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Abstract

In General Relativity, the issue of defining the gravitational energy contained in a given

spatial region is still unresolved, except for particular cases of localized objects where the

asymptotic flatness holds for a given spacetime. In principle, a theory of gravity is not self-

consistent, if the whole energy content is not uniquely defined in a specific volume. Here we

generalize the Einstein gravitational energy-momentum pseudotensor to non-local theories of

gravity where analytic functions of the non-local integral operator �
−1 are taken into account.

We apply the Noether theorem to a gravitational Lagrangian, supposed invariant under the

one-parameter group of diffeomorphisms, that is, the infinitesimal rigid translations. The

invariance of non-local gravitational action under global translations leads to a locally conserved

Noether current, and thus, to the definition of a gravitational energy-momentum pseudotensor,

which is an affine object transforming like a tensor under affine transformations. Furthermore,

the energy-momentum complex remains locally conserved, thanks to the non-local contracted

Bianchi identities. The continuity equations for the gravitational pseudotensor and the energy-

momentum complex, taking into account both gravitational and matter components, can be

derived. Finally, the weak field limit of pseudotensor is performed to lowest order in metric

perturbation in view of astrophysical applications.
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1 Introduction

Recently, non-local contributions to the gravitational action have been considered from various
points of view as possible solutions of the problem of renormalization and regularization of gravi-
tational field [1–3]. In this context, a non-local gravitational energy-momentum pseudo-tensor can
be proposed as a manifestation of non-locality of gravity and, therefore, as a possible manifestation
of quantum nature of gravity.

Theories of gravity can be endowed with non-local properties in three ways [4]. Firstly through
integral operators acting on functions whose value at a given point depends on the values of fields at
another point in spacetime [5–7]. Secondly, through gravitational Lagrangians involving an analytic
non-polynomial function F of the operator �, which can be expanded in convergent series with real
coefficients as

F(�) =

∞∑

h=1

ah�
h , (1.1)

known as Infinite Derivative Theories of Gravity (IDG) [8–14]. Thirdly, through a suitable consti-
tutive law where, like in electrodynamics, temporal dispersion, anisotropy and non-homogeneity
of medium, i.e. the spatial dispersion, are due to temporal and spatial non-locality, respec-
tively [15–19].

At infra-red scales, non-local models of gravity can naturally explain late-time acceleration
without introducing exotic material components such as dark matter and dark energy [5]. In
addition, they can potentially fix some cosmological and astrophysical problems plaguing the ΛCDM
model [20–24], black hole stability [25], or stability and traversability of wormhole solutions [26].

On the other hand, many authors such as Einstein, Tolman, Landau, Lifshitz, Papapetrou,
Møller and Weinberg have proposed definitions for gravitational pseudotensor [27–35], to describe
the energy and momentum of gravitational field in General Relativity. These prescriptions are based
either on the introduction of a super-potential or on expanding the Ricci tensor in metric pertur-
bation hµν or on manipulating the Einstein equations. Although these definitions are different,
it has been shown they coincide for Kerr-Schild metric [36]. Many prescriptions for gravitational
pseudotensor in higher-order curvature theories, in metric and Palatini approach, have been pro-
posed [37–44]. Also for teleparallel gravity, it is possible to formulate self-consistent definition of
gravitational pseudotensor [45, 47].

Here, we want to propose a generalization of Einstein gravitational pseudotensor to non-local
gravity models involving f(�−1) operators. It will be derived from a variational principle using the
Noether theorem applied to a gravitational Lagrangian invariant under global translations [46]. This
object remains an affine tensor, i.e. a pseudotensor, but it is a non-local quantity. Indeed, its non-
local corrections involve non-local �−1R terms, which assume, at a point x, a value depending on
the values assumed by the metric tensor gµν in all points of the integration domain. Then, we show
that the covariant conservation of the energy-momentum, associated to the gravitational and matter
fields, holds in non-local f(�−1R) gravity, thanks to the non-local contracted Bianchi identities.
Finally, we implement a lowest order expansion of the non-local pseudotensor, fundamental for
astrophysical calculations such as the power carried by gravitational waves.

