homeostasis depends on a balance between

production and consumption of high-energy molecules. (B) Synaptic activity has been estimated to amount for half of total ATP consumption [diagram redrawn from

(Harris et al., 2012)]. For cellular homeostasis to be achieved, neurons must regulate their activity and metabolism in response to changing external perturbations. We

propose that regulatory mechanisms, responsible for changes synaptic plasticity, reflect the requirement for maintaining a constant level of energy resources available

for neurons to function.

potential is given by Gibbs Free Energy (G). This thermodynamic
potential will dictate a directional bias of chemical reactions. The
Gibbs Free Energy—supporting cellular processes—is provided
with a finite amount of metabolic resources. Thus, there is
a trade-off between the potential for metabolic work and
metabolic expenses, which, we propose, may explain some well-
established phenomenology of how cells respond to external
perturbations. Additionally, the change in the Gibbs Free Energy
(1G) and the rate associated with chemical transformations
are related (Crooks, 1999). To illustrate the relation between
thermodynamics and kinetics, for a reversible reaction X⇔Y, the
following relation constrains kinetic rates:

rate (X → Y)

rate (Y → X)
= e−

G(Y)−G(X)
RT (1)

where R is Gas constant, and T the absolute temperature (Cannon
and Baker, 2017). This equation describes the relation between
the mean rates of any pair of reversible processes (from X to Y,
and fromY to X) and the difference in Gibbs Free Energy between
the states. Note that by definition the Gibbs Free Energy assumes
Temperature to be constant. In simple terms, the difference
1G{X⇒Y} can be thought of as a “directional bias,” indicating
how favorable one direction is over the other. In more detail, the
Gibbs Free Energy is divided into two components, Enthalpy (H)
and Entropy (S):

G (X) = H (X) − TS (X) (2)

Where, T is the absolute temperature (Silbey et al., 2004).
In the context of chemical transformations, Enthalpy is a
measure of the energy required to form a given substance,
disregarding interactions with other molecules; whereas Entropy
can be interpreted as a correction accounting for all possible
combinations by which molecules can react (Danos and Oury,

2013). Given the combinatorial nature of entropy, it can also
be interpreted as a measure of disorder or information, but
certain care must be taken for this interpretation to have physical
meaning (Jaynes, 1965). We wish to recognize that the direct
application of thermodynamics to biology has many challenges,
particularly in describing macro-molecular processes (Cannon,
2014; Cannon and Baker, 2017; Ouldridge, 2018), combining
large systems of reactions (e.g., kinetic parameters may be
required), and accounting for fluctuations from average behavior
(Marsland and England, 2018).

A long-standing observation in biology, rooted in
thermodynamic laws is that for cells to function, they must
couple unfavorable reactions (1G > 0) with more favorable ones
(1G < 0). Common examples of unfavorable processes are the
synthesis of macromolecules, and the maintenance of membrane
potential; which are coupled with the hydrolysis of ATP, and GTP
providing more favorable 1G (Nicholls, 2013). In turn, ATP,
GTP, and monomers for macro-molecules are synthesized from
nutrients through metabolism (Nicholls, 2013). For instance, the
maximum free energy provided by ATP hydrolysis is related to
the concentration of ATP, ADP, and phosphate.

1G (ATP → ADP + Pi) = 1G◦
+ RT

(

log [ADP]

+ log [Pi]− log [ATP]
)

(3)

Where, 1G◦ is the standard free energy, and log, the
natural logarithm. For generality, we will call hereafter “energy
resources” the set of reactants that allow cells to maintain
unfavorable reactions in the direction conducive to cellular
functioning and survival. We wish to emphasize that balancing
the internal production and consumption of metabolic resources
by different reactions is critical, given that metabolic resources
are finite and shared by many cellular processes. Thus, cells
must manage their internal production and consumption of
metabolic resources to stay alive and remain functional, which

Frontiers in Computational Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 49

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Vergara et al. The Energy Homeostasis Principle

may be of special consequence to cellular activities with high
energy demands, such as synaptic activity in neurons. Given
that neurons are active most of the time, it is reasonable to
expect that current and future disposal of energy resources is
privileged, which may be reflected in the regulatory mechanisms
responsible for synaptic plastic changes. In the following section,
we will explain how current evidence regarding neuron plasticity
appears to support a relatively simple rule: maintain the levels
of energy disposal constant, by reducing the consumption of
energy resources (e.g., reducing discharge rate, post-synaptic
potential), or by increasing high-energy molecule production
(e.g., mitochondria and interactions with glia).

ENERGY MANAGEMENT OF
BRAIN NEURONS

Neurons are the paramount example of energy expenditure for
their function and survival. This situation is reflected in their
large metabolic rates and by the comparatively higher sensibility
of brain tissues to oxygen and glucose deprivation (Ames, 2000).
Reactions controlling the conversion of nutrients into available
cytosolic levels of ATP are important to generate the potential
metabolic work that is available to a neuron at any given time.
During normal conditions, the primary energy substrate in the
brain for neurons is blood-derived glucose; however, when at
elevated levels in the blood, ketone bodies and lactate can be
used as energy sources as well (Magistretti and Allaman, 2018).
The glycolytic pathway is the first step to glucose processing,
where two pyruvates and two ATPs are generated from one
molecule of glucose. In addition, the pyruvate could either be
reduced to lactate or enter the Krebs cycle to produce metabolic
reducing intermediates that will generate nearly 29 additional
ATP molecules per glucose (through oxidative phosphorylation
in the mitochondria). Although neurons and astrocytes are
capable of glucose uptake and performing both glycolysis and
the Krebs cycle, accumulated evidence supports the hypothesis
that neurons may “outsource” glycolytic activity to astrocytes
under activity conditions (Weber and Barros, 2015). In addition,
the central nervous system is provided with small glycogen
reserves, which are predominantly present in astrocytes (Brown
and Ransom, 2007), but also found in neurons (Saez et al., 2014).
In any case, the lactate derived from glycogen break-down may
also provide ATP to the neurons under ischemic or sustained
electric activity conditions (Brown and Ransom, 2007).

ATP sources change dynamically with neuronal activity and
several mechanisms account for this fine-tuning response. First,
neuronal mitochondria are capable of raising ATP synthesis in
response to increased synaptic stimuli (Jekabsons and Nicholls,
2004; Connolly et al., 2014; Rangaraju et al., 2014; Toloe
et al., 2014; Lange et al., 2015). Although the molecular
meditators for this activation are not completely elucidated,
the increase of the respiratory rate of an isolated mitochondria
correlates well with the ADP concentration (Brown, 1992), and
neuronal mitochondrial function has been satisfactorily modeled
considering the changes in ATP and ADP levels (Berndt et al.,

2015). As an alternative mechanism, it has been reported that
operating on milder stimulation conditions, the activity of Na-
pump rapidly induces ATP synthesis of the mitochondria, in
response to neuronal activity independent from changes in
the adenosine nucleotides (Baeza-Lehnert et al., 2018). Second,
neuronal activity is known to elicit local increases in blood
flow (neurovascular coupling), glucose uptake, and oxygen
consumption (Sokoloff, 2008). Coherently, glucose uptake and
glycolytic rate of astrocytes are further increased in response to
the activity of excitatory neurons, potentially as a consequence
of the local rise of glutamate, ammonium (NH4), nitric oxide
(NO), and importantly, K+ (Magistretti and Allaman, 2018).
As such, an increased glycolytic rate on astrocytes leads to
lactate accumulation that is shuttled into neurons which generate
ATP through oxidative phosphorylation. Thus, in CNS neurons,
different neuronal and non-neuronal ATP sources work “on
demand,” depending on the local levels of synaptic activity.

