Progress of Theoretical Physics, Vol. 14 No. 3, September 1955

The Energy-Levels and Transition Probabilities for a Bounded Linear Harmonic Oscillator

J. S. BAIJAL and K. K. SINGH

University of Delhi, Delhi, India
(Received June 30, 1955)

Abstract

The first five energy levels and the oscillator strengths for transitions involving the first three states have been numerically computed for a bounded linear harmonic oscillator for various values of the boundary parameter. It is found that for $l>3 l_{0}$, where l is the length of the box within which the oscillator is confined and l_{0} is the classical amplitude of the oscillator when it has energy $h v$, the bounded oscillator behaves more or less like a free oscillator (in the first few energy levels), while for $l<l_{0}$ it has properties closely approaching those of a free particle enclosed in a box.

Introduction

The study of artificially bounded atomic systems on the basis of quantum mechanics was initiated by Sommerfeld and Welker ${ }^{1}$ in 1938. They dealt with the problem of the hydrogen atom confined in a spherical enclosure of radius R. The wave function instead of vanishing at infinity, as usual, now vanishes on the surface of the sphere. They found that for $R>1.835 a$ where a is the radius of the first Bohr orbit, the electron is bound to the nucleus while for $R<1.835 \mathrm{a}$, it is not (energy positive). The corresponding problem of the bounded linear harmonic oscillator has been attacked by Auluck and Kothari ${ }^{20}$, and they have obtained expressions for the energy levels of the oscillator in two extreme cases, viz., $l<l_{0}$ and $l \gg l_{0}$, where l is the length of the box within which the oscillator is confined and l_{0} is the classical amplitude of the oscillator when it has energy $b \nu$ ($\nu=$ classical frequency of the oscillator). In this paper we have numerically evaluated the energy levels of the bounded oscillator for intermediate values of l, and have also considered the problem of the transition probabilities of the oscillator. In the case of a free oscillator (wave function vanishing at ∞), transitions can occur only between adjacent levels. For a bounded oscillator, however, there is a non-zero probability of transition between any two states of different parities (we label the states as 1 (lowest energy), $2,3, \cdots$; the 'odd' states 1 , $3,5 \cdots$ and the 'even' states $2,4,6, \cdots$, are referred to as states of different parities). We have numerically worked out the oscillator strengths for all transitions involving the first three states (Tables III, IV, and V). It is of interest to note that recently Corson \& Kaplan ${ }^{3)}$ have referred to a possible role of the bounded oscillator in the theory of the specific heats of solids. It might also find an application in the study of the second order phase transitions ${ }^{4}$. We hope to discuss these questions in a subsequent paper.

§ 1. The wave equation

For a particle of mass m moving in a field of force of potential (1/2) αx^{2}, the Schrödinger wave-equation is

$$
\begin{equation*}
d^{2} \psi / d x^{2}+2 m / \hbar^{2}\left(E-1 / 2 \cdot \alpha x^{2}\right) \psi=0 \tag{1}
\end{equation*}
$$

Putting

$$
E=(n+1 / 2) \hbar \omega,
$$

and

$$
\begin{equation*}
x=(\hbar / 2 m \omega)^{1 / 2} \xi \tag{2}
\end{equation*}
$$

where $\omega=(\alpha / m)^{1 / 2}$ is the 'classical' angular frequency of the oscillator, we get

$$
\begin{equation*}
\frac{d^{2} \psi}{d \xi^{2}}+\left(n+1 / 2-1 / 4 \cdot \xi^{2}\right) \psi=0 . \tag{3}
\end{equation*}
$$

This equation has solutions

$$
\psi(\tilde{\xi})=\hat{\xi}^{-1 / 2} M_{n / 2+1 / 4, \pm 1 / 4}\left(\xi^{2} / 2\right),
$$

where the M 's are the confluent hypergeometric functions given by ${ }^{5)}$

$$
\begin{align*}
& 2^{1 / 4} \xi^{-1 / 2} M_{n / 2+1 / 4,-1 / 4}\left(\xi^{2} / 2\right)=e^{-\xi / \xi^{2} 4}\left[1-\frac{n}{2!} \xi^{2}+\frac{n(n-2)}{4!} \xi^{4}-\cdots\right], \tag{4}\\
& 2^{3 / 4} \xi^{-1 / 2} M_{n / 2+1 / 4,+1 / 4}\left(\hat{\xi}^{2} / 2\right)=e^{-\xi 2 / 4}\left[\xi-\frac{(n-1)}{3!} \tilde{\xi}^{3}+\frac{(n-1)(n-3)}{5!} \xi^{5}-\cdots\right] . \tag{5}
\end{align*}
$$

