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The first live energy levels and the oscillator strengths for trans1t10ns involving the first three 
states have been numerically computed for a bounded linear harmonic oscillator for various values of 
the boundary parameter. It is found that for l >3Lo, where l is the length of the box within which 
the oscillator is confined and 10 is the classical amplitude of the oscillator when it has energy b.,, the 
bounded oscillator behaves more or less like a free oscillator (in the first few energy levels), while 
for L<Lo it has properties closely approaching those of a free particle enclosed in a box. 

Introduction 

The study of artificially bounded atomic systems on the basis of quantum mechanics 

was initiated by Sommerfeld. and Welker1l in 1938. They dealt with the problem of the 

hydrogen atom confined in a spherical enclosure of radius R. The wave function instead 

of vanishing at infinity, as usual, now vanishes on the surface of the sphere. They found 
that for R> 1.835a where a is the radius of the first Bohr orbit, the electron is bound to 

the nucleus while for R< 1.835 a, it is not (energy positive). The corresponding problem of 
the bounded linear harmonic oscillator has been attacked by Auluck and Kothari2l, and 

they have obtained expressions for the energy levels of the oscillator in two extreme cases, 

viz., l ~ 10 and l '? [0, where l is the length of the box within which the oscillator is con

fined and [0 is the classical amplitude of the oscillator when it has energy htJ (tJ=classical 

frequency of the oscillator) . In this paper we have numerically evaluated the energy levels 

of the bounded oscillator for intermediate values of [, and have also considered the problem 

of the transition probabilities of the oscillator. In the case of a free oscillator (wave func

tion vanishing at oo), transitions can occur only between adjacent levels. For a bounded 

oscillator, however, there is a non-zero probability of transition between any two states of 

different parities (we label the states as 1 (lowest energy), 2, 3,···; the 'odd' states 1, 

3, 5 · · · and the ' even ' states 2, 4, 6, · · •, are referred to as states of different parities). 

We have numerically worked out the oscillator strengths for all transitions involving the 

first three states (Tables III, IV, and V). It is of interest to note that recently Corson 
& Kaplan3l have referred to a possible role of the bounded oscillator in the theory of the 

specific heats of solids. It might also find an application in the study of the second order 

phase transitions4l. We hope to discuss these questions in a subsequent paper. 
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§ I. The wave equation 

For a particle of mass m moving in a field of force of potential (1/2) aK-, the SchrOdinger 

wave-equation is 

d2cp j dx'+ 2mjo2 (E -1/2 · ax2) cfl= o. 

Putting 

and 

E= (n+ 1/2)ow, 

x= (oj2mw) 112 ~. 

where w = (a/ m) 112 is the ' classical ' angular frequency of the oscillator, we get 

~~ + (n+1/2-1/4·~2)cjJ=O. 

This equation has solutions 

cjJ(~) =~-l/2 Mn/2+•/4,±'/4 (~2/2), 

where the M's are the confluent hypergeometric functions given by5> 

(1) 

(2) 

(3) 

21/4 e:-112 M (~/2) = e-<•14[1 - ..!!__ ,e:2 + n ( n-2) t!4 _ .. ·] ( 4) 
li n/2+1/4,-l/4 f '> I li > 

2. 4. 

2at4 ~-1/2 M (~2/2) =e-;•t•[~- (n-1) ~a+ (n-1) (n-3) ~5- ... J. 
n/2+1/4, +l/4 31 5 ! 

(5) 

In what follows we shall denote the two solutions (4) and (5) by W,., _114 (~) and W,.,+ 114 (~) 

respectively.* 
We assume the oscillator to be enclosed between infinitely high and steep potential 

walls at x= ±lj2. The energy eigenvalues are then determined from the condition 

or in terms of ~ 

where 

cjJ(x)-o as x- ±l/2, 

cjJ(~)-o as ~-±~0, 

~0 =1/2 · (2mwjo) 112 =1/10 ; 

[0= (2fi/mcu) 112 is the 'classical amplitude' of the oscillator when it has energy 0(1), 

(6) 

The zeros of ( 4) and ( 5) can be evaluated numerically (this is done in Section III). 

Zeros of W,., _114 ( ~) give the first (lowest), third, fifth .. · energy levels, while those of 

Wn.+l/4 (~) determine the even energy levels. 
An approximate formula for the energy levels in terms of ~0 can be obtained by trea· 

ting the term (1/2) ax2 in the Hamiltonian as a small perturbation. When this term is 

neglected, we have the Hamiltonian for a free particle, and the energy levels are given by 

Eg=1r2q2/4~02 ·ow, q=1, 2, 3, .... 

