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THE ENERGY OF INTEGRAL CIRCULANT GRAPHS

WITH PRIME POWER ORDER

J. W. Sander, T. Sander

The energy of a graph is the sum of the moduli of the eigenvalues of its

adjacency matrix. We study the energy of integral circulant graphs, also

called gcd graphs. Such a graph can be characterized by its vertex count n

and a set D of divisors of n such that its vertex set is Zn and its edge set is

{{a, b} : a, b ∈ Zn, gcd(a− b, n) ∈ D}. For an integral circulant graph on ps

vertices, where p is a prime, we derive a closed formula for its energy in terms

of n and D. Moreover, we study minimal and maximal energies for fixed ps

and varying divisor sets D.

1. INTRODUCTION

In this work, we study the energy of integral circulant graphs. These are a
subclass of the important and well-researched class of circulant graphs (see Davis

[11]) and play a role in quantum physics [26], [6]. Circulant graphs are charac-
terized by the fact that every cyclic rotation of the vertex numbers yields a graph
isomorphic to the original. For each vertex the relative “jump” distances to the
adjacent vertices (in terms of vertex indices, computing modulo n) are the same.
Thus, in order to describe a particular circulant graph, one only needs to record n

and the set of jump distances. Integral circulant graphs are those circulant graphs
that have only integer eigenvalues. Graphs with this spectral property are quite
rare [1].

The circulant graphs are exactly the Cayley graphs Cay(Zn, S). The Cayley
graph Cay(Γ, S) of a multiplicative group Γ with identity 1 and a set S ⊆ Γ is
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defined to have vertex set Γ and edge set {{a, b} : a, b ∈ Γ, ab−1 ∈ S}. The set
S is usually assumed to satisfy 1 6∈ S and S−1 = {s−1 : s ∈ S} = S, which
implies Cay(Γ, S) to be loop-free and undirected. The unitary Cayley graphs are
the graphs Cay(Zn, Un), where Un is the unit group of Zn. Consequently, they have
vertex set Zn and edge set {{a, b} : a, b ∈ Zn, gcd(a − b, n) = 1}. In the existing
literature Cay(Zn, Un) is often denoted by Xn.

According to a result by So [28], the integral circulant graphs can be char-
acterized as follows: Given an integer n and a set D of positive divisors of n,

define the graph ICG(n,D) to have vertex set Zn = {0, 1, . . . , n− 1} and edge set
{{a, b} : a, b ∈ Zn, gcd(a − b, n) ∈ D}. Every integral circulant graph can be
represented by such a graph ICG(n,D) (observe that n ∈ D introduces a loop in
the graph). By this characterization, it is easy to see that the integral circulant
graphs arise as a natural generalization of the unitary Cayley graphs, which are
exactly the integral circulant graphs ICG(n, {1}). Following this point of view, the
shorter term gcd graphs has sometimes been used for the integral circulant graphs
[15], [18]. Both the class of integral circulant graphs and the subclass of unitary
Cayley graphs have received increased research attention lately (see e.g. [12], [8],
[18], [25], [6], [7], [15], [2], [16], [22], [3]).

The energy E(G) of a graph G on n vertices is defined as

E(G) =

n
∑

i=1

|λi|,

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. This concept
has been introduced in the 1970ies by Gutman [13], originally in the context of
mathematical chemistry. Today the energy of graphs is mainly studied for genuine
mathematical interest. With slight modification this notion can even be extended
to arbitrary real rectangular matrices, cf. [21] and [17]. In [10] Brualdi gives a
short survey on the graph energy.

There has been some recent work on the energy of unitary Cayley graphs.
Balakrishnan [4] considered graphs Cay(Zn, Un) for n = ps with s ≥ 1 and
showed E(Cay(Zps , Ups)) = 2ϕ(ps) = 2(p − 1)ps−1, where ϕ is Euler’s totient
function. Ramaswamy and Veena [25] have extended this to arbitrary unitary
Cayley graphs, by showing that E(Cay(Zn, Un)) = 2kϕ(n) for n = ps1

1
· · · pskk with

distinct primes pi and positive integers si. The same result has been obtained
independently by Ilić [15].