The paper is organized as follows. In the Sec. 2, we firstly define the non-local integral operator
�

−1, then we prove both that it is the inverse operator of d’Alembertian � and a generalization
of the Green second identity to the �-operator on the manifold. In addition, we perform the
total variation of non-local gravitational action with respect to both the metric tensor and the
coordinates. Then we derive the field equations from a variational principle. Sec. 3 is devoted to
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the application of the Noether theorem to the non-local gravitational action for global translations.
The procedure allows us to derive the related Noether current, i.e., the locally conserved energy-
momentum pseudotensor of the gravitational field in non-local gravity. Hence, in Sec. 4, we prove
the non-local generalized contracted Bianchi identities and then analyze the energy-momentum
complex for gravitational and matter fields, in particular its non-local nature and its conservation.
In Sec. 5, we carry out the expansion to lower order in the metric perturbation hµν of non-local
gravitational energy-momentum pseudotensor. Finally, we discuss results and draw conclusions in
Sec. 6.

2 Variational principle and field equations for non-local grav-

ity

Let the spacetime M be a differentiable 4-manifold endowed with a Lorentzian metric g and Ω
be a i four-dimensional region in M. We can define the integral operator �

−1 as follows

Definition 2.1. Let G(x, x′) be the retarded Green function of the differential operator �, i.e.,
the solution of the partial differential equation

√
−g(x) �xG(x, x′) = δ4(x − x′) , . (2.1)

It is subject to retarded boundary condition, due to the causality principle. It is

G(x, x′) = 0 ∀t < t′ , (2.2)

with the d’Alembert operator defined as

� = ∇µ∇µ =
1√−g

∂σ
(√

−ggσλ∂λ
)
. (2.3)

If p ∈ C∞

o (R4) is an element of the space of infinitely differentiable functions with compact support,
then the operator

�
−1 : C∞

o (R4) → C∞

o (R4) , (2.4)

is given by

(�−1p)(x) =

∫

Ω

d4x′
√
−g(x′)G(x, x′)p(x′) , (2.5)

where Ω ⊆ R4 and supp(p) = Ω.

From now on, we shell identify the region Ω of the manifold M with its image φ(Ω) through
the chart φ : Ω ⊆ M → φ(Ω) ⊆ R4. It always exists because the manifold is differentiable and
therefore covered by an atlas. Likewise, we can identify the boundary of the region ∂Ω with the
action of chart φ on it, i.e., φ(∂Ω). Therefore, let us consider functions, and more generally, vector
and tensor fields on the manifold, as defined on the open set of R

4 by means of the graph φ. Thus
we have

Theorem 2.1. Let Ω ⊆ R4 be an open set and f, h ∈ C2(Ω) ∩ C1(Ω) be two twice continuously
differentiable functions in the open and once in its closure. If the boundary ∂Ω is a closed, regular
and orientable three-dimensional hypersurface, then

∫

Ω

d4x
√
−g(f �h− h�f) =

∫

∂Ω

dSµ

√
−g(f∇µh− h∇µf) , (2.6)
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where dSµ is the infinitesimal hypersurface element. Under the further assumption that functions
f and h vanish on boundary, i.e., f = h = 0 on ∂Ω, we get

∫

Ω

d4x
√
−g(f �h) =

∫

Ω

d4x
√
−g(h�f) . (2.7)

Proof. By means of the Leibniz rule applied to the functions f and h, we find the differential identity

f�h = h�f +∇µ(f∇µh− h∇µf) . (2.8)

So the integral (2.6) can be written as
∫

Ω

d4x
√
−g(f �h) =

∫

Ω

d4x
√
−g(h�f) +

∫

Ω

d4x
√
−g∇µ(f∇µh− h∇µf) , (2.9)

that, thanks to the Gauss theorem, transforms the second volume integral of Eq (2.9) into a surface
integral as

∫

Ω

d4x
√
−g(f �h) =

∫

Ω

d4x
√
−g(h�f) +

∫

∂Ω

dSµ

√
−g(f∇µh− h∇µf) .

If f and h are zero on ∂Ω, then the integral on the boundary ∂Ω vanishes and we get Eq (2.7).

Then, we show that �
−1 operator (2.5) is the inverse operator of the d’Alembert operator �.

We can enunciate the following proposition

Theorem 2.2. For all p ∈ C∞

o (R4), �−1 is the inverse of �, i.e.,

(��
−1)p = (�−1

�)p = 1p = p (2.10)

Proof. From the definition of product between two operator, we have

(��
−1)p(x) ≡ �(�−1p)(x) = �x

∫

Ω

d4x′
√
−g(x′)G(x, x′)p(x′)

=

∫

Ω

d4x′
√
−g(x′)�xG(x, x′)p(x′)

=
1√

−g(x)