In what follows we shall denote the two solutions (4) and (5) by $W_{n,-1 / 4}(\xi)$ and $W_{n,+1 / 4}(\xi)$ respectively.*

We assume the oscillator to be enclosed between infinitely high and steep potential walls at $x= \pm l / 2$. The energy eigenvalues are then determined from the condition

$$
\psi(x) \longrightarrow 0 \text { as } x \longrightarrow \pm l / 2
$$

or in terms of $\boldsymbol{\xi}$

$$
\begin{align*}
& \psi(\xi) \longrightarrow 0 \text { as } \xi \longrightarrow \pm \hat{\xi}_{0}, \\
& \xi_{0}=l / 2 \cdot(2 m \omega / \hbar)^{1 / 2}=l / l_{0} ; \tag{6}
\end{align*}
$$

where
$l_{0}=(2 \hbar / m \omega)^{1 / 2}$ is the 'classical amplitude' of the oscillator when it has energy $\hbar \omega$.
The zeros of (4) and (5) can be evaluated numerically (this is done in Section III). Zeros of $W_{n,-1 / 4}(\xi)$ give the first (lowest), third, fifth \cdots energy levels, while those of $W_{n,+1 / 4}(\xi)$ determine the even energy levels.

An approximate formula for the energy levels in terms of ξ_{0} can be obtained by treating the term ($1 / 2$) αx^{2} in the Hamiltonian as a small perturbation. When this term is neglected, we have the Hamiltonian for a free particle, and the energy levels are given by

$$
E_{q}=\pi^{2} q^{2} / 4 \xi_{0}^{2} \cdot \hbar \omega, \quad q=1,2,3, \cdots
$$

[^0]The first order correction term according to the ordinary perturbation theory is

$$
\left(q\left|1 / 2 \cdot \alpha x^{2}\right| q\right)=\frac{\xi_{0}^{2}}{12}\left(1-\frac{6}{\pi^{2} q^{2}}\right) \hbar \omega
$$

and the second order term is

$$
\sum_{p, q} \frac{\left|\left(q\left|1 / 2 \cdot \alpha x^{2}\right| p\right)\right|^{2}}{\left(E_{q}-E_{l}\right)}=\frac{256}{\pi^{6}} \sigma_{0}^{6} \sum_{p \neq q} \frac{q^{2} p^{2}}{\left(q^{2}-p^{2}\right)^{5}} \hbar \omega,
$$

where p takes on odd or even integral values according as q is odd or even. Thus we have for the encrgy of the q-th level,

$$
\begin{align*}
E_{q} & =(n,+1 / 2) \hbar \omega \\
& =\frac{\pi^{2} q^{2}}{4 \hat{\xi}_{0}^{2}}\left[1+\frac{\hat{\varsigma}_{0}^{4}}{3 \pi^{2} q^{2}}\left(1-\frac{6}{\pi^{2} q^{2}}\right)+\frac{1024}{\pi^{8}} \hat{5}_{0}^{8} \sum_{p \neq q} \frac{p^{2}}{\left(q^{2}-p^{2}\right)^{5}}\right] \hbar \omega . \tag{7}
\end{align*}
$$

This formula gives correct values of energy, (correct to 1 in 10^{5}) for the first few levels up to $\boldsymbol{\delta}_{0} \leqq 1.5$. For higher levels the approximation is still better.