What Is ATP Used for in Neurons?
Neurons are perhaps the largest eukaryotic cell in nature, their
surface may be up to 10,000 times larger than an average cell
(Horton and Ehlers, 2003). The large size of neurons supposes
that structural processes, such as protein and lipid synthesis
or the traffic of subcellular organelles, should be sustained by
high levels of ATP synthesis. In addition to this fact, energy
consumption during signaling is far more important. Indeed, it
has been estimated that nearly 75% of the gray-matter energy
budget is used during signaling; a number that is coherent with
the decrease of energy consumption, observed under anesthesia,
and is estimated to be around 20% of the total energy budget
(Attwell and Laughlin, 2001; Harris et al., 2012).

Most of the neuron’s energy budget during signaling is used
to restore ion gradients across the plasma membrane, mediated
by the action of different ATP-dependent pumps. For example,
assuming an average firing rate of 4Hz, a presynaptic neuron’s
ATP is mostly used for restoring the Na+ gradient due to
action potentials, and to sustain the resting potential (22% and
20% of energy consumption, respectively). Meanwhile, at the
post-synaptic neuron, ATP is primarily used to extrude ions
participating in post-synaptic currents—about 50% of the energy
consumption (Harris et al., 2012). More detailed descriptions of
the neuron energy budget is provided in Figure 1B.

Neuron’s ATP Availability Is
Tightly Regulated
All cellular organizations require a minimum amount of ATP
for survival. It is well-known that when ATP levels decrease
below a certain threshold for different eukaryotic cells, apoptosis
or necrosis is induced (Eguchi et al., 1997). Nevertheless,
determining the maximum and minimum thresholds of a cell’s
ATP requirement for not only to survive but to realize a
specialized function, is less apparent. In any case, this feature
must be necessarily shaped by evolutionary adaptations of cells to
their specific tissue environment. It is not completely clear how
a neuron’s ATP levels, during rest and upon activity, may impact
its structure and function. Interestingly, by computational and
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mathematical modeling, it has been proposed that a compromise
among energy consumption and information processing capacity
has shaped the fundamental features of neuronal structure and
physiology, including neuronal body size, ion channel density,
and the size and frequency of synaptic inputs (Sengupta et al.,
2013). For example, a larger neuronal body has a better capacity
to discriminate and respond to different synaptic inputs (coding
capacity), but at the cost of higher energy consumption. On the
other hand, with a fixed size for the soma, the ion channel density
required to obtain maximum energy efficiency is at a lower
value than the density needed to maximize the coding capacity.
Similarly, although small synaptic inputs at low frequencies are
energetically more efficient, better coding capacity arises with
larger inputs and rates. These energy constraints may have
introduced important consequences during cellular evolution,
such that neurons with similar shape and function may harbor
similar metabolic features, even across different species.

Remarkably, it has been found that energy consumption
of neurons, across the brains of varying species, is constant
(Herculano-Houzel, 2011). This result supposes a critical
restriction for the function of neuronal networks and their coding
properties. For example, sparse coding i.e., brain computations
that emerge from the increased firing rate of a few neurons during
a task, has been proposed as a mechanistic solution to the limited
energy availability for brain neurons (Attwell and Laughlin,
2001; Laughlin, 2001; Lennie, 2003; Weber and Barros, 2015).
Thus, it is also possible that variables such as the ATP cytosolic
concentration may have been finely tuned during evolution to
allow for the emergence of fundamental properties, including
some forms of synaptic plasticity.

Accumulating evidence supports that neurons, in time, harbor
a narrow window of ATP cytosolic concentration availability
[A(t)]. Despite not having dynamic measurements with absolute
values of A(t), different experimental approaches on cultured
neurons show that this variable tends to remain constant at
resting conditions and after momentary synaptic challenges.
Accordingly, 60min of different sorts of glutamatergic
stimulation leads to a nearly 5-fold decrease of A(t) (Marcaida
et al., 1995, 1997), but when a brief glutamatergic or electric
stimulation is applied, only a transient and reversible decrease
on ATP levels occurs and the A(t) is subsequently restored to
basal levels (Rangaraju et al., 2014; Lange et al., 2015).

Tight management of A(t) also operates on axonal
compartments with important functional consequences.
For instance, isolated axons from the optical nerve, under low
glucose conditions, demonstrate a pronounced decay of ATP
levels during high-frequency stimulation (50–100Hz) (Trevisiol
et al., 2017). Interestingly, compound action potentials (CAPs),
generated by those stimulated axons, are reduced to the same
extent and in high coincidence as the A(t), suggesting that
electric activity depends on A(t) (Trevisiol et al., 2017). In
addition, isolated axons exhibit a constant value for A(t), which
immediately and steeply decays after the inhibition of glycolysis
and oxidative phosphorylation, in concomitance with CAPs.
However, when inhibitors are washed out, both A(t) and CAPs
return to basal levels, further supporting that the system tends
to reach a constant value for A(t). The tendency of the system to

set a constant value for A(t) is also manifest in conditions where
expenditures are highly reduced. For example, A(t) remains
constant on pre-synaptic terminals of cultured hippocampal
neurons, despite the inhibition of action potential firing due to
incubation with the Na+ channel blocker Tetrodotoxin (TTX)
(Rangaraju et al., 2014). Conversely, the same study showed
that electrical stimulation of 10Hz by 1min, concomitantly
evokes ATP synthesis on pre-synaptic terminals, restoring A(t)
to basal levels (Rangaraju et al., 2014). From now on, we will
call the basal value of A(t) as the homeostatic availability of
ATP (AH).

Mechanisms accounting for the intrinsic control of AH in
neurons are less explored than in other cells. In the short term,
there is a direct and fast effect of ATP molecules and their
hydrolysis products, such as AMP/ADP, over the activity of
different metabolic enzymes and ion channels. Indeed, neurons
are largely known for being extremely, even disproportionately,
sensitive to decreases in ATP sources, leading to a fast and
significant inhibition of electrical activity (Ames, 2000). For
example, ATP-sensitive K+ channels open during decreased ATP
levels, hyperpolarizing the neuron to reduce endocytosis and the
opening of voltage-sensitive Na+ channels, thus preventing the
ATP expenditure associated to both processes (Ben-Ari et al.,
1990). On the other hand, it has been elegantly shown that
action potential firing on pre-synaptic terminals’ gate activity-
driven ATP production is also required to allow proper synaptic
transmission (Rangaraju et al., 2014). This close dependency
of ATP levels to synaptic functioning has suggested that the
affinity constant for ATP (e.g., Km) of different pre-synaptic
enzymes, might be close to certain resting ATP levels (Rangaraju
et al., 2014). It is tempting to speculate that the fine-tuning
of the affinity constant from key enzymes might be a broader
phenomenon in neurons. In addition, it is known that calcium
entry, which is transiently modified by electrical activity, is
capable of orchestrating changes in ATP production. For
example, synaptic stimulation with brief NMDA pulses, not only
lead to pronounced increases of cytosolic calcium levels, but also
of the mitochondrial matrix, whose ATP producing enzymes are
known to be stimulated by calcium increases (Tarasov et al., 2012;
Lange et al., 2015). Indeed, transient increases of calcium levels
are thought to be a sort of metabolic alarm which prepares cells
to confront high energy demands by increasing ATP production
by the mitochondria (Bhosale et al., 2015).

