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The first five energy levels and the oscillator strengths for transitions involving the first three
states have been numerically computed for a bounded linear harmonic oscillator for various values of
the boundary parameter. It is found that for [ >3ly, where [ is the length of the box within which
the oscillator is confined and [y is the classical amplitude of the oscillator when it has energy hv, the
bounded oscillator behaves more or less like a free oscillator (in the first few energy levels), while
for [<ly it has properties closely approaching those of a free particle enclosed in a box.

Introduction

The study of artificially bounded atomic systems on the basis of quantum mechanics
was initiated by Sommerfeld and Welker” in 1938. They dealt with the problem of the
hydrogen atom confined in a spherical enclosure of radius R. The wave function instead
of vanishing at infinity, as usual, now vanishes on the surface of the sphere. They found
that for R>1.835a where a is the radius of the first Bohr orbit, the electron is bound to
the nucleus while for R<1.835 4, it is not (energy positive). The corresponding problem of
the bounded linear harmonic oscillator has been attacked by Auluck and Kothari”, and
they have obtained expressions for the energy levels of the oscillator in two extreme cases,
viz., [ €[, and I>[,, where | is the length of the box within which the oscillator is con-
fined and [, is the classical amplitude of the oscillator when it has energy hv (v=classical
frequency of the oscillator). In this paper we have numerically evaluated the energy levels
of the bounded oscillator for intermediate values of /, and have also considered the problem
of the transition probabilities of the oscillator. In the case of a free oscillator (wave func-
tion vanishing at o), transitions can occur only between adjacent levels. For a bounded
oscillator, however, there is a non-zero probability of transition between any two states of
different parities (we label the states as 1 (lowest energy), 2, 3,---; the ‘odd’ states 1,
3, 5--- and the ‘even’ states 2, 4, 6,--+, are referred to as states of different parities).
We have numerically worked out the oscillator strengths for all transitions involving the
first three states (Tables III, IV, and V). It is of interest to note that recently Corson
& Kaplan® have referred to a possible role of the bounded oscillator in the theory of the
specific heats of solids. It might also find an application in the study of the second order
phase transitions?. We hope to discuss these questions in a subsequent paper.
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The Energy-Levels and Transition Probabilities for a Bounded Linear Harmonic Oscillator 215

§ 1. The wave equation

For a particle of mass m moving in a field of force of potential (1/2) a+’, the Schrédinger
wave-equation is

d*)/di’+2m/B (E—1/2-ax)¢dp=0. 1)
Putting E=(n+1/2)beo,
and x=(b/2mw)"? &, (2)
where w=(a/m)'? is the ‘classical’ angular frequency of the oscillator, we get
2
T8+ (r+1/2—1/4-8)g=0. (3)
5

This equation has solutions
¢(5) =& Mn/2+1v/4,i:‘./4 (52/2) ’

where the M’s are the confluent hypergeometric functions given by

—_ fo] —t oy —2
21 6 Mg (/D =e 1= 2 g 20D ],

- B %2 - —1 S — —
234 E7IE L e s (82/2) =é E”[C— (n3! ) 84 (n 1;(!11 3) 55_.”].
()
In what follows we shall denote the two solutions (4) and (5) by W, _14(§) and W, .14 (€)
respectively.®

We assume the oscillator to be enclosed between infinitely high and steep potential
walls at x= +1{/2. The energy eigenvalues are then determined from the condition

¢ (x)—>0 as x—> +1/2,
or in terms of &

¢ () —0 as §——> 15,
where &=1/2- 2maw/5)"P=1/l,; (6)
I,=(2b/mw)'® is the *classical amplitude’ of the oscillator when it has energy bew.

The zeros of (4) and (5) can be evaluated numerically (this is done in Section III).
Zeros of W, 14 () give the first (lowest), third, fifth:- energy levels, while those of
W, 114(§) determine the even energy levels.

An approximate formula for the energy levels in terms of &, can be obtained by trea-

ting the term (1/2) ax® in the Hamiltonian as a small perturbation. When this term is
neglected, we have the Hamiltonian for a free particle, and the energy levels are given by

E,=n'¢/4€} b, q=1, 2,3, .

*) These W-function are not identical with those defined by Whittaker and Watson. Reader should
be careful not to confuse them.
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216 J. S. Baijal and K. K. Singh

The first order correction term according to the ordinary perturbation theory is

& 6
(411/2 - ax’|q) _Tz_(l o )bw,
and the second order term is

(G120t D 256 s GE
e’ (E,—E,) Fis v¥1 (g*—p%)

where p takes on odd or even integral values according as ¢ is odd or even. Thus we
have for the encrgy of the g-th level,

E,=(n,4+1/2)bw

7'’ [ 35 (1 6 1024 4, r ]
= 1 0 — + = ho . 7
4¢, 371'5"q2 \ ) n® o;;q,(q ~P2)5 “ @)

This formula gives correct values of energy, (correct to 1 in 10°) for the first few levels
up to &, < 1.5. For higher levels the approximation is still better.