We list below a few recurrence relations between the W 's that are of help in evaluating the matrix elements (Sec. II). These formulae may be verified by direct substitution.

$$
\begin{align*}
& n W_{n-1,1 / 4}+\xi W_{n,-1 / 4}-(n+1) W_{n+1,1 / 4}=0, \tag{8a}\\
& W_{n+1,-1 / 4}+\xi W_{n, 1 / 4}-W_{n-1,-1 / 4}=0, \tag{8b}\\
& W_{n, 1 / 4}^{\prime}-(1 / 2) \xi W_{n, 1 / 4}-W_{n+1,-1 / 4}=0, \tag{8c}\\
& W_{n,-1 / 4}^{\prime}-(1 / 2) \xi W_{n,-1 / 4}+(n+1) W_{n+1,1 / 4}=0 . \tag{8d}
\end{align*}
$$

('Dash' denotes differentiation with respect to ξ).

§ 2. The matrix elements

The dipole matrix element between two states q and p is

$$
\begin{align*}
& (q|x| p)=c_{n_{p} \pm 1 / 4} \cdot c_{n_{p}, \pm 1 / 4} \int_{-l / 2}^{L / 2} \psi_{\rho} x \psi_{p} d x \\
& =c_{n_{q}, \pm 1 / 4} \cdot c_{n_{q}, \pm 1 / 4}\left(\frac{\hbar}{2 m \omega}\right) \int_{-\xi_{0}}^{\xi_{0} W_{n_{q}, \pm 1 / 4} s W_{n_{p, \pm 1 / 4}} d \hat{\xi}, \cdots .} \tag{9}
\end{align*}
$$

where the c's are the normalisation constants given by

$$
\begin{equation*}
c_{n_{q, \pm}+/ 4}^{2}=(2 m \omega / t)^{1 / 2} / \int_{-\xi_{0}}^{\mathrm{\xi o}_{0}} W_{n_{q, \pm 1 / 4}^{2}}^{2} d \xi . \tag{10}
\end{equation*}
$$

Since $W_{n_{2},+\frac{1}{4}}$ is an odd function of ξ and $W_{n_{q},-1 / 4}$ is an even function of ξ

$$
\int_{-\xi_{0}}^{\xi_{0}} W_{n_{q}, 1 / 4} \xi W_{n_{q}, 1 / 4} d \xi=\int_{-\xi \xi_{0}}^{\xi_{q}} W_{n_{q},-1 / 4} \xi W_{n_{p},-1 / 4} d \xi=0 .
$$

Hence transitions between states labelled by integers of the same parity are forbidden. Next we consider $\int_{-\xi_{0}}^{\xi_{0}} W_{n_{q}, 1 / 4} \xi W_{n_{q},-1 / 4} d \hat{\xi}$. We have

$$
\begin{align*}
& \frac{d^{2} W_{n_{q},-1 / 4}}{d \xi^{2}}+\left(n_{q}+1 / 2-1 / 4 \cdot \xi^{2}\right) W_{n_{q}, 1 / 4}=0 \tag{i}\\
& \frac{d^{2} W_{n_{p},-1 / 4}}{d \xi^{2}}+\left(n_{p}+1 / 2-1 / 4 \cdot \xi^{2}\right) W_{n_{p},-1 / 4}=0 \tag{ii}
\end{align*}
$$

From (i) and (ii) we easily obtain
or using recurrence relation (8d),

Again

$$
\left(n_{p}-n_{q}+1\right) \int_{-\xi_{0}}^{\xi_{0}} W_{n_{q}, 1 / 4} W_{n_{p}+1,1 / 4} d \hat{\xi}=2 W_{n_{p}+1^{1 / 4}}\left(\hat{\xi}_{0}\right) W_{n_{q^{+1,-1 / 4}}}\left(\hat{\xi}_{0}\right)
$$

hence

$$
\begin{equation*}
\int_{-\xi_{0}}^{\xi_{\eta_{q}} \xi_{0}^{1 / 4}} \xi W_{n_{p},-1 / 4} d \xi=-\frac{4\left(n_{p}+1\right)}{\left(n_{p}-n_{q}\right)^{2}-1} W_{n_{p}+, 1 / 4}\left(\xi_{0}\right) W_{n_{q^{2}}+1,-1 / 4}\left(\xi_{0}\right) \tag{11}
\end{equation*}
$$