∫

Ω

d4x′
√
−g(x′)δ4(x − x′)p(x′) = p(x) , (2.11)

where we used definition (2.5) and the following identity involving the Dirac δ distribution function

f(x) =

∫

Ω

d4x′ δ(x − x′)f(x′) , (2.12)

non-null in x ∈ Ω and zero elsewhere. We have to prove now the second identity in Eq. (2.10), by
means of Theorem (2.1). Hence we have

(�−1
�)p(x) ≡ �

−1(�p)(x) =

∫

Ω

d4x′
√
−g(x′)G(x, x′)�x′p(x′)

=

∫

Ω

d4x′
√
−g(x′)�x′G(x, x′)p(x′)

=

∫

Ω

d4x′
√
−g(x′)

δ4(x′ − x)√
−g(x′)

p(x′) = p(x) , (2.13)
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Let us now consider the following gravitational Lagrangian

Sg =
1

2χ

∫

Ω

d4x
√
−g

(
R+Rf(�−1R)

)
, (2.14)

where f is an analytic function of �−1R and χ = 8πG/c4 is a dimensional constant that measures
the coupling between matter and geometry. The variation of gravitational action (2.14) with respect
to both metric tensor and coordinates, denoted by δ̃, reads as

δ̃Sg =
1

2χ

∫

Ω

d4x
[
δ(
√
−gR) + δ(

√
−gR)f(�−1R)

+
√
−gRδ

(
f(�−1R)

)
+ ∂µ(R+Rf(�−1R)δxµ)

]
, (2.15)

where δ is the variation at fixed coordinates. Also, we have to introduce a further theorem useful for
the variation of gravitational action (2.15), which allows us, under suitable assumptions, to move
the �

−1 operator from a factor to another of the product in the integral.

Theorem 2.3. Let f, h ∈ C∞(Ω) be two infinitely differentiable functions on Ω ⊆ R4, that is,
f, h : Ω → C. If �

−1 is the inverse integral operator of the d’Alembert operator � as defined
in (2.5), then

∫

Ω

d4x
√
−g(x)f(x)

(
�

−1h
)
(x) =

∫

Ω

d4x
√
−g(x)h(x)

(
�

−1f
)
(x) . (2.16)

Proof. Let us prove Theorem (2.3) considering the identity (2.12). It follows

∫

Ω

d4x
√
−g(x)f(x)

(
�

−1h
)
(x)

=

∫

Ω

d4x
√
−g(x)

∫

Ω′′

d4x′′ f(x′′)δ(x − x′′)

∫

Ω′

d4x′
√
−g(x′)G(x′, x)h(x′)

=

∫

Ω′

d4x′
√
−g(x′)h(x′)

∫

Ω′′

d4x′′

(∫

Ω

d4x
√

−g(x)G(x′, x)δ(x − x′′)

)
f(x′′)

=

∫

Ω′

d4x′
√
−g(x′)h(x′)

∫

Ω′′

d4x′′
√
−g(x′′)G(x′, x′′)f(x′′)

=

∫

Ω′

d4x′
√
−g(x′)h(x′)

(
�

−1f
)
(x′) . (2.17)

Here Ω, Ω′ and Ω′′ are the same region covered by different charts.

We establish, furthermore, a new relation that connects the variation of � and that of �−1.

Theorem 2.4. Let � be the d’Alembert operator with its inverse operator �−1 satisfying the identity

�
(
�

−1
)
= �

−1(�) = 1 . (2.18)

For all p ∈ C∞(R4), we get (
δ�−1

)
p = −�

−1δ(�)�−1p , (2.19)

where δ is the first variation of the operator part only.
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Proof. Varying both sides of identity (2.18) and taking into account that variation of the Identity
operator 1 is zero, we have

δ(��
−1) = δ1 = 0 , (2.20)

and then, from Eq. (2.18), we get

(δ�)�−1 +�δ(�−1) = 0 . (2.21)

By means of the action of �−1 operator on the left side of Eq. (2.21), we obtain

�
−1(δ�)�−1 + δ(�−1) = 0 , (2.22)

from which follows the relation (2.19).