Let us abbreviate E(n,D) = E(ICG(n,D)) and let n = ps1
1
· · · pskk as above.

Then, in the context of integral circulant graphs, the previous result reads as follows:

E(n, {1}) = 2kϕ(n).

Ilić [15] has slightly generalized these results to some integral circulant
graphs that are not unitary Cayley graphs:

E(n, {1, pi}) = 2k−1piϕ(n/pi), provided that si = 1,

E(n, {pi, pj}) = 2kϕ(n), provided that s1 = . . . = sk = 1.
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In this paper we shall add to these results by proving an explicit formula for the
energy E(n,D) for any prime power n = ps and any divisor setD. The reason for the
restriction of n to prime powers is the fact that, except for the special case n = p1p2
(cf. final section, last paragraph, or Ilić’s results above), the energies of integral
circulant graphs ICG(n,D) do not reveal any sign of multiplicative behaviour with
respect to n and, therefore, severe complications arise for arbitrary n. Despite
our restriction, now arbitrary divisor sets D are permitted – in contrast to the
limitations of earlier results. It will be an easy corollary to our formula for the
energy of ICG(ps,D) to determine for fixed ps the integral circulant graphs with
minimal energy, simply by demonstrating that the corresponding divisor sets D
are exactly the singletons. On the other hand, the graphs with maximal energy
apparently behave in a much more irregular fashion, and a general specification
seems to be difficult. Yet we provide explicit results for prime powers ps with small
exponents.

Sharp upper bounds in terms of n for the energy of an arbitrary graph with n

vertices are known (cf. Koolen andMoulton [19]). Maximal energies to be found
in special graph classes were studied by Balakrishnan [4] and Li et al. [20] for k-
regular graphs, and by Shparlinksi [27] for circulant graphs. These investigations
are motivated by the interesting question of hyperenergeticity. A graph G on
n vertices is called hyperenergetic if its energy is greater than the energy of the
complete graph on the same number of vertices, i.e. if E(G) > E(Kn) = 2(n−1). It
had once been conjectured that no hyperenergetic graphs exist, but since then many
classes of hyperenergetic graphs have been discovered. One simple construction is
due to Hou and Gutman. They show in [14] that if a graph G has more than
2n−1 edges, then its line graph is necessarily hyperenergetic. It follows that L(Kn)
is hyperenergetic for all n ≥ 5 (this fact seems to have been known before). Let us
note in passing that a surprising fact about line graph energies is that k-th iterated
line graphs (k ≥ 2) of any two r-regular graphs (r ≥ 3) with the same number of
vertices actually have the same energies, as shown by Ramane et al. [24].

Actually, the class of circulant graphs contains a wealth of hyperenergetic
members. Stevanović and Stanković have shown that, for fixed but arbitrary
sets of jump distances, all circulants with this jump set are hyperenergetic, if only
they have sufficiently many vertices [29]. Bounds on the average energy of circu-
lants, depending on the number of vertices and the jump set size, have been given
by Blackburn and Shparlinski [9]. As a special case of circulant graphs, almost
all unitary Cayley graphs on n vertices have been shown to be hyperenergetic, see
[25] by Ramaswamy and Veena. The necessary and sufficient condition is that
n has at least 3 distinct prime divisors or that n is odd in case of only two prime
divisors. We characterize all graphs ICG(ps,D) that are hyperenergetic. Note that,
according to Ramaswamy and Veena, for D = {1} there are none. It turns out
that for each fixed prime power ps (p ≥ 3 and s ≥ 3) the set of integral circulant
graphs ICG(ps,D) contains hyperenergetic elements, graphs with energy 2(ps − 1)
just like the corresponding complete graph Kps as well as graphs with lower energy,
which we shall call hypoenergetic.
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2. THE ENERGY OF INTEGRAL CIRCULANT GRAPHS WITH
FIXED DIVISOR SET

For an integer n > 1 and a non-empty set D ⊆ {1 ≤ d ≤ n : d | n} of divisors
of n we denote by E(n,D) the energy of the integral circulant graph ICG(n,D).
By the formula for the eigenvalues of integral circulant graphs obtained by Klotz

and Sander [18], the energy of a integral circulant graph turns out to be a sum
of Ramanujan sums, namely

(1) E(n,D) =
n
∑

k=1

∣

∣

∣

∣

∣

∣
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where µ denotes Möbius’ well-known function. We shall determine E(ps,D) for
arbitrary prime powers ps and arbitrary divisor sets D. Since it is customary to
study only energies of loopless graphs, we shall assume that ps 6∈ D. However, our
results can be easily adapted to deal with graphs containing loops as well.