The normalisation constants can be evaluated as follows : it may be shown from the wave equation ${ }^{2}$ that

$$
\int_{-\xi_{0}}^{\xi_{0}^{2}}\left(n_{q}, \xi\right) e^{-\xi 2 / 2} d \xi=2 e^{-\xi 0^{2} / 2}(\partial u / \partial n)_{n_{q}, \xi_{0}}(\partial u / \partial \xi)_{n_{q}, \xi_{0}}
$$

where

$$
u(n, \xi)=e^{\xi_{2} / 4} W_{n, \pm / / 4}(\xi)
$$

From $u\left(n_{q}, \xi_{0}\right)=0$, we have

$$
\begin{equation*}
d n_{q} / d \hat{\xi}_{0}=(-\partial u / \partial \hat{\xi})_{n_{q}, \xi_{0}} /(\partial u / \partial n)_{n_{q}, \xi_{0}} \tag{13}
\end{equation*}
$$

so that

From this equation and the recurrence formulae (8c) and (8d), it is readily shown that

$$
\begin{align*}
& c_{n_{q}, 1 / 4}=(m \omega / 2 \hbar)^{1 / 4} \frac{\left(-d n_{q} / d \hat{\xi}_{0}\right)}{W_{n_{q}+1 .-: / 4}\left(\hat{\xi}_{0}\right)}, \tag{14}\\
& c_{n_{p},-1 / 4}=(m \omega / 2 \hbar)^{: / 4} \frac{\left(-d n_{p} / d \hat{\xi}_{0}\right)}{\left(n_{p}+1\right) W_{n_{p}+1,1 / 4}\left(\hat{\xi}_{0}\right)} \tag{15}
\end{align*}
$$

Substituting from (11), (14) and (15) in (9), we obtain
J. S. Baijal and K. K. Singh

$$
\begin{equation*}
(q|x| p)=(\hbar / 2 m \omega)^{1 / 2} \frac{2}{\left(n_{q}-n_{p}\right)^{2}-1}\left(d n_{q} / d \hat{\xi}_{0}\right)^{1 / 2}\left(d n_{p} / d \xi_{0}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

q and p being of different parities. The oscillator strengths $f_{q p}$ are given by

$$
\begin{align*}
f_{q p} & =\frac{2 m}{\hbar^{2}}\left(E_{p}-E_{q}\right)|(q|x| p)|^{2} \\
& =\frac{4\left(n_{p}-n_{q}\right)}{\left[\left(n_{p}-n_{q}\right)^{2}-1\right]^{2}}\left(d n_{q} / d \hat{\xi}_{0}\right)\left(d n_{p} / d \hat{\xi}_{0}\right) \tag{17}
\end{align*}
$$

The f 's satisfy the Thomas-Kuhn rule

$$
\begin{equation*}
\sum_{p} f_{q p}=1 \tag{18}
\end{equation*}
$$

§ 3. Numerical calculations

In order to calculate the oscillator strengths $f_{q p}$, we need the values of n_{q} 's and ($d n_{q} / d \xi_{0}$)'s. These values have been computed in this paper for $\hat{\varsigma}_{0} \leqq 3$. For $q>5$, the values of n, obtained from formula (7) are correct to 1 in 10^{5} for $\xi_{0} \leqq 3$. For the lower levels (7) gives correct n_{q} 's for $\xi_{0} \leqq 1.5$ only, and for larger values of ξ_{0} the n_{q} 's have to be cvaluated directly from the equations $W_{n, \pm / 4}\left(\hat{s}_{0}\right)=0$. Equation (7) is still useful in as much as it provides us with the rough values of the zeros of $W_{n, \pm!/ 4}\left(\hat{F}_{0}\right)$. The correct roots are computed by applying Newton's rule which states that if n^{\prime} is an approximate root of $f(n)=0$, a better value for the root is

$$
\begin{equation*}
n^{\prime \prime}=n^{\prime}-\frac{f\left(n^{\prime}\right)}{(d f / d n)_{n}^{\prime}} \tag{19}
\end{equation*}
$$