Thanks to the above theorems, we are ready to split Eq. (2.15) in three parts. The first part is
the same as in General Relativity

1

2χ

∫

Ω

d4x δ(
√
−gR) =

1

2χ

∫

Ω

d4x
√
−g Gµνδg

µν +
√
−g∇σ

[
gµν∇σδgµν −∇λδg

σλ
]
, (2.23)

while the second one is

1

2χ

∫

Ω

d4x
[
δ(
√
−gR)f(�−1R)

]
=

1

2χ

∫

Ω

d4x

{√
−g fGµνδg

µν

+
√
−gf∇σ

[
gµν∇σδgµν −∇λδg

σλ
]}

=
1

2χ

∫

Ω

d4x

{√
−g

(
Gµν + gµν�−∇µ∇ν

)
fδgµν

+
√
−g∇σ

[(
gµν∇σδgµν −∇λδg

σλ
)
f −

(
gλσgµνδg

µν − δgλσ
)
∇λf

]}
, (2.24)

where Gµν is the Einstein tensor

Gµν = Rµν − 1

2
gµνR . (2.25)

Finally, we have for the third part of Eq. (2.15), from Eqs. (2.16) and (2.19), the following form

1

2χ

∫

Ω

d4x
√
−gRδ

(
f(�−1R)

)
=

1

2χ

∫

Ω

d4x
√
−gRf ′δ

(
�

−1R
)

=
1

2χ

∫

Ω

d4x
[√

−gRf ′
(
δ(�−1)R +�

−1[δR]
)]

=
1

2χ

∫

Ω

d4x
[√

−gRf ′
�

−1[δR]−
√
−gRf ′

�
−1δ(�)�−1R

]
, (2.26)

where f ′ = ∂f(�−1R)
∂(�−1R) . The first piece of Eq. (2.26) in the last line, from the identity (2.16), gives

1

2χ

∫

Ω

d4x
√
−gRf ′

�
−1[δR] =

1

2χ

∫

Ω

d4x
√
−g�−1[Rf ′]δR

=
1

2χ

∫

Ω

d4x

{√
−g�−1[Rf ′]Rµνδg

µν +
√
−g(gµν�−∇µ∇ν)�

−1[Rf ′]δgµν

+
√
−g∇σ

[(
gµν∇σδgµν −∇λδg

σλ
)
�

−1[Rf ′]−
(
gλσgµνδg

µν − δgλσ
)
∇λ�

−1[Rf ′]
]}

. (2.27)
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While the second piece of Eq. (2.26) in the last line, by means of the d’Alembert operator (2.3) and
from Eq. (2.16), yields

1

2χ

∫

Ω

d4x
[
−
√
−gRf ′

�
−1δ(�)�−1R

]

=
1

2χ

∫

Ω

d4x
[
−
√
−g�−1[Rf ′]δ(�)�−1R

]

=
1

2χ

∫

Ω

d4x

[
−
√
−g�−1[Rf ′]δ

(
1√−g

)
∂σ

(√
−ggσλ∂λ

)
�

−1R

−
√
−g�−1[Rf ′]

1√−g
∂σ

(
δ
(√

−ggσλ
)
∂λ

)
�

−1R

]

=
1

2χ

∫

Ω

d4x

{
√
−g

[
−1

2
gµνR�

−1[Rf ′]δgµν
]
+ ∂σ

(
�

−1[Rf ′]
)
∂λ

(
�

−1R
)
δ
(√

−ggσλ
)

− ∂σ

[
�

−1[Rf ′]∂λ
(
�

−1R
)
δ
(√

−ggσλ
)]
}

. (2.28)

According to Eqs. (2.23), (2.24), (2.27), (2.28) and the following relation

δ
(√

−ggσλ
)
=

√
−g

(
δ(σµ δλ)ν − 1

2
gµνg

σλ

)
, (2.29)

the variation of the gravitational action (2.14) can be written as follows

δ̃Sg =
1

2χ

∫

Ω

d4x
√
−g

{{
Gµν +

(
Gµν + gµν�−∇µ∇ν

)[
f +�

−1[Rf ′]
]

+

[
δ(σµ δλ)ν − 1

2
gµνg

σλ

]
∂σ

(
�

−1[Rf ′]
)
∂λ

(
�

−1R
)}

δgµν

+
√
−g∇σ

[(
gµν∇σδgµν −∇λδg

σλ
)
+

(
δgλσ − gλσgµνδg

µν
)
∇λ

(
f + �

−1[Rf ′]
)

+
(
gµν∇σδgµν −∇λδg

σλ
) (

f +�
−1[Rf ′]

)

−
(
δ(σµ δλ)ν − 1

2
gµνg

σλ

)
∇λ

(
�

−1R
)
�

−1[Rf ′]δgµν +
(
R+Rf

)
δxσ

]}
. (2.30)

From the least action principle δSg = 0, if field variations and its derivatives vanish on boundary,
the field equations in vacuum are obtained, i.e.,

Gµν +∆Gµν = 0 , (2.31)

with

∆Gµν =
(
Gµν + gµν�−∇µ∇ν

)[
f +�

−1[Rf ′]
]