Theorem 2.1. Let p be a prime and s an arbitrary positive integer. Let D be a
non-empty set of positive divisors d of ps with d < ps, i.e. D = {pa1 , pa2 , . . . , par}
with 0 ≤ a1 < a2 < . . . < ar ≤ s− 1. Then

E(ps,D) = 2(p− 1)

(

ps−1r − (p− 1)
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∑
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∑

i=k+1

ps−ai+ak−1
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.

Proof. By (1) we have
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.

We partition the sum over k according to the greatest power of p dividing k, using
the notation pj‖k to express that pj | k but pj+1 - k. Hence

E(ps,D) =
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= ps−1(p− 1)
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Now our sum simplifies substantially by the fact that µ(n) vanishes for all
positive integers n which are not squarefree. Consequently

E(ps,D) = ps−1(p− 1)
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and have thus shown

(2) E(ps,D) = ps−1(p− 1)
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∑
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r
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In order to evaluate Sj we distinguish several cases.

Case 1: j = s− ak − 1 for some k ∈ {1, 2, . . . , r}.

Then
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where the last sum is empty for k = r, hence vanishes. We have

r
∑

i=k+1

(pak−ai+1 − pak−ai) = (p− 1) · pak−ak+1

r
∑

i=k+1

pak+1−ai

≤ (p− 1) · pak−ak+1

∞
∑

i=0

p−i = pak−ak+1+1 ≤ 1.



The energy of integral circulant graphs with prime power order 27

With (3) this yields for 1 ≤ k ≤ r

(4) Ss−ak−1 = 1−

r
∑

i=k+1

(pak−ai+1 − pak−ai) = 1− (p− 1)

r
∑

i=k+1

1

pai−ak

.

Case 2: s− ak ≤ j ≤ s− ak−1 − 2 for some fixed k ∈ {2, 3, . . . , r}.

First notice that the interval for j is empty if ak = ak−1 +1. Otherwise any j lying
in the interval satisfies

(5) ak−1 + 1 ≤ s− j − 1 ≤ ak − 1.

This means that for such j the first sum in the definition of Sj is empty, hence

Sj =

r
∑
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ai≥s−j

(ps−j−ai − ps−j−ai−1) =

r
∑

i=k

(ps−j−ai − ps−j−ai−1),

using (5) once again. We conclude
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∑
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∑
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r
∑
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=

r
∑
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∑

j=s−ak

p−j

= (p− 1)

r
∑
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ps−ai−1 ·
1
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∑

j=0

p−j

= (p− 1)

r
∑

i=k

p−(ai−ak+1)
p

p− 1

(

1−
1

pak−ak−1−1

)

,

where the formula for the innermost geometric sum also holds if it is empty, i.e. in
case ak = ak−1 + 1. Consequently we have for 2 ≤ k ≤ r

(6)

s−ak−1−2
∑

j=s−ak

Sj =

(

1−

(

1

p

)ak−ak−1−1
)

r
∑

i=k

1

pai−ak

.

Case 3: 0 ≤ j ≤ s− ar − 2.

By definition of Sj we have

(7)

s−ar−2
∑

j=0

Sj =

s−ar−2
∑

j=0

r
∑

i=1

ai≥s−j

(ps−j−ai − ps−j−ai−1) = 0,

since the inner sum is empty because of s− j ≥ ar + 2.
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Case 4: s− a1 ≤ j ≤ s− 1.

Here we have

s−1
∑

j=s−a1

Sj =

s−1
∑

j=s−a1

r
∑

i=1

ai≥s−j
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∑
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r
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since s−j ≤ a1 in the innermost sum. For that reason we obtain similarly as before

(8)

s−1
∑

j=s−a1

Sj =

(

1−

(

1

p

)a1
) r
∑

i=1

1

pai−a1

,

which again is also satisfied in the case of an empty sum, i.e. for a1 = 0.