As a complementary mechanism, changes in the ATP and
AMP ratio gate the activity of other metabolic sensors which,
in turn, induce a specific signaling cascade for short and
long-term adaptations of neuronal functions. For example,
all known eukaryotic cells, including neurons, harbor energy
sensors, such as AMP-activated protein kinase (AMPK), which
tend to restore ATP concentration by decreasing anabolic
and/or energy consuming processes, while increasing energy
production through catabolism post-energy challenges (Potter
et al., 2010; Hardie, 2011; Hardie et al., 2012). AMPK is a
highly evolutionary-conserved serine/threonine kinase enzyme
that is activated either by diminished cellular energy (high
AMP/ATP ratio) and/or through increased calcium (Hardie
et al., 2012). Recent evidence shows that in dorsal root
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ganglion neurons—which express the transient receptor potential
ankyrin 1 (TRPA1) channel for thermal and pain transduction—
the AMPK activation results in a fast, down-regulation of
membrane-associated TRPA1 and its channel activity within
minutes, which is consistent with lowering energy expenditure
by diminishing post-synaptic currents (Wang et al., 2018).
Furthermore, it has been demonstrated that calcium overload,
induced by an excitotoxic NMDA stimulus on cultured cortical
neurons, can be reduced by the activation of AMPK, which
would save the energy involved in the reversal of a Ca++

potential (Anilkumar et al., 2013). Interestingly, the actions
of the catalytic subunit of neuronal AMPK also includes the
inhibition of axon outgrowth and dendritic arborization during
neuronal development, for adapting to metabolic stress mediated
by the suppression of Akt and mTOR signaling pathways
(Ramamurthy et al., 2014). This result suggests that AMPK may
also operate in mediating structural synaptic changes during
the activity of mature neurons, contributing to control energy
expenditures in the long-term. Furthermore, it has been shown
that the maintenance of long-term potentiation (LTP), which is
energetically demanding, is dampened when AMPK activity is
pharmacologically activated (mimicking a low ATP/AMP ratio),
or conversely, LTP could be rescued when an ATP mimetic,
ara-A, was added during an energy challenge. Thus, under low
energy conditions, neuronal AMPK tends to inhibit changes on
ionic gradients and reduce changes on cytoarchitecture, which
can upregulate the value of A(t), impacting plastic capacity
as well.

Summarizing, each neuron has a certain amount of
ATP available to them, which is constantly consumed by
their different functions which can mostly be explained
using ion gradient changes on axons and dendrites. At
the same time, ATP production will compensate the ATP
expenditure reaching an AH that should remain constant
until another specific synaptic challenge arrives (Figure 2).
In the next section, we will discuss the potential functional
consequences of these adaptations in special cases of
neuronal plasticity.

Revisiting Neuronal Plasticity Under the
Perspective of Energy Constraints
A narrow window of ATP cytosolic concentration across time
supports a bottom-up view of neuronal energy constraints, which
may explain some well-described plastic adaptations from the
literature. Measurements of glucose and oxygen consumption
(reflecting energy consumption) have not distinguished between
the contribution from glial and neuronal metabolism and the
total energy expenditure attributed to one neuron (Hyder et al.,
2013). Nonetheless, neurons would keep energy availability
during the increment of energy demands, which include action
potentials, potential propagation or dendritic depolarization,
by dynamically sharing expenses with astrocytes glial cells
(Hyder et al., 2006; Barros, 2013). It is worth mentioning that
energy management is partly performed by these latter cells
(Magistretti, 2006; Magistretti and Allaman, 2015). Indeed, we
must consider that ATP neural production is provided by the

local pyruvate and glial lactate. Where a theoretical model aimed
to explain brain energy availability from rat and human brains,
it indirectly suggested that glial and neuron lactate sources may
dynamically vary across different species and activity levels, with
the condition of maintaining a rather constant energy production
(Hyder et al., 2013).

We will follow a very simplified view of ATP metabolism
characterized by two collections of processes: Those that produce
ATP (e.g., from local pyruvate and glial lactate), and those
that consume ATP (e.g., recovery of ion gradients, structural
and functional synapse maintenance). We can formalize the
effect of these processes on ATP concentration (A) by a simply
differential equation:

∂A

∂t
= P (t,A, . . .) − C (t,A, . . .) (4)

Where, P (t,A, . . .) is a function that represents the sum of all
reaction rates that produce ATP (e.g., anaerobic and aerobic
metabolism), whereas C (t,A, . . .) is the sum of all reaction rates
that consume ATP (e.g., membrane repolarization, structural
and functional synapse maintenance). Both production (P) and
consumption (C) rates are dynamic (they depend on time), but,
more importantly, they depend on the levels of ATP available (A).
Homeostasis will be achieved when production and consumption
rates are equal, and the concentration of ATP is constant in time.
We will represent the homeostatic concentration of ATP by AH .

We can interpret the observations of relatively constant ATP
concentrations in neurons, as reflecting the action of feedbacks
that adjust ATP production (P) and consumption (C) rates,
compensating deviations of ATP (A), such that neurons return
to homeostatic ATP levels (AH). We can expect that in case
cells have an excess of ATP, they would respond by decreasing
production or/and increasing consumption; and analogously, in
case ATP levels are reduced, cells would respond by increasing
production or/and decreasing consumption. We will call this
regulation the neuron “energy management,” and summarize it
mathematically using these equations:

{

A > AH ⇒
∂P
∂t ≤ 0, ∂C

∂t ≥ 0

A < AH ⇒
∂P
∂t ≥ 0, ∂C

∂t ≤ 0
(5)

Meaning that the differences between A with AH determines
whether ATP production (P) and consumption (C) processes
increase, decrease, or maintain their rates over time. Note that we
also consider the possibility that neurons may respond to energy
challenges by adjusting production and consumption, but it must
be at least one of those variables.

It is critical to notice that this formalization makes some
important simplifications. First, we understand that in addition
to ATP, the concentrations of ADP, AMP, and other energy
resources do determine homeostasis and influence neuronal
changes. ATP is a reasonable departure point, given its prevalence
in metabolism and the evidence supporting its role in synaptic
plasticity, and therefore, will be the main example of energy
resource exploit in our argument. An additional reasonable
assumption is that the magnitude of the change in reaction
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FIGURE 2 | Neuron activity induces changes in metabolism and synaptic activity to maintain homeostatic energy levels: Schematic illustration of neuronal response to

an increase in activity. Above, in scale of colors, ATP concentration indicating from low to high A, with AH at the center. Below, step 1 depicts a resting state with A(t0)

= AH. In time step 2, the increase in activity would result in additional ATP consumption, and therefore reduce ATP concentration. We propose that neurons would

respond to this perturbation by decreasing ATP consumption [C(t)] and increasing its ATP production [P(t)], as represented in time step 3. Finally, neurons would return

to homeostatic levels of ATP (AH), which is illustrated in time step 4. During all these steps, A(t) is colored following the above ATP concentration color scale. Some

factors that contribute to ATP consumption are as follows: synaptic post-excitatory currents (excitatory inputs), firing rate (excitatory outputs), ion channel density, size

of soma, dendrite arborization and axonal length, neurotransmitter recycling and release, and cytoarchitecture adaptations. Whereas, factors contributing to ATP

production are: glycolysis supported by glucose or glycogen breakdown, oxidative phosphorylation supported by neuronal pyruvate, astrocyte-derived lactate, and

ketone bodies. Neurons possess regulatory mechanisms that sense current energy levels (here represented by a rotating wheel with a floating balloon), and control

production and consumption, to maintain homeostasis. Examples of these control mechanisms would include ATP-Sensitive K+ channels, and AMPK signaling.

rates should correlate with the magnitude of the distance to
homeostasis, which we have omitted from the equations but
will become relevant later in our argument for proposing
experiments. We expect to expand toward a more detailed
formalism in future work. Despite its simplicity, we think that
our model can help to understand several previous studies
and propose some experiments aimed at empirically evaluating
the relation between energy resource availability and neural
plasticity. We expect that simple phenomenological models,
such as ours, will encourage both theoretical and experimental
efforts, provided they can be readily falsified empirically,
and be compared to theoretical derivations from biochemical
first principles.