*) These W-fUnction are not identical with those defined by Whittaker and Watson. Reader should 
be careful not to confUse them. 
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The first order correction tenn according to the ordinary perturbation theory is 

and the second order tenn is 

where p takes on odd or even integral values according as q is odd or even. Thus we 

have for the energy of the q-th level, 

E9 = (n,+ 1/2)noJ 

(7) 

This fonnula gives correct values of energy, (correct to 1 in 105) for the first few levels 

up to f 0 < 1.5. For higher levels the approximation is still better. 

We list below a few recurrence relations between the W's that are of help in evalua

ting the matrix elements (Sec. II) . These fonnulae may be verified by direct substitution. 

nW,.-1,1/4+~W .. ,-1/4- (n+ 1) W,.+l,1J4=0, 

W,.+t,-1/4+fW,., 114- W .. -t,-1/4 =0, 

W'n,l/4- (1/2) ~Wn,1'4- W,.+l,-1/4 =0, 

W' ... -1/4- (1/2) ~ W'll,-1/4 + (n+ 1) W,.+t,114=0. 

(' Dash ' denotes differentiation with respect to ~) . 

§ 2. The matrix elements 

The dipole matrix element between two &tates q and p is 

(qlxip) =c,.qo:l:l/fc",,:l::1f4f'¢qX¢', dx 
-l/2 

( fj ))"0 .. =c,. :1:1/4·c,. :1:1/4 -- W,. :1:'/iW,. :1:1/4 d<:,··· 
9' 9' 2mw _ ~o 9' · "' 

where the c' s are the nonnalisation constants given by 

c,.q,:l:~/4= (2mcu/n)1/2/ ro~"q,:l:l/4 d~. 
-l!o 

Since W,.9,+l is an odd function of ~ and W,.9 ,_114 is an even function of ~ 

J<'W .. 1,4 ~w .. 1/4 d~=J<w .. _1,4 ~w .. _1,4 df=o. 
f}, q, g, J'.l' 

-~o -~o 

(Sa) 

(Bb) 

(Be) 

(Bd) 

(9) 

(10) 

Hence transitions between states labelied by integers of the same parity are forbidden. Next 

we considerfW,.9, 114 ~W,.9,_114 df. We have 
-<o 
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(i) 

(ii) 

From (i) and (ii) we easily obtain 

(n,-n9)Jw .. ''4 ~w .. -~/4 d~=2 Cw .. * w' .. -1/4 d~, 
-";o g, P' J -~o q, P' 

or using recurrence relation ( 8d) , 

(n,-n9-1)rw,. 114 ~w .. -1/4 d~=-2(n,+1)Jw .. 1/4 w .. +l,,.d~. J -~o q, P' -~o g, P ' 

Again 

hence 

The normalisation constants can be evaluated as follows : it may be shown from the wave 
equation2l that 

where 

u(n, ~) =e~214 w,.,:!:'/4 (~). 

From u (n9, f 0) = 0, we have 

dn9jd~0= ( -au;a~) .. •of(aujan),. •o• q,.. q,~ 
(13) 

so that 

F2 (n9, ~)e-~'12 d~ = -2e-~o212 [ (aujaf),.9,~:0]2/ (dnqfd;0). 

-~o 

From this equation and the recurrence formulae (8c) and (8d), it is readily shown that 

(14) 

( -dn,jd;0) c., _114 = (mwj2fJ) ~ 14 ---'-------'"--------"'----,:--
P• (n,.+1)Wn,+l,1/4(;o) 

(15) 

Substituting from (11), (14) and (15) in (9), we obtain 
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2 
(q!x!p) = (&/2mw) 1' 2 

2 (dn9/df0) 1' 2 (dn,/df0) 1' 2, 
(n9 -n,) -1 

q and p being of different parities. The oscillator strengths f rn> are given by 

= ~,-n_q_)_ (dnqJdf0 ) (dn,jdf0). 

[ (n, -nq) 2 - 1]2 

The f's satisfy the Thomas-Kuhn rule 

Ljfqp=l. 
p 

§ 3. Numerical calculations 

(16) 

(17) 

(18) 

In order to calculate the oscillator strengths hP , we need the values of nq' s and ( dnrf df 0) 's. 