+

[
δ(σµ δλ)ν − 1

2
gµνg

σλ

]
∂σ

(
�

−1[Rf ′]
)
∂λ

(
�

−1R
)
, (2.32)
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or if we define
G[P ](x) =

(
�

−1P
)
(x) , (2.33)

Eq. (2.31) can be rewritten as

Gµν +
(
Gµν + gµν�−∇µ∇ν

)[
f +G[Rf ′]

]
+

[
δ(σµ δλ)ν − 1

2
gµνg

σλ

]
∂σ (G[Rf ′]) ∂λ (G[R]) = 0 . (2.34)

We can find the field equations in presence of matter using the following action

Sm =
1

2χ

∫

Ω

d4x
√
−gLm , (2.35)

and imposing the stationarity of total action, i.e.,

δ(Sg + Sm) = 0 , (2.36)

with the matter energy-momentum tensor defined as

Tµν = − 2√−g

δ
(√−gLm

)

δgµν
. (2.37)

Hence, the field equations in presence of matter are [7]

Gµν +∆Gµν = χTµν , (2.38)

or

Gµν+
(
Gµν+gµν�−∇µ∇ν

)[
f+G[Rf ′]

]
+

[
δ(σµ δλ)ν − 1

2
gµνg

σλ

]
∂σ (G[Rf ′]) ∂λ (G[R]) = χTµν . (2.39)

We shall use these considerations to derive the gravitational energy-momentum pseudotensor.

3 Gravitational energy-momentum pseudotensor in non–local

gravity

Let us now use the Noether theorem to derive the non-local gravitational energy-momentum
pseudotensor. If the infinitesimal coordinate transformations

x′µ = xµ + δxµ , (3.1)

leave the gravitational action (2.14) unchanged, δ̃Sg = 0, and the domain of integration Ω can be
chosen arbitrarily, by means of the variation (2.30) and the assumption that the metric tensor gµν
is solution of the field equations in vacuum (2.34), we find a conserved current Jσ, i.e., the Noether
current [46], which reads as

2χJσ =Rδxσ −
(
gµνgλσ − gµλgσν

)
∇λδgµν

+
(
gµνgλσ − gµλgσν

)
∇λ

(
f +�

−1[Rf ′]
)
δgµν

−
(
gµνgλσ − gµλgσν

) (
f +�

−1[Rf ′]
)
∇λδgµν

−
(
1

2
gµνgλσ − gµλgσν

)
∇λ

(
�

−1R
)
�

−1[Rf ′]δgµν +Rfδxσ ,

(3.2)
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that obeys the following local continuity equation

∂σ
(√

−gJσ
)
= 0 . (3.3)

Integrating the continuity equation (3.3) over a three-dimensional volume V at a given time x0,
from the Gauss theorem, we obtain

d

dx0

∫

V

d3x
√
−g J0 = −

∫

∂V

dSi

√
−g J i . (3.4)

If the fields with their derivatives vanish on the boundary ∂V , the surface integral on the right of
Eq. (3.4) vanishes, i.e., there is no current crossing the boundary, and we can derive the conserved
Noether charge in the volume V , associated to symmetries (3.1)

Q =

∫

V

d3x
√
−g J0 . (3.5)

So, if we consider the one-parameter group of diffeomorphisms for the global infinitesimal transla-
tions

x′µ = xµ + ǫµ , (3.6)

the local variation δ of tensor metric gµν becomes

δgµν = g′µν(x) − gµν(x) = −gµν,αǫ
α . (3.7)

Hence, the conserved Noether current, related to the translational symmetry (3.6), becomes the
energy-momentum density of the gravitational field, while, for isolated systems, where the spacetime
is asymptotically flat at spatial infinity, the conserved Noether charge becomes the energy and
momentum of the gravitational field. Therefore, the translation invariance of gravitational action,
from Eq. (3.2), gives

τσα = τσ (GR)
α +∆τσα , (3.8)

where τ
σ (GR)
α is the Einstein pseudotensor

2χτσ (GR)
α = Rδσα +

(
gµνgλσ − gµλgσν

) (
gµν,αλ − Γβ

λµgβν,α) , (3.9)

while the correction ∆τσα, is the gravitational energy-momentum pseudotensor of non-local part,
i.e.,

2χ∆τσα =Rfδσα +
(
gµνgλσ − gµλgσν

) (
gµν,αλ − Γβ

λµgβν,α
) (

f +�
−1[Rf ′]

)

−
{(

gµνgλσ − gµλgσν
)
∇λ

(
f +�

−1[Rf ′]
)