The tendency to set ATP at AH might be compatible with
homeostatic plastic changes that return a neuronal network to a
basal firing rate, after prolonged periods of increased or decreased
synaptic activity (homeostatic synaptic plasticity). Accordingly,
it has been theoretically proposed that the excitability threshold
of neurons might be a direct function of ATP (Huang
et al., 2007). For example, the KATP channel-opener diazoxide
decreases bursting and regular firing activity of the immature
entorhinal cortex neurons (Lemak et al., 2014), which is coherent
with a tight association of firing rates with contingent ATP
concentration. Also, theoretically, neuronal circuits governed

by purely Hebbian-plasticity rules are predicted to converge
on instability, or to the opposite—total inactivity (Miller and
MacKay, 1994). One possible solution to enable neuronal circuits
to remain responsive is to limit the amount of synaptic strength
per neuron. At least on excitatory synapses, this problem has
shown to be solved by another form of synaptic plasticity
termed “homeostatic synaptic plasticity,” and more specifically,
“synaptic scaling” (Turrigiano et al., 1998; Turrigiano, 2012).
Synaptic scaling emerges to counteract the effects of long periods
of increased or decreased synaptic activity in a multiplicative
manner, thus allowing neurons to continuously reset the
weight of their synaptic inputs to remain responsive to new
environmental and cellular contexts. In the long term, the
consequence of this regulation is that the firing rate of cortical
cells in culture is sustained to an average set point (Turrigiano,
2012). As far as we know, no attempt has been made to relate
or prove the influence of neuronal energy load or A(t) on
this phenomenon.

Simple experiments on synaptic scaling could be performed
to examine whether the tendency to reach AH has a predictive
value on the synaptic activity of neuronal networks. As shown
in the seminal experiments of Turrigiano’s group, when a
GABAergic inhibitor bicuculline (Bic) is acutely added to
cultured neurons, it produces a significant increase in average
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firing rate. However, during 48 h of stimulation, firing rates
return to control values. On the other hand, neuronal firing
rates can be completely abolished soon after adding either
tetrodotoxin (TTX) or 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX). Nevertheless, during the 48 h of incubation, activity
levels also return to a basal value (Turrigiano et al., 1998). The
observed adaptive changes that operate in the long-term makes
this experiment ideal for manipulating energy parameters.

Similar to the experiment of synaptic scaling performed
by Turrigiano’s group, in our theoretical experiment, cultured
neurons would be submitted to 48 h of synaptic activity
stimulation with Bic. During the stimulus, A(t) will transiently
decrease, inducing plastic changes on the network that will return
ATP concentration to AH, in a given time period (t1) (Figure 3A).
In all conditions, P(t) and C(t) change accordingly with A(t),
following Equations 4 and 5. However, if, during the stimulus, the
neurons were pharmacologically modified to partially decrease
ATP production [e.g., by blocking oxidative phosphorylation
with sodium azide], expenditures C(t) are expected to be rapidly
lowered and the time window required to return to the AH value
will be shortened (Figure 3B). Conversely, one could “enlarge”
the theoretical value of AH on cultured neurons by adding an
ATP mimetic, such as ara-A. Here we assume that ara-A would
cause inhibition of AMPK signaling, and that concentrations
employed are low enough not to disturb the ATP synthesis. Thus,
we propose that the neurons will take more time to return to
AH (Figure 3C). Under these three conditions, the firing rate of
neurons should also be adapted to the same level as in the initial
state, before stimulation, as well as ATP concentrations should
return to the homeostatic value AH.

FROM MOLECULES TO
BEHAVIORAL HOMEOSTASIS

In the previous sections, we have discussed how the energy
homeostasis can affect synaptic plasticity in one neuron.
Subsequently, this plasticity can impact other neurons that
will trigger the same control systems to keep their AH.
Since energy demands are transferred through synapses, and
synapses appear or disappear according to energy demands,
a network homeostasis comes into play. In this section, we
argue that energy constraints scale up a level of organization
and how homeostasis in one level is affected by homeostasis in
the others.

From Neurons to a Neural Network
The first level is single neuron homeostasis, which is the balance
between C(t) and P(t) in single neurons. Importantly, as far as
an action potential producing a post-synaptic potential goes, it
necessarily imposes an increment in C(t) for the post-synaptic
neuron. As such, neurons manage their energy needs which
also present an external demand from pre-synaptic neurons,
and also imposes an energy demand over the post-synaptic
neurons. The fact that a local increase in the C(t) can produce
a change in post-synaptic neuron’s C(t) supports that energy
management is also a neural population property, which we

will name network homeostasis. The single neuron homeostasis
is closely related to the network homeostasis through a two-
way directional interaction, where the network structure imposes
constraints on the range of possible homeostatic states that a
neuron can achieve, which will, in turn, pose stress on the
network through interactions with neighboring neurons. In the
sameway, these neurons will respond bymodifying their synaptic
weights (also known as network connectivity), the number and
the location of their synapses, thus changing the functionality of
the neural network structure (maybe even micro-anatomically).
In any condition that causes an imbalance between C(t) and
P(t), the neurons will tend to change. Since neurons activate
each other through synapses, this means that the activity of the
pre-synaptic neurons will induce metabolic work in the post-
synaptic ones. In turn, a post-synaptic neuron will modulate its
synaptic weight to couple the input from the pre-synaptic neuron
to its ownmetabolic needs. This process will continue recursively
until the neurons balance their C(t) and P(t), in which case the
network would have reached homeostasis. Essentially, network
homeostasis is driven by the needs of each neuron, as each of
them will change in an attempt to reach their own AH. Note
that it is not necessary that every neuron should reach its own
AH, as the connectivity of activity within the network may not
allow them to improve further. However, every single neuron
must have enough P(t) to devote toward maintenance processes
required to stay alive. As such, network homeostasis becomes a
neural population property.

Network homeostasis is tightly related to single neuron
homeostasis; therefore, neural network homeostasis will be
only achieved when several of the neurons that compose it
individually can maintain themselves within homeostatic ranges
(e.g., achieving AH). It is known that synaptic and dendrite
pruning are a part of healthy development (Huttenlocher, 1990;
Riccomagno and Kolodkin, 2015), which we could interpret
as adjustments required to couple with the trade-off between
maintaining the structure vs. the energy spent in action and
post-synaptic potentials. In worse cases where suboptimal
conditions are imposed on a single neuron by the neural network
homeostasis, we expect to find neuron death. This phenomenon
is documented as a part of normal brain development in some
species (Huttenlocher, 1990), and also in pathological conditions
(Perry et al., 1991; Kostrzewa and Segura-Aguilar, 2003; Pino
et al., 2014).

From Neural Networks to Behavior
Behavior can be broadly described as the set of actions performed
by an organism, or anything that an organism does that
involves movement and response to stimulation. These actions
are adaptive when they increase the survival and reproduction
probability. In a top-down interpretation of behavior, these
actions are the result of the activation of the neuronal circuit that
developed evolutionary to fulfill a need. Nonetheless, according
to the Energy Homeostasis Principle, at the neural circuitry level,
the actions performed by an organism are out of spatial and
temporal context, since all the cells experiences are perturbations
of the network activity. For a given neuron, the activity dynamics
is dependent on the cumulative synaptic currents, regardless of

Frontiers in Computational Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 49

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Vergara et al. The Energy Homeostasis Principle

FIGURE 3 | Hypothetical experiment to evaluate the influence of energy availability on synaptic scaling: The influence of energy availability in synaptic plasticity could

be evaluated empirically. Here we propose a simple hypothetical scenario and explain what outcomes we predict under each condition. (A) Cultured neurons are

stimulated with bicuculine (Bic) for 48 h (denoted by a black bar), which presumably induces transient changes in ATP concentration [A(t)]. Neurons respond by

increasing ATP production [P(t)] and reducing ATP consumption [C(t)] by reducing its firing rate, which leads to the reestablishment of homeostatic ATP concentration

within the time window enclosed by dotted lines. (B) During stimulation, cultured neurons can be pharmacologically treated to partially inhibit oxidative

phosphorylation (i.e., reducing ATP synthesis) denoted by a black arrow. Following the Energy Homeostasis Principle, we propose this will result in a further reduction

of ATP concentration, which will induce an accelerated reduction in ATP consumption through the reduction of synapse firing rates. Thus, we propose that in this

scenario the time window required to return to homeostasis is shortened. (C) Almost an identical protocol to (B) is applied to neurons; however, using an ATP mimetic

molecule (denoted by the black arrow). We assume that ATP mimetic molecules would delay the reduction of synapsis firing rate by allosterically inhibiting AMPK,

resulting in an enlarged period of energy consumption. Thus, we propose a wider time window before reaching AH. All graphics follow Equations 4 and 5, with the

additional assumption that the magnitude of the adjustment of P(t) and C(t) are proportional to the distance of ATP levels A(t) to homeostatic levels AH. Results from

these kinds of experiments could advance the understanding (and potentially manipulate) of the mechanisms responsible for neural adaptations, uncovering the

relevant role of metabolic elements, such as metabolic sensors and/or nutrient availability.