These values have been computed in this paper for f 0 < 3. For q> 5, the values of n, 
obtained from formula (7) are correct to 1 in 105 for f 0 < 3. For the lower levels (7) 

gives correct nq's for f 0 < 1.5 only, and for larger values of ~0 the nq's have to be t:valuat

ed directly from the equations W. •. ± 14 ( f 0) = 0. Equation (7) is still useful in as much 

as it provides us with the rough values of the zeros of W,., ±' 14 ( f 0). The correct roots are 
computed by applying Newton's rule which states that if n' is an approximate root of 

f(n) =0, a better value for the root is 

n"=n'- f(n') 
(dfjdn),.' 

(19) 

In our case the functions W. •. :l:l/4 ( ~ 0) correspond to f( n). This procedure was adopted 

to calculate the first three roots of Wn,-, 14 (f0 ) and the first two roots of Wn,+: 14 (f0 ) for 

1.5 <fo :S:: 3. Usually one Newton approximation was sufficient to give the roots correct 

to 1 in 105• The derivatives dnqjdf0 were obtained from (7) for q> 5. For the lower 

levels, they were calculated from the relations (for f 0 > 1.5) 

dnqJdf0 

(nq+ 1) w .. q+1,1/4(fo) 
'q=1,3,5···, 

) 
caw .. -l/4/i1n)n ~. • q, 

(20) 
wnq-1, -1/4 (fo) 

, q=2, 4, 6 .. ·, 
(iJWn,l/4ji1n),.g,~o 

which follows from (13) with the help of recurrence formulae. (For f 0 < 1.5, (7) was again 

used). The calculation of the derivatives does not involve much additional labour since 

aw,. :~:- 1di1n become available from the calculation of the n9's. The overall accuracy of the 

calculations is 1 in 10,000. 
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Table 1. 

"u""' (Eg/11(1)-1/2) as function of /;o=l/10 for q-1, 2, 3, 4 and S. 

~I 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

1 61.186 14.926 6.3657 3.3762 2.0000 1.2603 0.82236 0.54624 

2 246.24 61.196 26.941 14.966 9.4402 6.4555 4.6735 3.5350 

3 554.66 138.30 61.213 34.247 21.784 15.0332 10.982 8.3736 

4 986.46 246.25 109.191 61.236 39.059 27.0311 19.7993 15.1263 

s 1541.6 385.04 170.877 95.935 61.266 42.454 31.1314 23.8041 

~I 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

1 0.36496 0.24300 0.16002 0.10355 0.065476 0.040247 0.023946 

2 2.7728 2.24566 1.87342 1.60747 1.41680 1.28064 1.18450 

3 6.6061 5.36323 4.4654 3.80463 3.3125 2.94404 2.66842 

4 11.9451 9.69148 8.0468 6.81909 5.88730 5.17207 4.61953 

5 18.8026 15.2475 12.6402 10.6806 9.17941 8.01278 7.0966 

Table 2. 

(dng/dl;o) as function of eo=l/lo for q= 1, 2, 3, 4 and s. 

":ZI 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

1 616.84 77.080 22.807 9.5861 4.8699 2.7785 1.7093 1.1048 

2 2467.4 308.37 91.300 38.440 19.598 11.254 6.9979 4.5974 

3 5551.6 693.89 205.52 86.620 44.258 25.515 15.967 10.594 

4 9869.6 1233.6 365.44 154.08 78.796 45.500 28.549 19.019 

5 15421.3 1927.6 571.06 240.83 123.207 71.200 44.732 29.858 

~I 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

1 0.73657 0.49945 0.34041 0.23089 0.15444 0.10107 0.064267 . 
2 3.1381 2.1979 1.5639 1.1208 0.80288 0.57058 0.39945 

3 7.3345 5.2395 3.8265 2.8371 2.1210 1.5889 1.1853 

4 13.248 9.5454 7.0570 5.3186 4.0639 3.1326 2.4230 

5 20.859 15.093 11.2235 8.5265 6.5853 5.1497 4.0604 
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~I 
2 

4 

6 

8 

10 

12 

14 
(to >) 

Total) 
As 
Fo 

ymptotic 
rmula 

Sum 

~I 
2 

4 

6 

8 

10 

12 

14 
{to .x· 

Total) 
A 
F 

symptotic 
ormuia 

Sum 

~I 
1 

3 

5 

7 

9 

11 

13 
{to oo) 

A 
Fo 

symptotic 
rmula 

Sum 

0.2 

0.9607 

0.0307 

0.0054 

0.0017 

0.0007 

0.0003 

0.0005 

6.5Xp-4 

1.0000 

1.8 

0.9673 

0.0255 

0.0046 

0.0014 

0.0006 

0.0003 

0.0004 

5.6Xp-4 

1.0001 

0.2 

-0.9607 

1.8677 

0.0700 

0.0139 

0.0046 

0.0020 

0.0026 
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Table ill. 