We list below a few recurrence relations between the }’s that are of help in evalua-
ting the matrix elements (Sec. II). These formulae may be verified by direct substitution.

Wi s+ W1 — (0 + 1) Wi114=0, (8a)
Wi,y HEWo, 54— Wai,214=0, (8b)
Wianin—(1/2) €Wy 10 — Wi, 214=0, (8¢)
Wiy —(1/2) § Wy apa+ (0t 1) Wasr10=0. (8d)

(‘Dash’ denotes differentiation with respect to §).

§2. The matrix elements

The dipole matrix element between two states ¢ and p is

22
(qlx[p) =c"m*”4‘c”p:*”"s Sy dx

-2

]
=Cnga1ia” ”9,:&”4( )S "o 2, o1 /4 a8, ®
where the s are the normalisation constants given by
%o
c’"q’i,l4=(2mw/b')”'/ s W, e & (10)
—%o

Since W, ., is an odd function of § and Wy -1 i an even function of ¢
%o !o n
j. qu, 1/4 Squ, 14 &= j ng,—1/4 6Wn,],-1/4 ds=0.
=% —%o

Hence transitions between states labelled by integers of the same parity are forbidden. Next

%0

we considerj w, /4 4. We have

T, 1/4 ng,~1/4
—%o
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The Energy-Levels and Transition Probabilities for a Bounded Linear Harmonic Oscillator 217

d2qu,_1/4

d&? +(n,+1/2—1/4-¢ AQ)Wn 114=0, )
Mf; =Lt (0, +1/2—1/4-E) W, _1u=0. @)

From (i) and (ii) we easily obtain

nq)jW /4 EW,,, ’..v/4 d"; Zj‘ g, 14 W,, ’_1/4 dq,

—%o —Eo

or using recurrence relation (8d),

%o %o
(”p_"q_l)Xqu,m ¢Wum—1/4 &= —2("p+ 1) jqu,m Wnp+1,1/4 ds.
—%o

~%o
Again
(ﬂp—ﬂq+ 1) jqu,1/4 Wnp+1,1/4d5=2VV;:p+',1 2] (50) Wny+1.—1/4 (50) ’
hence
%o - 4(n,+1) - -
Zf:qgn Gan—m dé= _(Tp——n,)T—l— Wnp+ 14(50) Van+1,—1/4 &) . (11)

The normalisation constants can be evaluated as follows : it may be shown from the wave
equation” that

[ £y de =265 B f00), 1, 00/09) 1o
—%o

where
u(n, &) =" W, 1.0 (6).

From u(n,, €)=0, we have
diny/diy=(—8u/3%) . vo/ (Bu/Bn)s s, (13)

so that

5 Hnp §) e di=— 26T [(Ou/08) n, 1 J/ (dny/dly) .

—%0

From this equation and the recutrence formulae (8c) and (8d), it is rcadily shown that

Cng 114 (mew/25)" %i)_) (14
n +1 /4 0.
cnp,—-lld = (mw/zfi) 4 (_dnp/dgo) . (15)

(”p+ 1) W‘np+1 /4 (50)

Substituting from (11), (14) and (15) in (9), we obtain
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Ty /R, (16)
q .

q and p being of different parities. The oscillator strengths f,, are given by

(qlx|p) = (b/2mw)'”

for =2 (B,—E) | glp) |

= 4my—n) 1w /dEY (dn. /dE
- [(n, _r,,q)2_ 1P (dn,/d5,) (dn,/dE,). (17)

The f’s satisfy the Thomas-Kuhn rule
? fo w = 1. (18)

§ 3. Numerical calculations

In order to calculate the oscillator strengths f,,,, we need the values of n,’s and (dn,/d%,)’s.
These values have been computed in this paper for §, < 3. For ¢>35, the values of n,
obtained from formula (7) are correct to 1 in 10° for §, <Z 3. For the lower levels (7)
gives correct n,)’s for §, <. 1.5 only, and for larger values of &, the n,’s have to be evaluat-
ed directly from the equations W, . ,4($,) =0. Equation (7) is still useful in as much
as it provides us with the rough values of the zeros of W, ;.,(§,). The correct roots are
computed by applying Newton’s rule which states that if »’ is an approximate root of
f(n) =0, a better value for the root is