the type of pre-synaptic cells that evoked them, or in the case of
sensory receptors, the type of energy that is transduced. Similarly,
it makes no difference for a given neuron to have neuron-
neuron or neuro-muscular/endocrine synapses. Conversely, we
can reinterpret behavior as the observed consequence of the
homeostatic activity of an extended neural network (brain) which
interacts with the environment. Sensory input andmotor outputs
can thus be viewed as “environmental synapsis.” Under this
framework, what we call behavior may be not necessarily be
different from the range of actions neurons engage in any circuit.

However, the interaction with the environment has an
important difference that will impact the energy balance in
the neuronal network. We can operationalize behavior in a
neural system as a set of inputs and outputs that occur in a
closed-loop manner. For instance, when we move our eyes,
the brain is generating output activity, which in turn modifies

the subsequent input to the retina. These dynamics occur for
all sensory systems, where motor acts modify sensory inputs
(Ahissar and Assa, 2016). In this process, for each brain action,
we should expect changes to occur in some sensory inputs. In
other words, behavior can be seen as one of the ways in which the
brain stimulates itself.

In principle, this closed-loop scheme would enable the brain
to completely predict the sensory consequence of the motor
actions. This processes of active inference is in line with
previous proposals such as Friston’s free energy principle and
predictive coding (Friston, 2010; Schroeder et al., 2010). It
is crucial to note that Friston’s Free Energy Principle used
an informational approach where aspects such as temperature
do not refer to the absolute temperature measured in an
experimental setting. As such, the Energy Homeostasis Principle
does not conceptually overlap with Friston’s proposal; they
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can be considered as complementary. From a bottom-up view,
Friston’s proposal answers the epiphenomena, which can be
related to information processing, rather omitting the underlying
physiological constraints. However, in any of these proposals,
there is an agreement that the brain is capable of predicting
sensory input, and that it seems to reduce uncertainty as far
as possible. In the case of Friston’s proposal, it refers to the
reduction of informational uncertainty, while in the Energy
Homeostasis Principle, it refers to the reduction of energy
sensorial input uncertainty.

Parsimoniously, the brain cannot fully predict the sensory
inputs that occur after every motor act, because changes that
are independent of the action of the organism also occur in the
environment, and these changes may be critical to its survival.
According to the EnergyHomeostasis Principle, we should expect
that neural networks will operate in a way that will favor the
behavioral input activities within homeostatic energy ranges. If
a given input is energetically too demanding, we should expect a
change in behavior. If a given set of motor activity consistently
produces an energy stressor input, it will cause synaptic changes
in the brain, as the energy balance processes are spread over the
neuronal network.

Sensory input represents the major energy challenge in the
brain, while the motor output is the only way a neural network
can modify this input. This way, the neuron in the network has
the chance to regulate its C(t), given the pressure representing
sensory input. Neural networks will restrict the palette of
behaviors that can be observed, while behavior will impose energy
demands that the neural network will couple with by modifying
behavior. For these reasons, behavior can also be considered as
a phenomenon which affects the energy homeostasis in a two-
way direction. Thus, an at least three-level nested system can be
depicted, where each level will have a two-way interaction with
each other (see Figure 4).

According to the Energy Homeostasis Principle, a key
aspect to explaining adaptive behavior must reside within the
brain’s macro-structure and evolutionary mechanisms. Given a
certain palette of sensory specializations, set of effectors, and
brain structures, it will impose the range of possible energy
disposal attractors that can emerge. For instance, the number
of sensory cells, and their sensitivity to stimuli will determine
the energy input imposed on neural tissue. The effectors given
will determine the space in which a neural network must control
that input. The macrostructure of the brain will then impose
general restrictions on the neural network homeostasis. For
instance, the visual cortex mainly receives visual input, and the
communication through brain regions is mainly achieved using
major tracts. As such, the series of C(t), imposed by one neuron
on another, must follow the paths allowed by the macrostructure.
This means, that neural network homeostasis will not only be a
function of energy input provided by the sensory cells, and the
chances to control it using effectors, but also of macro anatomical
restrictions produced by genetic mechanisms (Gilbert, 2000a,b).

Evolutive pressures must act over all traits—genetic,
physiological, and behavioral—of the organism (Darwin, 2003).
As such, evolutive pressures have selected a sensory and effectors
pallet, as well as a brain macrostructure. We conjecture that

FIGURE 4 | Energy homeostasis: An integrated view of neurons, networks

and behavior schematic of the three nested levels of the energy homeostasis

system. Each level represents one unit and its proximal operations. Neuron

refers to one neuron which must manage its energy consumption, which will

trigger neuron-plastic changes. Many of these neurons will build a network,

which has connectivity properties and population energy demands. Many

networks working together will deploy behavior through motor actions, while

also receive the sensory input. All levels present a two-way energy interaction

between behavior, neural networks, and neurons. The figure intends to present

how sensory input can be considered an energy demand at network and

neuron levels, while motor output through behavior gives room to control part

of the sensory input.

from the set of behaviors that satisfy the energy constrictions,
behaviors that statistically improve the chances of surviving will
be selected. We propose that the macro-anatomical structures
impose a certain system of dynamic energy management among
neural networks, which force the emergence of a certain set of
energy attractors producing, in turn, a specific set of behaviors.
It is important to consider that in animals that display a large
set of behaviors, probably what is selected is the ability to learn.
This concretely would mean that the selected is not a specific
behavior, rather the flexibility with which an organism must
adapt behaviorally during its own life.

Given this bottom-up view, we conclude the existence of
behaviors strictly required for survival, and others which might
present adaptive advantages given the specific context of the
organism. In human primates, for example, there is a vast set
of behaviors that are not strictly for the survival of the single
individual in any context, yet they exist, such as leisure activities,
those related to the production of art in its multiple forms,
and even pathological behaviors which might directly impact
the individual’s health or survival. As far as these non-strictly
adaptive behaviors do not impact the organism’s life, they might
be highly adaptive in certain contexts.
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In any case, evolutionary mechanisms will shape the nervous
system’s macrostructure and behavior so that both are aligned
in a way where solving the energy constraints of a single
neuron and the neural network will lead to survival. If not,
that macrostructure is expected to be lost, as those organisms
will die. In fact, there is no need that all these levels work in
alignment per se, rather they must only be aligned to survive.
Evolutive pressures will remove the organisms where the three
level systems present goals that don’t benefit each other. Since we
can only see the animals that present all three level goals aligned,
we have historically thought that neurons, neural networks,
and organisms share the same goal. We proposed here that
evolution shaped organisms, so when a neuron solves their needs,
the behavior emerges as an epiphenomenon, which enables the
organism to solve its needs, hence surviving.