−
(
1

2
gµνgλσ − gµλgσν

)
∇λ

(
�

−1R
)
�

−1[Rf ′]

}
gµν,α

. (3.10)

The pseudotensor (3.10) has been obtained taking into account that the covariant derivative of
variation for the metric tensor is

∇λδgµν = ∂λδgµν − Γα
λµδgαν − Γα

λνδgαµ . (3.11)
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The symmetry of Levi Civita connection leads to

(
gµνgλσ − gµλgσν

)
Γβ

λν = 0 , (3.12)

and the local conservation of pseudotensor can be read as

∂α
(√

−g τσα
)
= 0 , (3.13)

being
Jα = τσαǫ

α . (3.14)

In terms of Eq. (2.33), in more compact form, one gets

2χ∆τσα =Rfδσα +
(
gµνgλσ − gµλgσν

) (
gµν,αλ − Γβ

λµgβν,α
)
(f + G[Rf ′])

−
{(

gµνgλσ − gµλgσν
)
∂λ (f + G[Rf ′])

−
(
1

2
gµνgλσ − gµλgσν

)
∂λ (G[R])G[Rf ′]

}
gµν,α

. (3.15)

It has to be emphasized that,from Eqs. (3.8), (3.9) and (3.10), it is clear that the geometric ob-
ject τσα is a pseudotensor not a tensor. In other words, it transforms like a tensor under affine
transformations but not under generic transformations. So τσα is at least an affine tensor. In an
asymptotically flat spacetime the tensoriality is recovered and the integral (3.5) returns to being a
four-vector for asymptotic linear coordinates, that is,

Pα =

∫

V

d3x
√
−g τα0 , (3.16)

represents the energy and momentum in V of the gravitational field. Moreover the pseudotensor
τσα is a non-local object because it involves non-local terms, such as �

−1R or �
−1[Rf ′], whose

value depends on the values assumed by the metric in the integration domain.

4 The energy-momentum complex

The stationarity of gravitational action, δ̃Sg = 0, with respect to the variation δ̃, from Eqs. (2.30),
(2.31), (2.32), (3.8) and (3.10), gives

1

2χ

√
−g

(
Gµν +∆Gµν

)
δgµν + ∂σ

(√
−gτσαǫ

α
)
= 0 . (4.1)

Hence, inserting the field equations in presence of matter (2.38) into Eq. (4.1), we get

− 1

2

√
−g T µνδgµν + ∂σ

(√
−gτσαǫ

α
)
= 0 . (4.2)

From rigid translations and coordinates independence from ǫα, it yields

1

2

√
−g T µνgµν,α + ∂σ

(√
−gτσα

)
= −

√
−g∇σT

σ
α + ∂σ

(√
−gT σ

α

)
+ ∂σ

(√
−gτσα

)
, (4.3)
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where the identity
√
−g∇σT

σ
α = ∂σ

(√
−gT σ

α

)
− 1

2

√
−g gµν,αT

µν , (4.4)

has been taken into account. From Eq. (4.3), we obtain

∂σ

[√
−g

(
T σ

α + τσα
)]

=
√
−g∇σT

σ
α . (4.5)

According to the previous considerations, it is possible to prove generalized contracted Bianchi
identities for non-local gravity [43, 48, 49]. They guarantee the conservation of energy–momentum
complex of gravitational and matter components. Let us first demonstrate a lemma useful for our
purpose.

Lemma 4.1. Let f ∈ C2(Ω) be a twice continuously differentiable function on an open set Ω of
R4, ∇ be the covariant derivative, � be the d’Alembert operator and [, ] be the commutator, we
have

[∇ν ,�]f = −Rµν∇µf . (4.6)

Proof. From the commutator of two covariant derivatives ∇µ and ∇ν , which acts on the contravari-
ant vector field Aγ , we get

[∇µ,∇ν ]A
γ = Rγ

λµνA
λ . (4.7)

If we set Aγ = ∇γf and γ = ν in Eq. (4.7), we obtain

[∇µ,�]f = ∇µ∇ν∇νf −∇ν∇ν∇µf

= ∇ν [∇µ,∇ν ]f − [∇µ,∇ν ]∇νf = ∇ν [∇µ,∇ν ]f −Rµν∇νf . (4.8)

Thus, the commutativity of covariant derivatives of a function, that is,

[∇µ,∇ν ]f = 0 , (4.9)

inserted into Eq. (4.8), gives us the result (4.6).