In our case the functions $W_{n, \pm 1 / 4}\left(\xi_{0}\right)$ correspond to $f(n)$. This procedure was adopted to calculate the first three roots of $W_{n,-1 / 4}\left(\hat{\xi}_{0}\right)$ and the first two roots of $W_{n,+: / 4}\left(\hat{\xi}_{0}\right)$ for $1.5<\hat{\varsigma}_{0} \leqq 3$. Usually one Newton approximation was sufficient to give the roots corrcct to 1 in 10^{5}. The derivatives $d n_{q} / d \hat{\xi}_{0}$ were obtained from (7) for $q>5$. For the lower levels, they were calculated from the relations (for $\xi_{0}>1.5$)

$$
\left.\begin{array}{rl}
d n_{q} / d \xi_{0}^{*} & =\frac{\left(n_{q}+1\right) W_{n_{q}+1,1 / 4}\left(\xi_{0}\right)}{\left(\partial W_{n,-1 / 4} / \partial n\right)_{n_{q}, \xi_{0}}}, q=1,3,5 \cdots, \\
& =\frac{W_{n_{q}-1,-1 / 4}\left(\xi_{0}\right)}{\left(\partial W_{n, 1 / 4} / \partial n\right)_{n_{q}, \xi_{0}}}, q=2,4,6 \cdots, \tag{20}
\end{array}\right\}
$$

which follows from (13) with the help of recurrence formulae. (For $\hat{\xi}_{0}<1.5$, (7) was again used). The calculation of the derivatives does not involve much additional labour since $\partial W_{n \pm / 4} / \partial n$ become available from the calculation of the n_{q} 's. The overall accuracy of the calculations is 1 in 10,000 .

The Energy-Levels and Transition Probabilities for a Bounded Linear Harmonic Oscillator 219

Table 1.
$n_{q}=\left(E_{q} / \hbar \omega-1 / 2\right)$ as function of $\xi_{0}=l / l_{0}$ for $q=1,2,3,4$ and 5.

ξ_{0}	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
\mathbf{q}	0	61.186	14.926	6.3657	3.3762	2.0000	1.2603	0.82236
2	246.24	61.196	26.941	14.966	9.4402	6.4555	4.6735	3.5350
3	554.66	138.30	61.213	34.247	21.784	15.0332	10.982	8.3736
4	986.46	246.25	109.191	61.236	39.059	27.0311	19.7993	15.1268
5	1541.6	385.04	170.877	95.935	61.266	42.454	31.1314	23.8041

8	1.8	2.0	2.2	2.4	2.6	2.8	3.0	
$\boldsymbol{\xi _ { 0 }}$	1.8							
1	0.36496	0.24300	0.16002	0.10355	0.065476	0.040247	0.023946	
2	2.7728	2.24566	1.87342	1.60747	1.41680	1.28064	1.18450	
3	6.6061	5.36323	4.4654	3.80463	3.3125	2.94404	2.66842	
4	11.9451	9.69148	8.0468	6.81909	5.88730	5.17207	4.61953	
5	18.8026	15.2475	12.6402	10.6806	9.17941	8.01278	7.0966	

Table 2.
$\left(d n_{q} / d \xi_{0}\right)$ as function of $\xi_{0}=l / l_{0}$ for $q=1,2,3,4$ and 5.

ξ_{0}	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
\boldsymbol{q}		616.84	77.080	22.807	9.5861	4.8699	2.7785	1.7093
1	2467.4	308.37	91.300	38.440	19.598	11.254	6.9979	4.5974
2	5551.6	693.89	205.52	86.620	44.258	25.515	15.967	10.594
3	9869.6	1233.6	365.44	154.08	78.796	45.500	28.549	19.019
4	15421.3	1927.6	571.06	240.83	123.207	71.200	44.732	29.858

ξ_{0}	1.8	2.0	2.2	2.4	2.6	2.8	3.0	
\boldsymbol{q}								
1	0.73657	0.49945	0.34041	0.23089	0.15444	0.10107	0.064267	
2	3.1381	2.1979	1.5639	1.1208	0.80288	0.57058	0.39945	
3	7.3345	5.2395	3.8265	2.8371	2.1210	1.5889	1.1853	
4	13.248	9.5454	7.0570	5.3186	4.0639	3.1326	2.4230	
5	20.859	15.093	11.2235	8.5265	6.5853	5.1497	4.0604	