PERSPECTIVES OF REINTERPRETATION

In this section, we aim to contrast our proposal with evidence and
highlight the corollary aspects which can open new avenues of
research. Concretely, we will evaluate if we can reassess evidence,
considering the Energy Homeostasis Principle. We think that
this proposal is parsimonious as in spirit the rule is simple,
what makes it complex is the wide range of interactions and
properties that can emerge from the neural interaction constraint
imposed by this rule. We believe that our proposal captures
the essence of the concept of Braitenberg’s vehicles (Braitenberg,
1986)1 and provides a plausible solution to the dynamics
elaborated there. Naturally, Energy Homeostasis Principle still
has some limitations. It is unclear how we can scale up this
principle in networks as large as the brain. The metabolic
mechanisms in neurons are quite complex, and still we need
more empirical information to tune the mathematical modeling.
We decided to use ATP as an energetic proxy, but many other
molecules are used by neurons as energetic resources, and may
present a dual signaling-resource condition activating control
systems. We have mention abundant literature that shows an
association between energy related variables and neural activity.
However, we have not presented direct evidence of how energy
constraints shape plasticity and neural network properties.
Despite these limitations, the Energy Homeostasis Principle
can be tested empirically by associating plasticity markers with
energy availability, production, and consumption as mentioned
in section “Revisiting neuronal plasticity under the perspective of
energy constraints.” More importantly, this proposal serves new
empiric avenues to study the working of the brain. For instance,
plasticity has always been thought to be the changes required
to fix a given behavior. However, according to our proposal,

1Braitenberg vehicle is a concept proposed by Braitenberg (1986), referring to a

simple vehicle that has two sensors, each connected to an effector, i.e., a wheel,

that provides the vehicle the ability to navigate in a given environment. The

activation of the sensors can increase or decrease the speed of the respective wheel.

In addition to the sensor-effector relationship, the physical configuration of the

sensors and the wheels will determine the navigation “behavior” of the vehicle

when the stimuli are present in the environment. One major conclusion of this

concept is that complex behaviors arise from relatively simple properties (sensors,

circuitry, and effectors) of the system in interaction with the environment.

plasticity is a process that takes place not only during learning but
continuously, as a core component of the constant deployment
of behavioral changes. As such, plasticity might not only be a
determinant of behavior acquisition but a key aspect of ongoing
behavior. In the following subsections, we will briefly discuss
different strategies which can be used to extend further from
Equation (5), an example of evidence interpreted considering the
Energy Homeostasis Principle, and then discuss other theoretical
and empirical avenues which can be reinterpreted based on
this paradigm.

Modeling Strategies to Implement Energy
Homeostasis Principle
We did not extend our mathematical definitions beyond
(Equations 4 and 5) as we aim to set a theoretical ground fertile
for different modeling strategies. Equations (4) and (5) describe
a quite simple idea that neurons take resources to couple with
their energetic demands, and that these two must balance each
other in order for the neuron to survive. However, the specific
strategies used to operationalize the terms within (Equations
4 and 5) was purposefully left open to avoid constrains into
specific modeling paradigms. Equations (1–3) were included to
better formalize the problem at ametabolic level. These equations
are relevant to build the theoretical argument, however, we
would not consider them necessary for modeling, at least in a
first approach.

In general terms, Energy Homeostasis Principle requires a
dynamic modeling, and a topographic or structural component
ideally framed from bottom-up. There is already an example that
fits with these requirements (Yuan et al., 2018). In this work,
they used the ratio between the energy consumed in synaptic
transmission and the total metabolic energy consumed in
synaptic transmission and dendritic integration over time. This
ratio is used as a third component of Hebbian synaptic plasticity,
allowing it to change synaptic weighs according to this energetic
ratio and pre-synaptic activity. This is a nice example of how to
include energetics constraints in neural activity modeling. Under
the Energy Homeostasis principle view, the ratio does not make
sense in terms of metabolism and neuron needs, because it only
address energy consumption, without considering the impacts in
productions and availability. Therefore, ignoring the restrictions
in energy consumption derived from production and availability.
This consumption ratio make sense under a top-down view
supported in an information codification logic. Therefore, we
suggest to define that ratio according to Equation (4), including
consumption, availability, and production following the control
mechanisms here presented.

Besides this particular model, graph theory could represent a
starting point to define the structure of a dynamic network, in
which nodes properties can be updated in a temporal fashion.
Graph theory is already used to recall the structural properties
of brain networks (Feng et al., 2007; De Vico Fallani et al.,
2014), therefore, without a doubt it will be suitable representation
which can be extended to consider the energetic management.
Moreover, graph theory contains a vast amount of metrics to
characterize networks (Costa et al., 2007), and more importantly,
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could allow to contrast those metrics against real data (Demirtaş
and Deco, 2018; Klinger, 2018).

Strategies such as Free Energy Principle (Friston, 2010), or
those that profit of predictive coding conceptions (Spratling,
2008; Schroeder et al., 2010; Huang and Rao, 2011), can also serve
as a basis for energy homeostatic modeling. However, we suggest
to use energy consumption instead of neural activity as predictor.
In this case reducing surprise would be analogous to reduce the
chances of a neuron to be driven out of energy homeostasis.
Energy availability and production ideas are more complex to
include. In general terms, and based on the concepts exposed
in the previous sections, energy consumption is constrained to
energy availability and production. As such, to adapt a predictive
coding paradigm requires to include energetic restrictions, which
must take into account the rate and amount of energy or
activity equivalents that can be managed by the neurons within
physiological ranges.

Many other strategies can be used. The above mentioned
are often used in neuroscience, however, any modeling strategy
that suits the temporal dynamic of energy management, and its
topographical bottom-up properties, should be able to capture
the essence of the Energy Homeostasis Principle.

Hybrots: An Analysis Using the Energy
Homeostasis Principle
Let us discuss the energy principle proposed here in the context
of a simple, in vivo network model. Empirically, one critical
aspect of relating energy management with behavior is the major
challenge of controlling sensory inputs. Most of experimental,
in vivo animal models are not only sensible to acoustic, visual,
physical, and chemical stimuli of the environment, but also
to proprioceptive inputs, such as muscle contraction, tendon
tension, blood acidification, hormone levels, among others.
Strictly speaking, there is no way to properly control the sensory
input of an animal in vivo, and the behavioral in vitro protocol
seems to be unreal. Nonetheless, there are some protocols that
can be considered as initial efforts of trying to build in vitro
behavioral protocols. Specifically, some reports demonstrate that
if we connect a neuronal culture of dissociated cortical or
hippocampal neurons to an external device, coherent behavior
can be obtained (Novellino et al., 2007; Tessadori et al., 2013).

Concretely, a system decodes the firing rate of the neurons
in the culture and generates an output which is used to control
two wheels of a vehicle. The vehicle has distance sensors. The
sensor activity is coded to electrical pulses delivered back to the
culture. The stimulation frequency is a function of the distance
to an obstacle in front of the sensors. If the vehicle gets closer
to an obstacle, then the stimulation frequency increases. If the
vehicle crashes into an obstacle, a stimulation (20Hz for 2 s)
is delivered, which is previously known to trigger plasticity
(Jimbo et al., 1999; Tateno and Jimbo, 1999; Madhavan et al.,
2007; Chiappalone et al., 2008; le Feber et al., 2010). Leaving
the vehicle in a circular maze with several obstacles under the
operation of this protocol will cause it to “learn” to navigate,
while avoiding impacts with obstacles (Tessadori et al., 2012).
This model constitutes a protocol that enables studying the

molecular, electrophysiological, and behavioral properties of
neural processing simultaneously; above all, it allows the full
control of the sensory input that this network will have.