Theorem 4.1 (Non-local generalized contracted Bianchi identities). Let Gµν be the Einstein tensor
and ∆Gµν be the corrections to the field equations due to non-local terms as in Eq. (2.38), then the
covariant 4-divergence of their sum vanishes, i.e.,

∇µ
(
Gµν +∆Gµν

)
= 0 . (4.10)

Proof. We carry out the 4-divergence of Eq. (2.32) and we have

∇µ∆Gµν =
(
∇µGµν +∇ν�−�∇ν

)(
f + �

−1[Rf ′]
)
+Gµν∇µ(f +�

−1[Rf ′])

+
1

2

(
δλν∇σ + δσν∇λ − gσλ∇ν

)
∇σ�

−1[Rf ′]∇λ�
−1R . (4.11)

So, from the contracted Bianchi identities

∇µGµν = 0 , (4.12)
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and performing some calculations, Eq. (4.11) can be rewritten as follows

∇µ∆Gµν = [∇ν ,�]
(
f +�

−1[Rf ′]
)
+Gµν∇µ(f +�

−1[Rf ′])

+
1

2

(
��

−1[Rf ′]∇ν�
−1R +∇σ�

−1[Rf ′]∇σ∇ν�
−1R+∇σ∇ν�

−1[Rf ′]∇σ�
−1R

+∇ν�
−1[Rf ′]��

−1R−∇ν∇σ[Rf ′]∇σ�
−1R−∇σ�

−1[Rf ′]∇ν∇σ
�

−1R
)
. (4.13)

Now, the relation (4.13) and the lemma (4.1) lead to Eq. (4.10), that is, we find

∇µ∆Gµν = −Rµν

(
f +�

−1[Rf ′]
)
+Gµν∇µ(f +�

−1[Rf ′])

+
1

2
Rf ′∇ν�

−1R+
1

2
R∇ν�

−1[Rf ′]

= −Rµνf
′∇µ

�
−1R−Rµν∇µ

�
−1[Rf ′] +Gµν∇µ(f + �

−1[Rf ′])

+
1

2
gµνRf ′∇µ

�
−1R+

1

2
gµνR∇µ

�
−1[Rf ′]

= −Gµν∇µ
(
f +�

−1[Rf ′]
)
+Gµν∇µ(f +�

−1[Rf ′]) = 0 . (4.14)

According to the field equation in presence of matter (2.38), Eq. (4.10) leads to the standard
covariant conservation of matter energy-momentum tensor, that is,

∇µT
µν = 0 . (4.15)

It implicitly defines the trajectories of particles, that is, the time-like metric geodesics on the
spacetime manifold. Finally, Eq. (4.5) gives the local conservation of energy-momentum complex
T σ

α in non-local gravity, that is, the continuity equation for energy-momentum complex in non-local
gravity

∂σ

[√
−g

(
T σ

α + τσα
)]

= 0 . (4.16)

We can define
T σ

α = T σ
α + τσα , (4.17)

involving all gravitational and matter contributions.

5 Weak field limit of non-local gravitaty energy-momentum

pseudotensor

Let us now develop the low energy limit perturbing the metric tensor gµν around the Minkowskian
metric ηµν . It is

gµν = ηµν + hµν , (5.1)

and then, we can calculate the pseudotensor (3.10) or (3.15) to lowest order in the perturbation
hµν , that is, up to second ordear in hµν . Therefore we get, at the order h2,

(τσα)
(2)

=
(
τ
σ (GR)
α

)(2)

+ (∆τσα)
(2)

, (5.2)
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where the Einstein pseudo-tensor is

2χ
(
τσ (GR)

α

)(2)

= R(2)δσα +
(
gµνgλσ − gµλgσν

)(1)
g
(1)
µν,αλ , (5.3)

and, from Eq. (3.15), the non-local perturbation of pseudotensor takes the form

2χ (∆τσα)
(2)

= R(1)f (1)δσα +
(
gµνgλσ − gµλgσν

)(0) (
f (1) + G(1)[Rf ′]

)

,λ
g(1)µν,α

−
(
gµνgλσ − gµλgσν

)(0) (
f (1) + G(1)[Rf ′]

)
g
(1)
µν,αλ . (5.4)

Then, we expand f as
f (G[R]) (x) = f(0) + f ′(0)G[R](x) + . . . , (5.5)

and imposing the case f(0) = 0, the relation (5.5) to the first order takes the form

f (1) (G[R]) (x) = f ′(0)G(1)[R](x) . (5.6)

Taking into account the following first order perturbations in a generic coordinate system, the Ricci
scalar becomes