! =n' — f(') i (19)
(df/dn)’
In our case the functions W, 414(§,) correspond to f(n). This procedure was adopted
to calculate the first three roots of W, _.,4(,) and the first two roots of W, ,-;4(S,) for
1.5<¢, = 3. Usually one Newton approximation was sufficient to give the roots corrcct

to 1 in 10°% The derivatives dn,/d¢, were obtained from (7) for ¢>5. For the lower
levels, they were calculated from the relations (for §,>1.5)
(n,+1)W,

59+1 174 (EO)
(aWn,—1/4/a")ng’§o

W 1, -us (€
— ] 1, 1/4( 0) , q=2’ 4, 6,
(OW o 114/3m) ng,fo

dn,/ds,=

y q=]_, 3, 5...’
(20)

which follows from (13) with the help of recurrence formulae. (For ¢,<1.5, (7) was again
used). The calculation of the derivatives does not involve much additional labour since
OW, 4-14/0n become available from the calculation of the n,’s. The overall accuracy of the
calculations is 1 in 10,000.
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The Energy-Levels and Transition Probabilities for a Bounded Linear Harmonic Oscillator 219

ny,= (Eg[fw—1/2) as function of &=I/l, for g=1,2,3,4 and 5.

Table 1.

\eo 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
9
1 61.186 14.926 6.3657 3.3762 2.0000 1.2603 0.82236 0.54624
2 246.24 61.196 26.941 14.966 9.4402 6.4555 4.6735 3.5350
3 554.66 138.30 61.213 34.247 21.784 15.0332 10.982 8.3736
4 986.46 246.25 109.191 61.236 39.059 27.0311 19.7993 15.1268
5 1541.6 385.04 170.877 95.935 61.266 42454 31.1314 23.8041
{
1.8 2.0 2.2 24 2.6 2.8 3.0
9
1 0.36496 0.24300 0.16002 0.10355 0.065476 0.040247 0.023946
2 2.7728 2.24566 1.87342 1.60747 1.41680 1.28064 1.18450
3 6.6061 5.36323 4.4654 3.80463 3.3125 2.94404 2.66842
4 11.9451 9.69148 8.0468 6.81909 5.88730 5.17207 4.61953
5 18.8026 15.2475 12.6402 10.6806 9.17941 8.01278 7.0966
Table 2.
(dn,/d&,) as function of &=I/ly for g=1, 2, 3, 4 and 5.
{
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
9
1 616.84 77.080 22.807 9.5861 4.8699 2.7785 1.7093 1.1048
2 2467.4 308.37 91.300 38.440 19.598 11.254 6.9979 4.5974
3 5551.6 693.89 205.52 86.620 44,258 25.515 15.967 10.594
4 9869.6 1233.6 365.44 154.08 78.796 45.500 28.549 19.019
5 15421.3 1927.6 571.06 240.83 123.207 71.200 44.732 29.858
&
1.8 2.0 2.2 2.4 2.6 2.8 3.0
9q
1 0.73657 0.49945 0.31»041 0.23089 0.15444 0.10107 0.064267
2 3.1381 2.1979 1.5639 1.1208 0.80288 0.57058 0.39945
3 7.3345 5.2395 3.8265 2.8371 2.1210 1.5889 1.1853
4 13.248 9.5454 7.0570 5.3186 4.0639 3.1326 24230
5 20.859 15.093 11.2235 8.5265 6.5853 5.1497 4.0604
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Table III.

The oscillator strengths fi,, (p=2, 4, 6:+:) as functions of §o=I/l,.

Initial level 1 (LOWEST)