Putting (4), (6), (7) and (8) together and setting a0 := −1, we get from (2)

E(ps,D) = ps−1(p− 1)
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∑
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∑
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∑
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∑
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)
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∑
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We thus obtain
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ps−1(p− 1)
=
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= 2r − (p− 2)
r
∑
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r
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1
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r
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1
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1
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1
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r
∑
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r
∑
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1
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.

This completes the proof of the theorem. �

Let us remark on connectivity. A Cayley graph Cay(Γ, S) with S={s1, . . . , sr}
is connected if and only if S generates Γ. This means a graph ICG(n,D) with
D = {d1, . . . , dr} is connected if and only if gcd(n, d1, . . . , dr) = 1 (cf. [28]). For
n = ps this is equivalent to 1 ∈ D, which translates to the condition a1 = 0 < a2 <

. . . < ar ≤ s − 1. Clearly, the energies of graph components add up, so we could
restrict ourselves to connected graphs. However, we shall generally permit a1 > 0,
since there is virtually no extra complexity introduced by this.

We now present some easy consequences of Theorem 2.1, i.e. for simple inte-
gral circulant graphs. The straightforward proof of the following corollary is left to
the reader.

Corollary 2.1. Let p be a prime and s an arbitrary positive integer.

(i) For r = 1, i.e. D = {pt} with some non-negative integer t ≤ s − 1, we have
E(ps,D) = 2(p− 1)ps−1.

(ii) For D = {1, ps−1}, i.e. s ≥ r = 2 and a1 = 0, a2 = s−1, we have E(ps,D) =
2(p− 1)(2ps−1 − p+ 1).

(iii) For D = {1, p, p2, . . . , pr−1} with r ≤ s, i.e. ai = i − 1 (1 ≤ i ≤ r), we have
E(ps,D) = 2(ps − ps−r).

Our formula in Theorem 2.1 makes it obvious that E(ps,D) is always an
integer divisible by 2(p − 1). This is in line with the work of Bapat and Pati [5]
who showed that the energy of any graph is never an odd integer (see also [23]).

Recalling our introductory remarks on hyperenergeticity we observe that for
each fixed ps, p ≥ 3 and s ≥ 3, there exist lots of integral circulant graphs which
are hyperenergetic, but some are not. In fact, the integral circulant graphs in
Corollary 2.1(ii), for instance, are apparently hyperenergetic for all primes p ≥ 3
and all s ≥ 3. Since the graph with r = s in Corollary 2.1(iii) happens to be
the complete graph Kps , we also have integral circulant graphs on the edge of
hyperenergeticity. Finally, the integral circulant graphs in Corollary 2.1(iii) with
r < s as well as those in Corollary 2.1(i) are even hypoenergetic, i.e. there energy
lies below that of the corresponding complete graph Kps .

As an easy consequence of Theorem 2.1 we obtain the following characteri-
sation of the hyperenergetic integral circulant graphs ICG(ps,D).
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Corollary 2.2. Let p be a prime and s an arbitrary positive integer. Then ICG(ps,D)
with D = {pa1 , pa2 , . . . , par}, 0 ≤ a1 < a2 < . . . < ar ≤ s − 1, is hyperenergetic if
and only if

r−1
∑

k=1

r
∑

i=k+1

1

pai−ak

<
1

p− 1

(

r −
ps − 1

ps−1(p− 1)

)

.

3. INTEGRAL CIRCULANT GRAPHS WITH MINIMAL OR
MAXIMAL ENERGY

In the preceding section we have seen that the class of integral circulant
graphs stretches over a wide range from low-energetic to high-energetic graphs. As
a further application of our formula for the energy of a integral circulant graph
with prime power order we take a look at graphs with extremal energy. For fixed
ps the integral circulant graph(s) ICG(ps,D) with minimal energy will be described
most readily by identifying the corresponding divisor sets D as the singletons. The
graphs with maximal energy, however, do not reveal any noticeable pattern, and
a general specification seems to be out of reach. Yet we shall provide results for
prime powers ps with small exponents.