The oscillator atrengths [!p (p=2, 4, 6···) as functions of t:o=l/lo. 
Initial level 1 (LOWEST) 

0.4 0.6 0.8 1.0 1.2 1.4 

0.9607 0.9608 0.9610 0.9613 0.9620 0.9632 

0.0307 0.0307 0.0305 0.0302 0.0296 0.0287 

0.0054 0.0054 0.0054 0.0054 0.0053 0.0051 

0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 

0.0007 0.0007 0.0007 0.0007 0.0006 0.0006 

0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 

6.5Xp-4 6.5Xp-4 6.4Xp-4 6.4Xp-4 6.3 xp-1 6.2Xp-l 

1.0000 1.0000 1.0000 1.00000 0.9999 1.0000 

2.0 2.2 2.4 2.6 2.8 3.0 

0.9702 0.9738 0.9778 0.9823 0.9864 0.9904 

0.0231 0.0202 0.0170 0.0135 0.0101 0.0071 

0.0042 0.0038 0.0032 0.0027 0.0021 0.0015 

0.0013 0.0012 0.0010 0.0008 0.0007 0.0005 

0.0005 0.0005 0.0004 0.0003 0.0003 0.0002 

0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 

0.0004 0.0004 0.0003 0.0003 0.0002 0.0002 

5.2Xp--4 4.8Xp--4 4.2Xp--4 3.6Xp-4 2.9xp-4 2.3Xp--4 

0.9999 1.0001 0.9999 1.0001 0.9999 1.0000 

Table IV. 
The oscillator strengths { 2p {p=1, 3, 5······) as functions of /;0 =1/10• 

lr.itial level= 2. 

0.4 0.6 0.8 1.0 1.2 1.4 

-0.9607 -0.9608 -0.9610 -0.9613 
I 
-0.9620 -0.9632 

1.8677 1.8678 1.8681 1.8690 1.8704 1.8730 

0.0700 0.0699 0.0698 0.0694 0.0688 0.0678 

0.0139 0.0139 0.0139 0.0138 0.0137 0.0135 

0.0046 0.0046 0.0046 0.0046 0.0045 0.0045 

0.0020 0.0020 0.0020 0.001.9 0.0019 0.0019 

0.0026 0.0026 0.0026 0.0025 0.0025 0.0025 

25.9Xp-4 25.9Xp-l 25.9xp-4 25.9Xp-4 25.7Xp-4 25.5 Xp-4 25.2Xp-4 

1.0001 1.0001 1.0000 1.0000 0.9999 0.9998 1.0000 

1.6 

0.9649 

0.0274 

0.0049 

0.0015 

0.0006 

0.0003 

0.0004 

5.9Xp-l 

1.0000 

1.6 

-0.9649 

1.8766 

0.0663 

0.0132 

0.0044 

0.0019 

0.0025 

24.7Xp-4 

1.0000 
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~I 
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5 
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13 
(to oo) 
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Sum 

~I 
2 
4 
6 
8 

10 
12 
14 

oooTotal) (t 
A 
F 

symptotic 
ormula 
Sum 

~\ 
2 
4 
6 
8 

10 
12 
14 

oooTotal) (t 
As 
F 

ymptotic 
ormula 
Sum 

1.8 2o0 2o2 2.4 2o6 2o8 3o0 

-009673 -009702 -009738 -Oo9778 -0o9822 -009864 -009904 

1.8818 1.8888 1.8973 1o9076 1.9195 1.9322 1.9451 

Oo0641 Oo0611 000572 Oo0524 000467 000403 Oo0333 

Oo0128 Oo0122 Oo0115 Oo0106 000095 000083 Oo0070 

Oo0042 Oo0041 Oo0038 000035 Oo0032 Oo0028 Oo0024 

Oo0018 000017 000016 Oo0015 Oo0014 Oo0012 OoOOlO 

Oo0024 Oo0023 Oo0021 Oo0020 Oo0018 000016 000014 

24o0Xp--4 23o1Xp-4 21.9Xp-4 20.3 Xp--4 18o5Xp-4 16o5Xp-4 14o2Xp-4 

Oo9998 1.0000 Oo9998 Oo9998 Oo9999 1.0000 009998 

Table Vo 
The oscillator strengths fsv (p = 2, 4, 6o 0 0 0 0 0) as functions of eo= l/ loo 