& 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6
.
2 0.9607 0.9607 0.9608 0.9610 0.9613 0.9620 0.9632 0.9649
4 0.0307 0.0307 0.0307 0.0305 0.0302 0.0296 0.0287 0.0274
6 0.0054 0.0054 0.0054 0.0054 0.0054 0.0053 0.0051 0.0049
8 0.0017 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015
10 0.0007 0.0007 0.0007 0.0007 0.0007 0.0006 0.0006 0.0006
12 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
14 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004
foah
g.symufitotic 6.5Xp™ | 65Xp™ | 65Xp™t | 64Xp~* | 64Xp~* | 63Xp~* | 62Xp~t | 59Xp
°fms:m 1.0000 1.0000 1.0000 1.0000 1.00000 0.9999 1.0000 1.0000
{
1.8 2.0 2.2 24 2.6 2.8 3.0
P
2 0.9673 0.9702 0.9738 0.9778 0.9823 0.9864 0.5904
4 0.0255 0.0231 0.0202 0.0170 0.0135 0.0101 0.0071
6 0.0046 0.0042 0.0038 0.0032 0.0027 0.0021 0.0015
8 0.0014 0.0013 0.0012 0.0010 0.0008 0.0007 0.0005
10 0.0006 0.0005 0.0005 0.0004 0.0003 0.0003 0.0002
12 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001
14 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002 0.0002
(toTo:ll)
Asymptotic| 5.6Xp™ | 5.2Xp~4 | 4.8Xp~t | 4.2Xp~* | 3.6Xp~t | 29Xp~t | 2.3Xxp™4
Formuia
Sum 1.0001 0.9999 1.0001 0.9999 1.0001 0.9999 1.0000
Table IV.
The oscillator strengths fy, (p=1, 3, 5+ ) as functions of &,=I[/l,.
Iritial level=2.
&
0.2 0.4 0.6 0.8 1.0 1.2 14 1.6
p
1 —0.9607 —0.9607 —0.9608 —0.9610 —0.9613 —0.9620 —0.9632 —0.9649
3 1.8677 1.8677 1.8678 1.8681 1.8690 1.8704 1.8730 1.8766
5 0.0700 0.0700 0.0699 0.0698 0.0694 0.0688 0.0678 0.0663
7 0.0139 0.0139 0.0139 0.0139 0.0138 0.0137 0.0135 0.0132
9 0.0046 0.0046 0.0046 0.0046 0.0046 0.0045 0.0045 0.0044
11 0.0020 0.0020 0.0020 0.0020 0.0019 0.0019 0.0019 0.0019
13 0.0026 0.0026 0.0026 0.0026 0.0025 0.0025 0.0025 0.0025
?(st;l’mop:t)otic 25.9Xp™* | 25.9Xp™ | 25.9Xp™4 | 25.9Xp~4 | 25.7Xp¢ | 25.5Xp™* | 25.2Xp~4 | 24.7 X p~4
om;:m 1.0001 1.0001 1.0000 1.0000 0.9999 0.9998 1.0000 1.0000
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o
\ 1.8 2.0 22 24 2.6 2.8 3.0
)4
1 |-09673 |—09702 |—09738 |—0.9778 |—0.9822 |—0.9864 |—0.9904
3 1.8818 1.8888 1.8973 1.9076 1.9195 1.9322 1.9451
5 0.0641 0.0611 0.0572 0.0524 0.0467 0.0403 0.0333
7 0.0128 0.0122 0.0115 0.0106 0.0095 0.0083 0.0070
9 0.0042 0.0041 0.0038 0.0035 0.0032 0.0028 0.0024
11 0.0018 0.0017 0.0016 0.0015 0.0014 0.0012 0.0010
13 0.0024 0.0023 0.0021 0.0020 0.0018 0.0016 0.0014
(to o)
Asymptotic| 24.0Xp™ | 23.1Xp~* | 21.9Xp~t | 203%p~t | 18.5Xp~t | 16.5Xp~* | 14.2Xp~4
Formula
Sum | 0.9998 1.0000 0.9998 0.9998 0.9999 1.0000 0.9998
Table V.
The oscillator strengths f3, (p=2, 4, 6----- ) as functions of &=I[/l,.
Initial level=3.
&
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
?
2 |-18676 |-1.8676 |—1.8678 |—1.8681 |—1.8690 |—1.8704 |—1.8730 |—1.8766
4 2.7226 2.7227 2.7228 2.7232 2.7244 2.7264 2.7301 2.7353
6 0.1067 0.1067 0.1067 0.1065 0.1063 0.1058 0.1050 0.1038
8 0.0224 0.0224 0.0224 0.0224 0.0224 0.0223 0.0221 0.0219
10 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0076 0.0075
12 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0033
14 0.0048 0.0048 0.0048 0.0048 0.0048 0.0047 0.0047 0.0047
g‘;mT‘t’:‘:}z 58.3p~1X | 58.3p~4X | 58.3p~4X | 58.3p~1x | 58.1p=iX | 57.9p=IX | 57.6p~4X | 57.0p~4%
Formprotia+27p7] | [1427p7% |[1427p~%] |[1+27p72] | [1427p7] | [1+27p72] | [1427p7%] | [14+27p77)
Sum 1.0000 1.0001 1.0000 1.0001 1.0000 0.9999 0.9999 0.9999
N — — - — —
[
18 2.0 2.2 24 26 28 3.0
)2
2 |-1.8818 |-1.8888 |—1.8973 |—~1.9076 |—19195 |—1.9322 |—1.9451
4 2.7430 2.7532 2.7660 2.7821 2.8012 2.8229 2.8462
6 0.1021 0.0996 0.0964 0.0921 0.0867 0.0801 0.0722
8 0.0215 0.0210 0.0203 0.0195 0.0184 0.0170 0.0155
10 00074 0.0073 0.0070 0.0068 0.0064 0.0059 0.0054
12 0.0033 0.0032 0.0031 0.0030 0.0028 0.0026 0.0024
14 0.0046 0.0045 0.0044 0.0042 0.0040 0.0037 0.0034
X§°°T‘t’;ﬁz 56.2p4X | 55.1p~4X | 53.6p~tX | SL5p~4x | 49.0p~4X | 45.8p~4X | 42.0p~4x
Forma " [1+27p7% | [1426p7] |[14+26p72] | [1+26p72] | [1+25p~2] | [1+24p72] | [1+24p7]
Sum 1.0001 1.0000 0.9999 1.0001 1.0000 1.0000 1.0000
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Table I gives the first five energy levels as functions of §, from §=0 to §=3 at
sub-intervals of 0.2. The higher levels for the same interval (0 <&,<3) can be computed
from (7) and are consequently not tabulated. Figure 1 is a plot of the first three energy
levels against &,. Table II gives dn,/d&, as a function of &, for g=1, 2, 3, 4,and 5. The