For simplicity we restrict ourselves to simple graphs from now on, although
integral circulant graphs with loops could be incorporated without any further
problems. Accordingly, we define

Emin(n) := min {E(n,D) : D ⊆ {1 ≤ d < n : d | n}}

as well as
Emax(n) := max {E(n,D) : D ⊆ {1 ≤ d < n : d | n}}

for any given positive integer n. A set D ⊆ {1 ≤ d < n : d | n} will be called
n-minimal if E(n,D) = Emin(n), and n-maximal if E(n,D) = Emax(n).

We shall easily see in the next theorem that the sets D = {pt} in Corollary
2.1(i) are exactly the ps-minimal sets of divisors. Consequently, there is a unique
connected integral circulant graph on ps vertices with minimal energy, namely the
respective unitary Cayley graph. This does not hold in general, as can be seen for
n = 6, where D = {1, 3} is the unique minimizing divisor set.

Theorem 3.1. Let p be a prime and s an arbitrary positive integer. Then

Emin(p
s) = 2(p− 1)ps−1,

and the ps-minimal sets of divisors are exactly the sets D = {pt} with t = 0, 1, . . . ,
s− 1.

Proof. By Corollary 2.1(i) we know that E(ps,D) = 2(p − 1)ps−1 for each
D = {pt}, t = 0, 1, . . . , s − 1, i.e. for each possible set D having r = 1 ele-
ments. Therefore, it suffices to show that E(ps,D) > 2(p − 1)ps−1 for r ≥ 2.



The energy of integral circulant graphs with prime power order 31

For D = {pa1 , pa2 , . . . , par} with 0 ≤ a1 < a2 < . . . < ar ≤ s− 1 and r ≥ 2 we have

r−1
∑

k=1

r
∑

i=k+1

1

pai−ak

<

r−1
∑

k=1

∞
∑

j=1

1

pj
=

r − 1

p− 1
.

Hence Theorem 2.1 implies E(ps,D) > 2(p− 1)ps−1. �

We now turn our attention to Emax(p
s). For given D = {pa1 , pa2 , . . . , par},

0 ≤ a1 < . . . < ar ≤ s− 1, we have by Theorem 2.1

(9) E(ps,D) = 2(p− 1)ps−1 (r − (p− 1)hp(a1, . . . , ar)) ,

where

hp(x1, . . . , xr) :=

r−1
∑

k=1

r
∑

i=k+1

1

pxi−xk

for arbitrary real numbers x1, . . . , xr. In order to evaluate Emax(p
s) we first want

to determine

Emax(p
s, r) := max {E(ps,D) : D ⊆ {1 ≤ d < n : d | n}, |D| = r}.

For that reason we define for integers 1 ≤ r ≤ s+ 1

mp(s, r) := min {hp(a1, . . . , ar) : 0 ≤ a1 < a2 < · · · < ar ≤ s with ai ∈ Z}
(10) = min {hp(0, a2, . . . , ar−1, s) : 0<a2< · · ·< |1ar−1<s with ai∈ Z},

the latter identity being a consequence of the structure of hp. It is clear from (9)
that

(11) Emax(p
s, r) = 2(p− 1)ps−1 (r − (p− 1)mp(s− 1, r)) .

Later on it remains to compute

(12) Emax(p
s) = max {Emax(p

s, r) : 1 ≤ r ≤ s}.

Note that it follows from (10), thus 1 ∈ D, and an earlier remark that graphs
ICG(ps,D) with maximum energy are necessarily connected.

Proposition 3.1. Let p be a prime. Then

(i) mp(s, 2) =
1

ps
for all integers s ≥ 1, and the minimum is attained only for

a1 = 0 and a2 = s.

(ii) mp(s, 3) =
1

p[s/2]
+

1

ps
+

1

ps−[s/2]
for all integers s ≥ 2. The minimum is only

obtained for a1 = 0, a2 = [s/2] (or, alternatively, for a2 = [s/2] + 1 if s is
odd) and a3 = s.
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Proof. (i) is clear by (10).

