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The ENERTALK dataset, 15 Hz 
electricity consumption data from 
22 houses in Korea
Changho Shin1, Eunjung Lee2, Jeongyun Han2, Jaeryun Yim1, Wonjong Rhee2 & Hyoseop Lee1

AMI has been gradually replacing conventional meters because newer models can acquire more 

informative energy consumption data. The additional information has enabled significant advances in 
many fields, including energy disaggregation, energy consumption pattern analysis and prediction, 
demand response, and user segmentation. However, the quality of AMI data varies significantly across 
publicly available datasets, and low sampling rates and numbers of houses monitored seriously limit 

practical analyses. To address these challenges, we herein present the ENERTALK dataset, which 

contains both aggregate and per-appliance measurements sampled at 15 Hz from 22 houses. Among 
the publicly available datasets with both aggregate and per-appliance measurements, 15 Hz was the 
highest sampling rate. The number of houses (22) was the second-largest where the largest one had 
a sampling rate of 1 Hz. The ENERTALK dataset is also the first Korean open dataset on residential 
electricity consumption.

Background & Summary
Sustainable energy has emerged as a global issue in the last twenty years, as exempli�ed by the Sustainable 
Development Goals adopted by the United Nations General Assembly in 2015, which include “a�ordable and 
clean energy” as one of 17 agenda items (https://sustainabledevelopment.un.org/). Kolter et al. made the REDD 
dataset publicly available to promote studies on energy disaggregation1, which is closely relevant to the sustain-
ability issues. Many datasets on residential electricity consumption data have since been released2–27. However, 
although many datasets are now publicly available, the speed of innovation in the associated research �elds, such 
as energy disaggregation, has been limited because of two main problems in the available datasets: low sam-
pling rates and the small numbers of houses. As can be seen in Table 1, most of the datasets include only a few 
houses monitored at low sampling rates, especially at the appliance level, where the maximal sampling rate is 1 Hz. 
Furthermore, all the datasets except for Dataport and REFIT, were acquired from 10 or fewer houses. To address 
these two limitations, we provide a new dataset that contains data from 22 Korean houses, with both aggregate 
and appliance-level data acquired at a sampling rate of 15 Hz.

Table 2 summarizes the ENERTALK dataset. For each of the 22 houses, we recorded the active and reac-
tive power drawn by the entire house and individual appliances at every 1/15 of a second. We focused on the 
appliances that most Korean houses have: refrigerator, kimchi refrigerator, rice cooker, washing machine, and 
TV. �e measurement periods di�ered for each house, from 29 days to 122 days. Our dataset is also, to the best 
of our knowledge, the �rst Korean electricity consumption dataset publicly available, thereby contributing to 
the regional diversi�cation of globally available energy datasets. As one of the regional characteristics in the 
ENERTALK dataset, our dataset has measurements for kimchi refrigerators, which is a special type of refrigera-
tor for the storage and fermentation of kimchi, a staple of Korean cuisine. �is type of regional characteristic is 
important to understand regional di�erences in electricity consumption patterns, which impacts global energy 
consumption and sustainability targets28.

Our dataset was originally designed for energy disaggregation research. However, ENERTALK can be used 
for a variety of research �elds, as shown in Table 3. Energy disaggregation involves estimating each individual 
appliance’s energy usage from the total aggregated power consumption measurements. Initially proposed by Hart 
(1992)29, energy disaggregation is still an active area of research30–37. Data on disaggregated energy usage enables 
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more direct feedback on consumers’ energy consumption behaviors. Neenan and Robinson showed that energy 
breakdown information can lead consumers to energy-saving behaviors that improve energy consumption e�-
ciency by 15%38. Non-intrusive load monitoring (NILM) can also be used to detect malfunctioning appliances, 
design energy incentives, manage demand-response, etc.39,40.

In another line of research, user segmentation is the problem of categorizing households based on their energy 
consumption patterns41–44. For example, Kwac et al. clustered households based on hourly energy consumption 
data that showed typical energy usage patterns depending on the hour of the day41. Such clustering revealed cer-
tain lifestyle features of households, and the segmentation could be used for targeted demand-response programs. 
User segmentation research can also be used for services such as targeted marketing and promotions based on 
household types.

Electricity consumption pattern analysis is another research �eld that relies heavily on residential electricity 
consumption data42,45,46. For instance, Kavousian et al. analyzed electricity consumption data in relation to cli-
mate, building characteristics, appliance stock, and occupant behaviors45. �is type of analysis is important for 
policy-making, and energy-e�ciency programs have been adapted using consumption patterns thus identi�ed.