R(1) =
(
hβγ

,βγ −�
(0)h

)
, (5.7)

where
�

(0) = ηαβ∂α∂β , (5.8)

and the non-local operator �−1 at first order reads as

G(1)[R](x) =
(
�

−1R
)(1)

(x) = −h(x) + G̃
[
hβγ

,βγ

]
(x) , (5.9)

where

G̃
[
hβγ

,βγ

]
(x) =

∫

Ω

d4x′G(x, x′)hβγ
,βγ(x

′) . (5.10)

We have to prove the identity (5.9). Using Eqs. (2.1), (2.5), (5.7) and the theorem (2.1), it is

(
�

−1R
)(1)

(x) =

∫

Ω′

d4x′
√
−g(x′)

(0)
G(x, x′)R(1)(x′)

=

∫

Ω

d4x′
√
−g(x′)

(0)
G(x, x′)

(
hβγ

,βγ(x
′)−�x′h(x′)

)

= −
∫

Ω

d4x′
�x′G(x, x′)h(x′) +

∫

Ω

d4x′G(x, x′)hβγ
,βγ(x

′)

= −
∫

Ω

d4x′δ(x− x′)h(x′) + G̃
[
hβγ

,βγ

]
(x) = −h(x) + G̃

[
hβγ

,βγ

]
(x) . (5.11)

Furthermore, we perform the first-order perturbation of G[Rf ′], namely

G(1)[Rf ′](x) =

∫

Ω

d4
√
−g(x′)

(0)
G(x, x′)R(1)(x′)f ′(0)[G](x′)

= f ′(0)

∫

Ω

d4
√
−g(x′)

(0)
G(x, x′)R(1)(x′) = f ′(0)G(1)[R](x) . (5.12)
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Finally substituting the Eqs. (5.7), (5.9) and (5.12) in the non-local perturbed gravitational energy–
momentum pseudotensor (5.4), we derive the non-local corrections of the gravitational pseudo-tensor
τσα to the second order in hµν , that is,

2χ (∆τσα)
(2)

=

{(
hβγ

,βγ −�h
)(

−h+ G̃
[
hβγ

,βγ

])
δσα

+ 2
(
ηµνηλσ − ηµληνσ

) (
−h+ G̃

[
hβγ

,βγ

])

,λ
hµν,α

− 2
(
ηµνηλσ − ηµληνσ

) (
−h+ G̃

[
hβγ

,βγ

])
hµν,αλ

}
f ′(0)

. (5.13)

The non-local contribution in Eq. (5.13) is evident and, as discussed in Refs. [50–52], it can con-
tribute to gravitational radiation representing a signature for non-local gravity.

6 Discussion and Conclusions

In this paper, we investigated how non-locality gravity induces correction terms ∆τσα into the
Einstein gravitational pseudotensor. Considering the Noether theorem and imposing the invariance
of gravitational action under rigid translations, we found the associated conserved Noether current
and charge. They can be interpreted as the gravitational density of the energy-momentum and
the energy and momentum of gravitational field present in a spatial volume enclosing localized
massive objects. The density and flux density of the gravitational energy and momentum expressed
in Eq. (3.10) are not described by a covariant tensor, which means that, under general coordinate
transformations, it does not transform like a tensor. The geometrical object (3.10) is an affine
tensor or pseudotensor because it transforms like a tensor only under affine transformations. The
non-tensorial character of Eq. (3.10) is closely linked to the non-localization of gravitational energy
which holds also in non-local gravity. The non-locality of the gravitational pseudotensor intervenes
through integral operators, like �−1, where its value, at a given point x, takes into account the value
assumed by the fields in other points x′ of the spacetime. Then, by generalizing the contracted
Bianchi identities to the non-local gravity, we have obtained an equation of continuity for the
energy-momentum complex that ensures its local conservation. Finally, we studied the behavior
at low energies of the non-local corrections of the gravitational pseudotensor (5.13), expanding it
up to the second order in hµν . The non-local gravitational energy-momentum pseudotensor is a
crucial physical quantity because, thanks to the gravitational waves obtained and analyzed in the
papers [50–52], it is possible to calculate the power emitted by a radiative system and transported
by the waves with all its polarizations and multipole terms. The presence, in the gravitational
radiation, of a scalar component with lower multipoles, in addition to the standard quadrupole
tensor component, can be investigated thanks to the gravitational pseudotensor. In this perspective,
it can give a relevant signature for the non-local gravity. In a forthcoming paper, we will investigate
possible observational constraints on these features.
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