(ii) We need to consider hp(0, a2, s) =
1

pa2

+
1

ps
+

1

ps−a2

. By simple analysis

one finds the minimum of 1/px +1/ps−x for real x to be at x = s/2. Since a2 is an
integer, our minimum is attained for a2 = [s/2] (or, alternatively, for a2 = [s/2]+1
in case s is odd). �

The determination of mp(s, r) in general seems not to be so easy, even for
r = 4. This topic will be further discussed in the concluding section.

Theorem 3.2. Let p be a prime. Then

(i) Emax(p) = 2(p− 1) with the only p-maximal set D = {1}.

(ii) Emax(p
2) = 2(p− 1)(p+ 1) with the only p2-maximal set D = {1, p}.

(iii) Emax(p
3) = 2(p− 1)(2p2 − p + 1) with the only p3-maximal set D = {1, p2},

except for the prime p = 2 for which D = {1, 2, 4} is also 23-maximal.

(iv) Emax(p
4) = 2(p − 1)(2p3 + 1) with the only p4-maximal sets D = {1, p, p3}

and D = {1, p2, p3}.

Proof. (i) In this case D = {1} is the only possible divisor set. Therefore Corollary
2.1(i) implies

Emax(p) = E(p, {1}) = 2(p− 1).

(ii) By Corollary 2.1(i) we have E(p2, {pa1}) = 2(p− 1)p for a1 ∈ {1, p}. By
Corollary 2.1(ii) we know that

E(p2, {1, p}) = 2(p− 1)p(2− (p− 1)mp(1, 2)) = 2(p− 1)(p+ 1).

Since {1}, {p} and {1, p} are the only possible divisor sets, (ii) is proven.

(iii) Again by Corollary 2.1(i) we get E(p3, {pa1}) = 2(p − 1)p2 for a1 ∈
{1, p, p2}. It follows from Corollary 2.1(iii) that

E(p3, {1, p, p2}) = 2(p− 1)(p2 + p+ 1).

It remains to look at divisor sets with exactly two elements. By (11) and Proposition
3.1(i) we have

max
|D|=2

E(p3,D) = 2(p− 1)p2(2− (p− 1)mp(2, 2)) = 2(p− 1)(2p2 − p+ 1),

and the maximum is attained only for D = {1, p2}. Comparison of the energies
completes the proof of (iii).

(iv) As before E(p4, {pa1}) = 2(p − 1)p3 for a1 ∈ {1, p, p2, p3}. By (11) and
Proposition 3.1(i) we obtain

max
|D|=2

E(p4,D) = 2(p− 1)p3(2− (p− 1)mp(3, 2)) = 2(p− 1)(2p3 − p+ 1),
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and with Proposition 3.1(ii) we get

max
|D|=3

E(p4,D) = 2(p− 1)p3(3− (p− 1)mp(3, 3)) = 2(p− 1)(2p3 + 1)

where the maximum is attained only for D = {1, p, p3} and D = {1, p2, p3}. Finally
E(p4, {1, p, p2, p3}) = 2(p − 1)(p3 + p2 + p + 1), by Corollary 2.1(iii). Comparing
all the cases yields the desired result. �

4. CONCLUDING REMARKS AND OPEN PROBLEMS

Proposition 3.1 indicates how to approach Emax(p
s) with arbitrary exponent

s. The problem is to determine mp(s − 1, r) in general, i.e. to choose integers
0 ≤ a1 ≤ a2 ≤ . . . ≤ ar ≤ s− 1 in such a way that

hp(a1, . . . , ar) =
r−1
∑

k=1

r
∑

i=k+1

1

pai−ak

becomes minimal. It is obvious that we have to pick a1 = 0 and ar = s − 1.
According to a remark made in section 2, this incidentally means that graphs
ICG(ps,D) with maximal energy are per se connected.