Another important research area is electricity consumption prediction, in which future electricity consump-
tion is predicted based on individual electricity consumption histories47–49. For example, Marvuglia and Messineo 
studied short-term forecasting (1 hour in advance) of residential electricity consumption using recurrent neural 
networks49. Such research can be especially helpful for demand response programs because electricity consump-
tion predictions can guide the timing of demand-response programs50.

Methods
�e electricity consumption in each house was measured with o�-the-shelf smart meters: ENERTALK and 
ENERTALK PLUG. We used ENERTALK to measure the aggregate power consumption of the whole house, and 
we used ENERTALK PLUG to measure the power consumption of individual appliances. Within each house, one 
ENERTALK and one or more ENERTALK PLUGs (for one or more appliances) were installed. Figures 1 and 2 
show the devices, and Table 4 provides the speci�cations for the device hardware. In addition to the information 
provided in the speci�cation, ENERTALK and ENERTALK PLUG were calibrated to guarantee the error rate of 
one percent or below. �is is in accordance with IEC 62053-21 standard. �e ENERTALK devices were installed 
in each house’s fuse box to measure aggregate power consumption. In order to measure the electricity consump-
tion of appliances, ENERTALK PLUG devices were plugged into the AC outlets, and the appliances were plugged 
into the ENERTALK PLUG devices.

A schematic of the data collection system using ENERTALK is depicted in Fig. 3. Active power and reactive 
power records were generated by currents measured by the current transformer clamp. �e ENERTALK and 
ENERTALK PLUG devices have voltage ranges of 100–240 V. Power signals accumulated every 7.8125 kHz at the 
metering integrated circuits, and these signals were down-sampled to 15 Hz, processed, and saved in the device 
storage by the microcontroller unit. �e 15 Hz power readings collected by the smart meters were sent to our 
cloud data collection servers via SSL/TCP, and the data collection servers converted the received data into a struc-
tured form. A�er the data were successfully transformed, the data collection servers saved the data in a Hadoop 
database. �e �nal dataset was saved as Parquet �les a�er pre-processing to remove unnecessary or private infor-
mation. �e monitored houses were mainly occupied by employees of Encored, Inc., and/or acquaintances of 

Dataset Location Duration
No. of houses 
(buildings)

No. of appliance 
instances Sampling rate

REDD1 USA 3~19 days 6 houses 10~24 per house
15 kHz (aggregate only), 1 Hz (aggregate), 
1/3 Hz (appliance)

BLUED2 USA 8 days 1 house 43 (on-o� tag) 12 kHz (aggregate only)

Smart3 USA 3 months 3 houses 21~26 per house 1 Hz (aggregate and appliance)

Tracebase4 Germany 1 day N/A 122 1 Hz (appliance only)

BERDS5 USA 1 year 1 house 4 20 sec. (aggregate and appliance)

AMPds6 Canada 1 year 1 house 19 1 min. (aggregate and appliance)

iAWE7 India 73 days 1 house 33 1 Hz (aggregate), 1 Hz or 6 sec. (appliance)

GREEND8 Austria/Italy 1 year 9 houses 9 per house 1 Hz (aggregate and appliance)

ECO9,10 Switzerland 8 months 6 houses 7~10 per house 1 Hz (aggregate and appliance)

PLAID11 USA 5 seconds N/A 1074 30 kHz (appliance only)

COMBED12 India 1 month 6 buildings 200 30 sec. (aggregate and appliance)

DRED13 Holand 6 months 1 house 12 1 Hz (aggregate and appliance)

Dataport14 USA 4 + years 1200 + houses ~70 per house 1 Hz to 1 min. (aggregated and appliance)

UK-DALE15–17 UK 2.5 years 5 houses 5~54 per house 16 kHz (aggregate), 6 sec. (appliance)

AMPds218–21 Canada 2 years 1 house 21 1 min. (aggregate and appliance)

REFIT22–24 UK 2 years 20 houses 9 per house 8 sec. (aggregate and appliance)

RAE25 Canada 72 days 1 house 24 1 Hz (aggregate and appliance)

I-BLEND26,27 India 52 months 7 buildings N/A 1 min. (aggregate only)

ENERTALK51 Korea 29~122 days 22 1~7 15 Hz (aggregate and appliance)

Table 1. Comparison of ENERTALK with other public datasets.