J. S. Baijal and K. K. Singh

Table III.
The oscillator strengths $f_{1 p}(p=2,4,6 \cdots)$ as functions of $\xi_{0}=l / l_{0}$.
Initial level 1 (LOWEST)

	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
2	0.9607	0.9607	0.9608	0.9610	0.9613	0.9620	0.9632	0.9649
4	0.0307	0.0307	0.0307	0.0305	0.0302	0.0296	0.0287	0.0274
6	0.0054	0.0054	0.0054	0.0054	0.0054	0.0053	0.0051	0.0049
8	0.0017	0.0017	0.0016	0.0016	0.0016	0.0016	0.0016	0.0015
10	0.0007	0.0007	0.0007	0.0007	0.0007	0.0006	0.0006	0.0006
12	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
$\stackrel{14}{\text { (to }}$	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0004
Total) Asymptotic Formula	$6.5 \times p^{-4}$	$6.5 \times p^{-4}$	$6.5 \times p^{-4}$	$6.4 \times p^{-4}$	$6.4 \times p^{-4}$	$6.3 \times p^{-4}$	$6.2 \times p^{-4}$	$5.9 \times p^{-4}$
Sum	1.0000	1.0000	1.0000	1.0000	1.00000	0.9999	1.0000	1.0000
$\overline{\xi_{0}}$	1.8	2.0	2.2	2.4	2.6	2.8	3.0	
2	0.9673	0.9702	0.9738	0.9778	0.9823	0.9864	0.9904	
4	0.0255	0.0231	0.0202	0.0170	0.0135	0.0101	0.0071	
6	0.0046	0.0042	0.0038	0.0032	0.0027	0.0021	0.0015	
8	0.0014	0.0013	0.0012	0.0010	0.0008	0.0007	0.0005	
10	0.0006	0.0005	0.0005	0.0004	0.0003	0.0003	0.0002	
12	0.0003	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001	
$\text { (to } \begin{aligned} & 14 \\ & \hline \end{aligned}$	0.0004	0.0004	0.0004	0.0003	0.0003	0.0002	0.0002	
Total)								
Asymptotic Formula	$5.6 \times p^{-4}$	$5.2 \times p^{-4}$	$4.8 \times p^{-4}$	$4.2 \times p^{-4}$	$3.6 \times p^{-4}$	$2.9 \times p^{-4}$	$2.3 \times p^{-4}$	
Sum	1.0001	0.9999	1.0001	0.9999	1.0001	0.9999	1.0000	

Table IV.
The oscillator strengths $f_{2 p}(p=1,3,5 \cdots \cdots)$ as functions of $\xi_{0}=l / l_{0}$. Iritial level $=2$.

ξ_{0}	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
p								
1	-0.9607	-0.9607	-0.9608	-0.9610	-0.9613	-0.9620	-0.9632	-0.9649
3	1.8677	1.8677	1.8678	1.8681	1.8690	1.8704	1.8730	1.8766
5	0.0700	0.0700	0.0699	0.0698	0.0694	0.0688	0.0678	0.0663
7	0.0139	0.0139	0.0139	0.0139	0.0138	0.0137	0.0135	0.0132
9	0.0046	0.0046	0.0046	0.0046	0.0046	0.0045	0.0045	0.0044
11	0.0020	0.0020	0.0020	0.0020	0.0019	0.0019	0.0019	0.0019
13	0.0026	0.0026	0.0026	0.0026	0.0025	0.0025	0.0025	0.0025
∞								
(to $)$								
Asymptotic	$25.9 \times p^{-4}$	$25.9 \times p^{-4}$	$25.9 \times p^{-4}$	$25.9 \times p^{-4}$	$25.7 \times p^{-4}$	$25.5 \times p^{-4}$	$25.2 \times p^{-4}$	$24.7 \times p^{-4}$
Formula	1.0001	1.0001	1.0000	1.0000	0.9999	0.9998	1.0000	1.0000
Sum	1.000							