A first guess, guided by some vague concept of symmetry, suggests to select
a1, a2, . . . , ar−1, ar equidistant in the interval [0, s− 1], as we did in case r = 3 (cf.
Prop. 3.1(ii)). Let us support this intuition by an informal analytic argument for
the case r = 4. In order to minimize hp(0, a2, a3, s− 1), we first fix a3 and find by
differentiation that

∂hp(0, a2, a3, s− 1)

∂a2
= 0

is satisfied for

a2 =
a3

2
−

1

2 log p
log

(

1 +
1

ps−1−a3

)

,

hence a2 ≈
a3

2
for large p. We observe that

hp(0, a2, a3, s− 1) = hp(0, s− 1− a3, s− 1− a2, s− 1),

which yields that s−1−a3 ≈
s− 1− a2

2
by the argument above. Putting everything

together, we obtain a3 ≈
2

3
(s− 1) and a2 ≈

1

3
(s− 1).

The difficulty with the corresponding choice ai :=
(i− 1)(s− 1)

r − 1
(1 ≤ i ≤ r)

in general is the requirement that our ai have to be integers. One would assume
that an integral minimizer of hp can be found in the vicinity of this choice.
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For example, consider n = ps = 212:

(0, a2, a3, 11) hp(0, a2, a3, 11) E(212,D)

(0 , 3 .6 , 7 .3 , 11 ) 0 .2491250473 15363 .58381
(0, 3, 7, 11) 0.2622070312 15310

(0, 3, 8, 11) 0.2895507812 15198

(0, 4, 7, 11) 0.2661132812 15294

(0, 4, 8, 11) 0.2622070312 15310

(0, 2, 7, 11) 0.3540039062 14934

(0, 3, 6, 11) 0.3012695312 15150

The first line in the table evaluates hp for the equidistant choice of rational

exponents ai :=
(i− 1)(s− 1)

r − 1
. Here we formally calculate the energy according to

(9) (as the original equation (1) makes no sense in this relaxed context). The next
group of entries explores the integral vicinity of (0, 3.6, 7.3, 11) by means of round-
ing, whereas the bottom group strays even farther. The table contents indicate
what can be verified by considering all valid tuples, namely, that (0, 3, 7, 11) and
(0, 4, 8, 11) yield mp(11, 4) and Emax(2

12, 4). Moreover, these tuples can be derived
from the equidistant approximate tuple by suitable rounding.

Interestingly, it turns out that in general even for real ai their equidis-
tant positioning does not necessarily yield the real minimum of hp. This phe-
nomenon crops up for r ≥ 4. In our example n = 212, we have minhp(a1, . . . , a4) =
0.2489650992 . . . = hp(0, 3.629295009 . . . , 7.370704991 . . . , 11), the corresponding
energy being approximately 15364.23895.

As another example, take n = 311. Then hp

(

0,
10

3
,
20

3
, 10
)

≈ 0.783760whereas

the minimum of hp(0, a, b, 10) is approximately 0.783704 and is achieved for a ≈
3.32557502 and b ≈ 6.67442498.

One way of proceeding further would be to be satisfied with simply taking
nearest integers of the equidistant exponent tuple and derive approximate energy
formulae. To this end, it would be beneficial to gain further insight into the struc-
ture of divisor sets D producing integral circulant graphs ICG(ps,D) whose energy
is equal or at least close to Emax(p

s). This should be an object of future research.

If one thinks about extending any of the results already obtained to arbitrary
n, then the most desirable situation would be if Emax(n) exhibited multiplicative
behaviour with respect to n. For the simple case n = pq with distinct odd primes
p, q this is indeed true. By considering the few possible divisor sets and using
the results of [25] and [15] mentioned in the introduction, one easily finds that
Emax(pq) = Emax(p)Emax(q). However, we could not detect anything similar for
more complex n. Given distinct primes p and q 6= 2, direct use of formula (1) yields
e.g. that Emax(p

2q) = 2 (4p2q−6pq+3q−5p2+8p−4), not looking closely related
to Emax(p

2) = 2(p− 1)(p + 1) and Emax(q) = 2(q − 1) according to Theorem 3.2.
Hence, it remains a major open question if it is at all possible to find a closed
formula for the energy E(n,D) of integral circulant graphs with arbitrary n and D.
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Still, the case n = ps may turn out to be a valuable building block in settling this
question. An answer would incorporate our Theorem 2.1 as well as the scattered
results found in [25] and [15], forecited in the introduction.
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