https://doi.org/10.1038/s41597-019-0212-5


3SCIENTIFIC DATA |           (2019) 6:193  | https://doi.org/10.1038/s41597-019-0212-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

the employees. To assist in the collection and sharing of the ENERTALK dataset, these people kindly agreed 
to install metering devices in their houses and to allow public access of the measured data. In each house, the 
occupants selected the appliances to be recorded. When choosing appliances to record, occupants were asked by 
the researchers to prioritize those household appliances that are widely used in Korea. �e resulting selections 
are shown in Table 2. In the table, it can be noticed that heating, cooling, and lighting are missing. �e electricity 
loads of the three are signi�cant in many countries, but they were not included for the following reasons. As for 
the heating, typically it is done with gas in Korea. As for the cooling, the measurement campaign happened to 
occur excluding the hot summer season, and therefore cooling devices were not in use. As for the lighting, each 
household had many lighting devices that it was impossible to install ENERTALK PLUGs for all and measuring 
one or few lighting devices did not seem helpful, either.

Data Records
�e ENERTALK dataset is publicly available for download from �gshare51. It uses a data format similar to that 
used by the well-known NILM datasets REDD1 and UK-DALE15. �e ENERTALK dataset includes 22 direc-
tories, one per house. �e directories are named using a two-digit integer number, such as “00” or “01”, such 
that each two-digit number represents a speci�c house. Each directory holds a set of subdirectories that contain 
Parquet �les for the daily aggregate and appliance-level data. �e naming convention for these subdirectories is 
“<yyyy> <mm> <dd>” (e.g. “20161124” for November 24, 2016). �e Parquet �les are named “<two digit 
integer>_<appliance name>.parquet.gzip” (e.g. “01_fridge.parquet.gzip”). In these names, the two-digit integer 
is uniquely associated with a distinct measuring device in a house. Each Parquet �le consists of three columns: 
“timestamp”, “active_power”, and “reactive_power”. �e “timestamp” column contains Unix timestamps in milli-
seconds, such that 1000 corresponds to one second. �e “active_power” column represents active power in watts, 
and the “reactive_power” column represents reactive power in VAR (volt-ampere reactive) units.

House 
code Start date End date

Duration 
(days) Refrigerator

Kimchi 
refrigerator

Rice 
cooker

Washing 
machine TV Microwave

Water-
puri�er

00 2016-11-01 2017-01-31 91 O O O O O O O

01 2016-10-01 2017-01-31 122 X O O O O X X

02 2016-10-01 2016-10-31 30 O X O O O X X

03 2016-10-01 2017-01-31 122 X O X O X X X

04 2016-09-01 2016-11-30 90 O X O O O X X

05 2016-09-03 2016-10-31 58 O O O O O X X

06 2016-09-01 2016-10-15 44 O O X O O X O

07 2016-12-01 2017-01-31 61 X O X X O X X

08 2016-12-01 2017-01-31 61 X O O O O X X

09 2016-10-01 2017-01-31 122 O X O X O O X

10 2016-10-01 2017-01-31 122 O O X X X X X

11 2017-04-01 2017-04-30 29 X X O X O X X

12 2016-10-01 2017-01-31 122 O O O O O X X

13 2016-11-02 2017-01-31 90 X O O X O X X

14 2016-10-01 2017-01-20 111 O X X X X X X

15 2017-03-15 2017-04-30 46 O X X X O X X

16 2016-09-01 2016-11-15 75 O X X X X X X

17 2016-11-03 2017-01-31 89 O O O O O X X

18 2016-09-01 2016-10-19 48 O O X O O X X

19 2016-09-01 2016-10-31 60 O X X X O X X

20 2017-03-01 2017-04-30 60 O O O X X X X

21 2016-12-01 2017-01-31 61 X O O O O X X

Table 2. Summary of the 22 houses.

Research �eld Description

Energy disaggregation (Non-Intrusive 
Load Monitoring; NILM)

Estimation of the power consumption of an individual 
appliance from the aggregated power consumption29–37

User segmentation
Categorization of users based on energy consumption 
behavior41–44

Electricity consumption pattern analysis
Exploratory data analysis on residential electricity 
consumption patterns42,45,46

Power consumption forecasting
Prediction of power consumption based on power 
consumption history47–49

Table 3. Main research �elds that are based on the energy consumption datasets.
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Technical Validation
Each of the 22 Korean houses provided 29~122 days of aggregate and appliance-level power consumption data, 
for the appliance categories summarized in Table 2.