oscillator strengths f,,, f;, and f,, are tabulated (tables III, IV, and V).

Asymptotic ex-

pressions for the f,,, when p is large, are obtained from (17) by assuming (n,—n,)%>1

and substituting for dn,/d¢, the approximate value

. 22 X
G/ 42) e == ‘g} 1— M‘;q, )
This gives
128 §2 dn, 1 1262 1 & ]
large) = 0 7 _~ |1 (U e I
fWJ (P ge) i deo P4 [ + n,gpg (”ﬂ+ 2 9 > (21)
1 I I I T T T T
9.50 - -
Egftw
8.50 i~ n
7.50 |- -
6.50 |~ -
5.50 — -
4.50 b~ -
3.50 i~ =
250 -
1.50 b= -
0.50 b= Eo=1/ L T
[ | 1 | ] ] | ]
0.2 0.6 1.0 14 1.8 2.2 2.6 3.0

Fig. 1. The first three energy levels as functions of the boundary parameter &,=I/l.
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dn,/dé, and n, being obtained directly from the tables. The asymptotic formulae for
fip» fopr and fo, are listed in the corresponding tables. The Thomas-Kuhn rule, >} f,, =1,
»

is seen to be satisfied in all the three cases and this serves as a check on the calculations.
The oscillator strengths f;, and f;, are plotted against §, in Fig. 2. It will be noted that
while the energy levels become increasingly sensitive to variations in &, as the latter decreases,
the oscillator strengths become sensitive to changes in &, for relatively large values of &,
(£,>1.5). In fact, for 0<§,<1, the results are almost the same as those for a free
particle enclosed in a box. The effects of the potential begin to show up as §, increases
beyond 1, and for &,> 3, the bounded oscillator behaves more or less like a free oscillator
(in the first few energy states.)

In conclusion, we wish to express our thanks to Prof. D. S. Kothari for valuable
advice, and to Prof. F. C. Auluck for continued interest and guidance during the course
of this work.

One of us (K. K. S.) is also indebted to the Atomic Energy Commission, Govern-
ment of India, for the award of a research-fellowship.

I ¥ 1 ¥ 1 1 ] 1 []

o2 438
988 I~ 134
984 |— EEa
980 |- -2
976 |- 422
972 - ~-f 18
968 - -1 14
964 |- -~ 10

é

1 ] 1 1 | J
0.2 o6 1.0 1.4 1.8 2.2 2.6 2.0 3.

Fig. 2. fi; and fi, as functions of the boundary parameter & =I/lo.

Zz0oz 1snbny 9| uo1senb Aq 89/€z81L/vL2/S/v L/e1one/did/woo dno olwepeoe//:sdny woly papeojumoq



224

J- S. Baijal and K. K. Singh

References

A. Sommetfeld and H. Welker, Ann. d. Physik. 32 (1938), 56.

F. C. Auluck and D. S. Kothari, Proc. Cambridge Phil. Soc. 41 (1945), 175.

E. M. Corson and I. Kaplan, Phys. Rev. 71 (1947), 130.

B. Suryan, Phys. Rev. 71 (1947), 741.

E. T. Whittaker. and G. N. Watson, 4 Course of Modern Analysis, Cambridge University Press,
(1927), 327.

Zz0oz 1snbny 9| uo1senb Aq 89/€z81L/vL2/S/v L/e1one/did/woo dno olwepeoe//:sdny woly papeojumoq