Is this learning-like phenomenon compatible with the Energy
Homeostasis Principle? When a single neuron is submitted to
constant stimulation, we expect to have a 1–1 stimulation-action
potential response. However, at a frequency stimulation as low
as 10Hz, the neurons will decay over time until they are
unresponsive, or their response is importantly delayed (Gal et al.,
2010). If interpreted through the Energy Homeostasis Principle
we can hypothesize the following mechanism. First, we can
postulate that at a frequency of 10Hz or higher, stimulations
become energetically stressful. As a response, neurons will
respond with modifications in their synaptic weights in the
short term, and with changes on their cytoarchitecture in
the long term. Both processes will result in changes to the
network structure. Each time the vehicle crashes, a stressful
20Hz pulse will be delivered inducing plasticity. Functional
restructuration is expected at each impact; leading to a random
walk through different neural functional configurations, where
each neuron will jump from state to state to minimize
energy stress (see Figure 5). It is expected that those network
configurations that decrease the effects of the sensory input
will reduce energy stress due to impacting obstacles. But the
best network configuration to the energy stress is indeed to
avoid it. Eventually, a network configuration will arise which
will prevent the vehicle from crashing. Since no energy stress
will be delivered as a sensory input with this configuration,
this structure will seemingly stabilize on a configuration of
homeostatic energy expenditure (Figure 5). We are aware that
the above interpretationmay oversimplify the actual mechanisms
followed by the neurons. Neuronal changes are most likely
not completely random and more complex regulations may be
taking place. However, we want to point out that they can be
sufficient to explain the phenomenology of the observations. As
such, energy management, as a local rule, will impact the neural
network structure as an emergent property, where, in turn, it will
impact behavior. Critically, in this example, we have focused on
sensorial input as an increment of neural activity. This might not
always be the case (such as under sensorial isolation). Despite
that, under this specific scenario, we propose that networks will
minimize energy consumption; the goal is to arrive to AH, not
to the minimum possible energy expenditure. Therefore, if the
sensorial input would move A(t) below AH, we would expect
network modifications to increase expenses. In any case, the
obtained behaviors must be at least compatible with the dynamic
constraints imposed by C(t), despite it being too high or low. In
this example, behavior emerged to satisfy the energy needs of the
neuron bymeans of C(t). Finally, from all the vehicle movements,
only a few, like avoiding the obstacle, might be interpreted
as purposeful from an observer’s point of view, the remaining
ones may be considered a random trajectory. Importantly, this
attribute is provided by the observer, as the neurons would only
be managing their energetic demands. More research is required
to evaluate what is happening with behavior, when the obstacles
are out of the sensor’s range along with the learning curve
of the vehicle. Nonetheless, the Energy Homeostasis Principle
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FIGURE 5 | Depiction of Braitenberg’s vehicle behavior as a controlled platform to study learning and network energy adaptation: In this figure we hypothesize, based

on the Energy Homeostasis Principle, how a hybrot would learn. (A) Different behaviors observed at different learning levels of the Braitenberg’s vehicle (top panel),

and the corresponding sensory input (bottom panel) from an obstacle (circle centered to x symbol) is detected by a sensor (dashed area), while the vehicle explores

the environment. (B) Learning curve of the vehicle when learning to avoid the obstacles, passing from frequent collisions to full avoidance behavior. (C) Network

energy adaptation triggered by the sensory input while minimizing the energy stress.

allowed us to propose this hypothesis (Figure 5C), and it can
be empirically addressed. Naturally, using the same experimental
approach, we can evaluate how plasticity is affected by energetic
demands induced electrically or by altering neurotransmitter
concentrations. We can use the vehicle’s behavior, or we can use
the Graph Theory index already used to characterize networks
(Costa et al., 2007) to associate neural network properties with
energetic demands and metabolic activity.

The Neuron Doctrine and the Energy
Homeostasis Principle
Historically, the primary efforts to connect neuron activity with
neural network dynamics and behavior was first proposed in 1888
(Barlow, 1972; Bock, 2013), which is referred to as “The Neuron
Doctrine,” maintained and developed to this day (Dehaene, 2003;
Moser and Moser, 2015; Sheppard, 2016). In general terms, this
theoretical proposal tries, in dual form, to solve the information
coding and processing problem and has been supported by
intracranial recordings, where abundant examples can be found
(Lettvin et al., 1959; Fairhall, 2014; Moser and Moser, 2015).
Specifically, neurons are expected to code for specific properties
of the environment, where its activity is associated with the
detection of specific stimuli. For instance, neurons in the primary
visual cortex of mammals are selectively sensible to oriented
bars (Hubel and Wiesel, 1962; Taylor, 1978), while in the Lateral
Geniculate there is evidence supporting the existence of circular
receptive fields representing portions of visual space (Reid and
Shapley, 1992). In these cases, neurons have receptive fields,
which can be interpreted as a specific topologic relation of V1

with a certain retinal region; and therefore, with the image.
Receptive fields with the same selectivity feature can also be
found in the tactile, and auditory primary cortex, evidence of
which is often interpreted as environmental stimuli being coded
as a map in the brain (Penfield and Boldrey, 1937; Penfield,
1965; Ruth Clemo and Stein, 1982). This classic evidence is also
theoretically line up with the recent hippocampus where neurons
(Moser and Moser, 2015).

Critically, most of the evidence supporting the neuron
doctrine is associated to the neuron discharge rate. Since this
discharge rate is a part of the C(t), it necessarily means that
most of the evidence supporting the neuron doctrine supports
the Energy Homeostasis Principle as well. For this reason, it is
plausible to consider that most of the neuron doctrine evidence
is also evidence indicating how energy expenses of one neuron
can be directly associated with behavior. Furthermore, high
discharge rates, as mentioned above, are expected to trigger
plasticity mechanisms. Also, only a low percentage of neurons
present high discharge rates (Olshausen and Field, 2005), which
should be expected under the Energy Homeostasis Principle
scope. Moreover, due to the fact that high discharge rates might
trigger changes in functional connectivity (synaptic weights), it
should not be surprising that when presenting more complex
visual scenes, classic receptive fields are no longer detectable
(Fairhall, 2014). We may consider that classic stimulation visual
protocols impose an energy input, reflected in the high discharge
rate, which needs to be managed. In contrast, visual scenes are
regularly experienced, therefore already managed energy, and
the firing pattern are considerably lower. As such, we think that
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the neuron doctrine is not necessarily wrong, rather it has not
focused on how the discharge rate is a proxy of energy demands
imposed on neurons, which in turn affects their homeostasis.
Also, that plasticity might have a functional role in ongoing
behavior rather than only stabilizing learned behaviors.

The neural doctrine paradigm has been closely related to
information coding paradigms. The coding paradigms follow
the same logic as the genetic code; the idea that information is
universally coded using the same dictionary or codebook. In the
case of genetics, what we call the genetic code, is an arrangement
of how the sequence of nucleic acids informs specific amino
acid sequences when assembling proteins. In the case of a neural
code, the assumption is that environmental stimuli are translated
into brain activity, which is then translated into motor output.
More specifically, it is possible to map specific neuron activities
to specific properties of the environment. For instance, the
intensity of the stimulation can be mapped to the discharge
rate of the sensory neurons (Gardner and Johnson, 2013). The
transduction of the stimuli is usually non-linear and sensitive
to differences with previous stimulation rather than the raw
value of the stimuli—Weber’s law (Gardner and Johnson, 2013).
This adaptation law has a direct interpretation in the context of
energy expenditure by neurons, as neurons coding raw stimuli
would demand a greater energy supply. Weber’s law has also
been extended to complex cognitive functions, such as quantity
estimations (Dehaene, 2003)—where discharge rates are used
as the code of quantities for specific neurons—suggesting that
energy saving may be a strategy widely used by neurons.

Of course, the discharge rate is far from being the only
neural code proposed. Coupled with the complexity of sensory
activity, temporal coding was proposed, where the exact temporal
relationship between each neuron spike would be the key to
understanding how environmental information is translated
into brain activity (Connor and Johnson, 1992; Friston, 1997).
Temporal coding is implicitly related to energy demands, as the
time between action potentials trigger plasticity mechanisms,
associated with one of the most expensive items of the neuron
physiology—post-synaptic potential and plastic mechanisms
(Attwell and Laughlin, 2001). Another strategy was population
coding (Georgopoulos et al., 1986; Nicolelis, 2003; Moxon
and Foffani, 2015). Population coding uses the activity of a
high number of neurons, where the discharge rate, timing,
and as many properties can be extracted make it possible
for a human or non-human primate to move a robotic arm
or similar, with the brain. As more neurons are included,
more information is obtained, and we should expect that we
will better predict the arm movement. This approximation is
good when the aim is to predict behavior but is not useful
to understand how behavior emerges from neural activity. If
reassessed using Energy Homeostasis Principle, we interpret that
population coding works as it is a good assessment of neural
network homeostasis, implicitly providing information about
plastic changes and neural energy management. Up to some
extent, all approaches have to do with when, how much, and
which neurons are discharging, which in turn can be interpreted
as when and howmuch energy is expended by individual neurons
and the network.