The Levels and Transition Probabilities for a Bounded Linear Harmonic Oscillator

ξ_{0}	1.8	2.0	2.2	2.4	2.6	2.8	3.0	
p								
1	-0.9673	-0.9702	-0.9738	-0.9778	-0.9822	-0.9864	-0.9904	
3	1.8818	1.8888	1.8973	1.9076	1.9195	1.9322	1.9451	
5	0.0641	0.0611	0.0572	0.0524	0.0467	0.0403	0.0333	
7	0.0128	0.0122	0.0115	0.0106	0.0095	0.0083	0.0070	
9	0.0042	0.0041	0.0038	0.0035	0.0032	0.0028	0.0024	
11	0.0018	0.0017	0.0016	0.0015	0.0014	0.0012	0.0010	
13	0.0024	0.0023	0.0021	0.0020	0.0018	0.0016	0.0014	
(to ∞)								
Asymptotic	$24.0 \times p^{-4}$	$23.1 \times p^{-4}$	$21.9 \times p^{-4}$	$20.3 \times p^{-4}$	$18.5 \times p^{-4}$	$16.5 \times p^{-4}$	$14.2 \times p^{-4}$	
Formula	0.9998	1.0000	0.9998	0.9998	0.9999	1.0000	0.9998	
Sum	0.998							

Table V.
The oscillator strengths $f_{3 p}(p=2,4,6 \cdots \cdots)$ as functions of $\xi_{0}=l / l_{0}$.
Initial level $=3$.

	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
2	-1.8676	-1.8676	-1.8678	-1.8681	-1.8690	-1.8704	-1.8730	-1.8766
4	2.7226	2.7227	2.7228	2.7232	2.7244	2.7264	2.7301	2.7353
6	0.1067	0.1067	0.1067	0.1065	0.1063	0.1058	0.1050	0.1038
8	0.0224	0.0224	0.0224	0.0224	0.0224	0.0223	0.0221	0.0219
10	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.0076	0.0075
12	0.0034	0.0034	0.0034	0.0034	0.0034	0.0034	0.0034	0.0033
14	0.0048	0.0048	0.0048	0.0048	0.0048	0.0047	0.0047	0.0047
(to ∞ Total) Asymptotic Formula	$\left[\begin{array}{l} 58.3 p^{-4} \times \\ {\left[1+27 p^{-2}\right]} \end{array}\right.$	$\left[\begin{array}{l} 58.3 p^{-4} \times \\ {\left[1+27 p^{-2}\right]} \end{array}\right.$	$\left\lvert\, \begin{gathered} 58.3 p^{-4} \times \\ {\left[1+27 p^{-2}\right]} \end{gathered}\right.$	$\begin{gathered} 58.3 p^{-4} \times \\ {\left[1+27 p^{-2}\right]} \end{gathered}$	$\left[\begin{array}{c} 58.1 p^{-4} \times \\ {\left[1+27 p^{-2}\right]} \end{array}\right.$	$\left[\begin{array}{l} 57.9 p-4 \times \\ {\left[1+27 p^{-2}\right]} \end{array}\right.$	$\begin{aligned} & 57.6 p^{-4} \times \\ & {\left[1+27 p^{-2}\right]} \end{aligned}$	$\left[\begin{array}{l} 57.0 p^{-4} \times \\ {\left[1+27 p^{-2}\right]} \end{array}\right.$
Sum	1.0000	1.0001	1.0000	1.0001	1.0000	0.9999	0.9999	0.9999

ξ_{0}	1.8	2.0	2.2	2.4	2.6	2.8	3.0	
p								
2	-1.8818	-1.8888	-1.8973	-1.9076	-1.9195	-1.9322	-1.9451	
6	2.7430	2.7532	2.7660	2.7821	2.8012	2.8229	2.8462	
8	0.1021	0.0996	0.0964	0.0921	0.0867	0.801	0.0722	
10	00074	0.0210	0.0203	0.0195	0.0184	0.0170	0.0155	
12	0.0033	0.0033	0.0070	0.0068	0.0064	0.0059	0.0054	
14	0.0046	0.0045	0.0031	0.0030	0.0028	0.026	0.0024	
(to Total)	$56.2 p^{-4} \times$	$55.1 p^{-4} \times$	$53.6 p^{-4} \times$	0.0042	0.0040	0.0037	0.0034	
Asymptotic	$\left[1+27 p^{-2}\right]$	$\left[1+26 p^{-2}\right]$	$\left[1+26 p^{-2}\right]$	$\left[1+26 p^{-2}\right]$	$49.0 p^{-4} \times$	$45.8 p^{-4} \times$	$42.0 p^{-4} \times$	
Formula	$\left.1.25 p^{-2}\right]$	$\left[1+24 p^{-2}\right]$	$\left[1+24 p^{-2}\right]$					
Sum	1.0001	1.0000	0.9999	1.0001	1.0000	1.0000	1.0000	