Initial level= 3o 

Oo2 0.4 Oo6 008 1.0 1.2 1.4 

-1.8676 -1.8676 -1.8678 -1.8681 -1.8690 -1.8704 -1.8730 
207226 207227 2o7228 2o7232 2o7244 2o7264 2o7301 
Oo1067 Oo1067 Oo1067 Oo1065 001063 001058 001050 
Oo0224 000224 000224 Oo0224 000224 Oo0223 Oo0221 
Oo0077 Oo0077 Oo0077 000077 000077 000077 000076 
Oo0034 000034 Oo0034 000034 Oo0034 Oo0034 Oo0034 
000048 000048 Oo0048 Oo0048 000048 000047 000047 

58.3p-4X 58o3p--4 X 58.3p--4X 58.3p-4X 58o1p-4 X 57o9p-4X 57o6p-4X 
[I+27p-2] [1+27p-2] [1+27p-2] [1 +27p-2] [1+27p-2] [1+27p-2] [I+27p-2] 

1.0000 1.0001 1o0000 1.0001 1.0000 Oo9999 Oo9999 

1.8 2o0 2o2 2o4 2o6 2o8 3o0 

-108818 -1.8888 -1.8973 -1.9076 -1o9195 -1.9322 -1.9451 
2o7430 2o7532 207660 207821 208012 2o8229 2o8462 
Oo1021 Oo0996 000964 Oo0921 Oo0867 000801 Oo0722 
000215 Oo0210 Oo0203 Oo0195 Oo0184 Oo0170 000155 
00074 Oo0073 000070 000068 Oo0064 Oo0059 Oo0054 
Oo0033 Oo0032 Oo0031 Oo0030 Oo0028 000026 Oo0024 
Oo0046 Oo0045 000044 000042 000040 Oo0037 000034 

56o2p-4X 55o1p-4X 53o6p-4X 51.5p-4X 49oOp-4X 45o8p-4X 42oop-4X 
[1+27p-2] [1+26p-2] [1+26p-2] [1+26p-2] [1+25p-2] [1+24p=2] [1+24p-2] 

1.0001 1.0000 009999 1.0001 1.0000 1.0000 1.0000 

1.6 

-1.8766 
207353 
001038 
000219 
Oo0075 
Oo0033 
Oo0047 

57oOp-4X 
[H27p-2] 

Oo9999 
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Table I gives the first live energy levels as functions of ~0 from ~0=0 to ~0=3 at 
sub-intervals of 0.2. The higher levels for the same interval (0 < ~0 <3) can be computed 
from (7) and are consequently not tabulated. Figure 1 is a plot of the first three energy 
levels against ~0• Table II gives dn9jd~0 as a function of ~0 for q= 1, 2, 3, 4, and 5. The 
oscillator strengths j;11, {J11 and fw are tabulated (tables Ill, N, and V). Asymptotic ex
pressions for the fw, when p is large, are obtained from (17) by assuming (n11 -n.) 2 ;P 1 
and substituting for dn11/ d~ 0 the approximate value 

This gives 

9."' 

1.8 2.2 26 3.0 3.4 
Fig. 1. The first three energy levels as functions of the boundary parameter Eo=l//o. 
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dnqfd~0 and nq being obtained directly from the tables. The asymptotic formulae for 

hv• hv• and hv are listed in the corresponding tables. The Thomas-Kuhn rule, 2J fqp =1, 
p 

is seen to be satisfied in all the three cases and this serves as a check on the calculations. 

The oscillator strengths ft2 and h• are plotted against ~0 in Fig. 2. It will be noted that 
while the energy levels become increasingly sensitive to variations in ~0 as the latter decreases, 
the oscillator strengths become sensitive to changes in ~0 for relatively large values of ~0 
( ~ 0 > 1.5) . In fact, for 0 < ~ 0 < 1, the results are almost the same as those for a free 
particle enclosed in a box. The effects of the potential begin to show up as ~0 increases 
beyond 1, and for ~o> 3, the bounded oscillator behaves more or less like a free oscillator 
(in the first few energy states.) 

In conclusion, we wish to express our thanks to Prof. D. S. Kothari for valuable 

advice, and to Prof. F. C. Auluck for continued interest and guidance during the course 
of this work. 

One of us (K. K. S.) is also indebted to the Atomic Energy Commission, Govern· 
ment of India, for the award of a research-fellowship. 

972 

~~~~==~--_L--~--~--~--l_~L_j 
0.2 0 I> l.R 2.6 3.0 ;..4 

Fig. 2. fu and {14 as functions of the boundary parameter Eo=l/lo. 
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