When evaluating evidence related to a whole-brain approach,
the neuron doctrine is mostly applied by associating the bold
signals of brain regions to specific behaviors. Critically, the fMRI
signal is derived, to some extent, by the changes triggered through
the glia to couple with the energy demands (Otsu et al., 2015).
Therefore, we can interpret that energy management associated
to glial function, is already associated directly with behavior.
Moreover, it suggests that energy management can be mapped
into networks associated to specific behaviors. Naturally, the
specifics in which Energy Homeostasis Principle would impact
large networks like brains is still elusive, and it probably would
require to incorporate formally the functional properties of
the glia.

In general, the fMRI approach strongly resembles the serial
symbolic programming paradigms, where a module can be
homologized to a programming function, and the network
would be the general architecture of the software. The loss of a
programming function leads to the loss of a specific functionality
of the software. This metaphor was addressed in classic literature
(Hovland, 1960; Searle, 1980), suggesting that the brain processes
information using a symbolic serial paradigm. As such, most
of the neural correlates within the neurocognitive domain are
interpreted as information processing, ranging from a strictly
symbolic to a correlative information approach. However, using
a bottom-up approach and the Energy Homeostasis Principle,
those attributions are an observer’s bias, as the one described in
Braitenberg’s vehicles (Braitenberg, 1986). Behavioral functions
of a neuron or the neural network would be the epiphenomena of
neurons regulating their own homeostasis. In fact, as explained
in the previous section, we can describe how the vehicle
learns to avoid obstacles without using any informational,
symbolic, or teleological explanations. Using this bottom-up
approach, it is expected that an informational approach will
be useful, as far as the neurons’ and the neural network’s
needs are aligned with the organism’s. However, it should be
interpreted as an epiphenomenon of neural networks solving
their own needs.

Reinterpreting Evidence Toward New
Research Avenues
As we have discussed above, energy management, though
implicitly considered, is a key feature of the nervous system.
This necessarily means that most of our current evidence can be
reinterpreted in the light of the Energy Homeostasis Principle.
We expect that this reinterpretation will trigger new ideas and
strategies to understand the neural phenomena. As an example,
we may try to explain the neuronal changes associated with
learning processes, based on iconic paradigms such as the long-
term potentiation (LTP) and depression (LTD) (Nabavi et al.,
2014; Jia and Collingridge, 2017). Both phenomena involve a
large amount of energy expense where the ATP could be followed
to understand the phenomena of plasticity as one of energy
management. This is key, considering that even the Hebbian
rules (Kempter et al., 1999), operates differently, according to
the neuron type (Abbott and Nelson, 2000), highlighting the
difficulties in predicting plasticity according to neural activity.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 July 2019 | Volume 13 | Article 49

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Vergara et al. The Energy Homeostasis Principle

At the same time, the calcium ion plays a critical signaling
role within neural physiology, where we should ask if it
might be a signal of energy expenditure. It is known that
metabolic processes sense the ATP-AMP ratio (Ames, 2000),
however, they have not been studied in association to the
plasticity phenomena.

Consequentially, we can assess energy management and not
solely from a molecular or electrophysiological perspective. For
instance, can we consider inhibitory neurons as an adaptive
feature to control brain energy expenditure? This is most
intriguing if we consider that inhibitory neurons are key to
increasing the neural circuits’ controlling properties (e.g. negative
feedback structures).

Simultaneously, the central nervous system is the only
structure of the body which is actively isolated from the
vascular system. It has its own system to maintain stable the
neuron proximal environment. Moreover, astrocytes coordinate
themselves through calcium waves, producing local changes in
blood flow and hyperemia (increase on blood irrigation) (Otsu
et al., 2015). The brain-blood barrier is not only a filter, but
it works functionally to support the energy demands of the
neural networks. In fact, synapses are currently suggested as
tripartite structures (neuron-neuron and astrocyte) (Wang and
Bordey, 2008), where the glutamate-release excitatory synapses
are proposed to control neurovascular coupling, and thus, brain
energy during conditioning and behavior (Robinson and Jackson,
2016). This would be a clear example of a neural activity involving
external support for energy management.

Moreover, there is a vast number of shapes for neural cells. It
is currently unknown why some neurons display large, dendritic
arborizations and short axons, while others present long axons
and rather small dendritic arborizations. Similarly, there are
varying basal discharge rates of activity. We think it is worth
exploring whether the likelihood of particular morphologies and
rate of activities are associated with energy constraints. For
instance, can a neuron manage to maintain a long axon and
at the same time a huge dendritic arborization where it must
maintain a large number of dendritic spines? If we explore the
evidence we already have, we are confident that new insights into
neuronmorphology will appear. Evenmore, if an unlikely neuron
shape or size which is energetically more expensive presents itself;
we should expect that those neurons would be more sensible to
energy demands andmay be more susceptible to neural death (Le
Masson et al., 2014). In fact, Paul Bolam proposed that the reason
behind Parkinson’s is due to the dying out of dopaminergic
neurons because of their huge size, which is very expensive in
energy terms (Bolam and Pissadaki, 2012; Pissadaki and Bolam,
2013). It is most likely that many of these traits are genetically
determined, however, energy constraints might limit the possible
morphological variety. Furthermore, that genetic determinants
of neuron specializations may be triggered in response
to the C(t).

Finally, the Energy Homeostasis Principle paradigm,
combined with a bottom-up view, allows us to reinterpret
behavior in a much more flexible way. Animals display many
behaviors that are not intrinsically adaptive. Leisure activities
are an evident example. Why the dog likes to go for the ball

or follow a car? Why would we like to learn how to play the
piano or to paint? Using a top-down approach would force us
to interpret that evolution endorses us with a leisure activity
brain module and that all behaviors are somehow beneficial.
It seems more parsimonious to think that evolution restricted
the system through macrostructure, so that survival-related
brain functions will be selected and inherited. Above all, a wide
set of diverse, seemingly useless behaviors can appear, without
compromising organism survival or neural needs. Therefore,
the only constraint for behavior is that the organisms must stay
alive and that the sensory input can be successfully managed,
in terms of its energy demand, by the neural networks and the
neurons within them. As we already explained before, we think
that in the cases of the vehicles controlled by neural cultures,
the rules of the stimulation given is critical in understanding
how they learn to avoid obstacles. From all the works that
reported learning-like properties of in vitro dissociated cultures
of neurons (Novellino et al., 2007; Mulas and Massobrio, 2010;
Tessadori et al., 2012), two main conclusions can be obtained:
(1) learning-like properties are not dependent on a priori, highly
intricate and sophisticated neural structures, and (2) there is
at least one property which does not require a brain evolution
argument to explain the emergence of behavior (but probably
requires a neural tissue evolution argument). This would be
particularly important in relation to behaviors that are not
directly tied to survival.

Because of the space limitations, many of these latter
considerations are laid out in a basic form. Nonetheless we
stress that some of these speculations can be assessed by
reviewing the current literature under the Energy Homeostasis
Principle rationale. However, the proposal may encourage the
development of falsifiable hypotheses, allowing for the testing of
these intuitions through empiric work. Therefore, we propose
the principle as a novel paradigm from which we can reinterpret
neuroscience experimental data, as well inspire the design of
experiments which may connect biochemical knowledge to
cognitive neuroscience.
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