Table I gives the first five energy levels as functions of ξ_{0} from $\xi_{0}=0$ to $\xi_{0}=3$ at sub-intervals of 0.2 . The higher levels for the same interval ($0<\xi_{0} \leqq 3$) can be computed from (7) and are consequently not tabulated. Figure 1 is a plot of the first three energy levels against ξ_{0}. Table II gives $d n_{q} / d \xi_{0}$ as a function of ξ_{0} for $q=1,2,3,4$, and 5. The oscillator strengths $f_{1 p}, f_{2 p}$ and $f_{3 p}$ are tabulated (tables III, IV, and V). Asymptotic expressions for the $f_{q p}$, when p is large, are obtained from (17) by assuming $\left(n_{p}-n_{y}\right)^{2} \geqslant 1$ and substituting for $d n_{p} / d \hat{\xi}_{0}$ the approximate value

$$
\left(d n_{p} / d \hat{\xi}_{0}\right)_{p \operatorname{large}}=-\frac{\pi^{2} p^{2}}{2 \hat{\xi}_{0}{ }^{3}}\left(1-\frac{\xi_{0}{ }^{4}}{3 \pi^{2} q^{2}}\right) .
$$

This gives

$$
\begin{equation*}
f_{q p}(p \text { large })=\frac{128 \xi_{0}^{3}}{\pi^{4}} \frac{d n_{q}}{d \xi_{0}} \frac{1}{p^{4}}\left[1+\frac{12 \xi_{0}^{2}}{\pi^{2} p^{2}}\left(n_{q}+\frac{1}{2}-\frac{\xi_{0}^{2}}{9}\right)\right], \tag{21}
\end{equation*}
$$

Fig. 1. The first three energy levels as functions of the boundary parameter $\xi_{0}=l / l_{0}$.
$d n_{q} / d \xi_{0}$ and n_{q} being obtained directly from the tables. The asymptotic formulae for $f_{1 p}, f_{2 p}$, and $f_{3 p}$ are listed in the corresponding tables. The Thomas-Kuhn rule, $\sum_{p} f_{q p}=1$, is seen to be satisfied in all the three cases and this serves as a check on the calculations. The oscillator strengths f_{12} and f_{14} are plotted against ξ_{0} in Fig. 2. It will be noted that while the energy levels become increasingly sensitive to variations in ξ_{0} as the latter decreases, the oscillator strengths become sensitive to changes in ξ_{0} for relatively large values of ξ_{0} ($\xi_{0}>1.5$). In fact, for $0<\xi_{0}<1$, the results are almost the same as those for a free particle enclosed in a box. The effects of the potential begin to show up as ξ_{0} increases beyond 1, and for $\xi_{0}>3$, the bounded oscillator behaves more or less like a free oscillator (in the first few energy states.)

In conclusion, we wish to express our thanks to Prof. D. S. Kothari for valuable advice, and to Prof. F. C. Auluck for continued interest and guidance during the course of this work.

One of us (K. K. S.) is also indebted to the Atomic Energy Commission, Government of India, for the award of a research-fellowship.

Fig. 2. f_{12} and f_{14} as functions of the boundary parameter $\xi_{0}=l / l_{0}$.

References

1) A. Sommerfeld and H. Welker, Ann. d. Physik. 32 (1938), 56.
2) F. C. Auluck and D. S. Kothari, Proc. Cambridge Phil. Soc. 41 (1945), 175.
3) E. M. Corson and I. Kaplan, Phys. Rev. 71 (1947), 130.
4) B. Suryan, Phys. Rev. 71 (1947), 741.
5) E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, (1927), 327.

[^0]: *) These W-function are not identical with those defined by Whittaker and Watson. Reader should be careful not to confuse them.