Figure 4 presents two data snippets, for house 00 and house 12, respectively, that show the itemized power 
consumption patterns for one day in the two houses. At the appliance level, the refrigerator, kimchi refrigerator, 
and water puri�er generally operate all day. In contrast, other typical appliances, such as the TV and washing 
machine, are mainly turned on only when the occupants used these appliances, and energy consumption by these 
appliances is therefore closely related to the lifestyles of the occupants. For example, in some houses, washing 
machines tend to be used on weekends because the occupants do laundry on when they are not at work. As 
another consideration, although rice cookers are generally used at mealtime, they are also maintained in the 
“on” state when used in “keep warm” mode. �e data also show “unknown” power consumption-the di�erence 
between the aggregate power consumption and the sum of the appliance power consumptions-even though we 
tried to measure as many appliances as possible.

Figure 5 shows the typical electricity consumption patterns for each appliance, which are clearly distinguisha-
ble from one another. �e refrigerator and kimchi refrigerator patterns show the periodicity of power consump-
tion for cooling. When their compressors start to operate, consumption tends to overshoot initially, followed by 
box-shaped power consumption. Although the refrigerator and kimchi refrigerator exhibit similar power con-
sumption patterns in this data, kimchi refrigerators are known to consume less electricity than refrigerators. �e 
TV consumption patterns show �uctuations in the “on” state. �ese �uctuations originate from changes in the 
activation of screen pixels. TV consumption patterns are known to be almost the same if the same TV model 
plays identical TV programs36. �e washing machine and rice cooker have multiple operation states, resulting in 
multiple power consumption modes. �e rice cooker in the �gure shows two distinct power consumption pat-
terns that correspond to “cooking” mode and “keep warm” mode. �e rice cooker in the “cook” mode consumes 

Fig. 1 ENERTALK.

Fig. 2 ENERTALK PLUG.
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more power (approximately 1000 W) in a rectangular sawtooth pattern, whereas in the “keep warm” mode, the 
rice cooker consumes less power (20–50 W), and the consumption pattern shows a stepped shape. �e wash-
ing machine pattern shows three laundry stages: pre-wash, wash, and rinse. In the pre-wash stage, the power 
consumption oscillates with increasing amplitude, followed by a wavering sawtooth above approximately 1800 
W for the wash stage. In the rinse stage, oscillations with periodic peaks are repeated in a very fast cycle. �e 
water puri�er consumption pattern shows two types of box shapes that appear periodically: one related to water 
heating, which shows power consumption of 400 W, and the other related to water cooling, which shows power 
consumption of 80 W; both signals show overshooting when the water puri�er begins to operate.

Considering Figs 4 and 5 together, we can trace the power consumption patterns of each appliance a�er aggre-
gation. For example, we can identify the power consumption of the kimchi refrigerator in the periodic spikes in 
the aggregated power consumption. As another example, we can estimate rice cooker use from the large amount 
of aggregated power consumption shown in the morning and evening.

However, the electricity consumption patterns of these appliances are not always the same. Depending on the 
appliances’ inner components, their electricity consumption patterns can be very di�erent. For instance, Fig. 6 
shows the power consumption patterns of six di�erent refrigerators, and each pattern shows a distinctive shape in 
terms of overshooting, “on” state consumption, and duration, implying that measurements from a large number 
of devices in the same type of appliance category may be necessary to build generalizable NILM algorithms. In 
widely used datasets such as REDD and UK-DALE, the number of measuring devices in the same appliance cat-
egory is quite limited. In contrast, the dataset presented here contains more than ten devices for each appliance, 
except for the microwave and water puri�er.

A high sampling rate can help to maximize the utility of the appliance-speci�c consumption patterns described 
above. Armel et al. have shown that the higher the sampling rate, the more appliances can be distinguished in the 
power consumption patterns52. Shin et al. also reported that higher sampling rates can be bene�cial for empirical 
energy disaggregation because the appliance signatures become more visible as the sampling rate increases53. 
In line with these studies, Fig. 7 shows how the power consumption patterns change when the sampling rate 

Enertalk Enertalk Plug

MCU CPU STM (ARM Cortex-M0) STM (ARM Cortex-M0)

MCU Frequency 48 MHz 48 MHz

Flash (KB) 128 256

SRAM (KB) 16 32

Wi-� connectivity 802.11 b/g/n, single band (2.4 G) 802.11 b/g/n, single band (2.4 G)

Voltage range 100–240 V AC 100–240 V AC

Frequency range 50/60 Hz 50/60 Hz

Operating Temperature −20 °C~50 °C −20 °C~50 °C

Table 4. Measurement device speci�cations.

Data collector servers

15 Hz power readings

CTs on Power Mains

MCU
Storage

Device

Metering ICs

Power signal is 
accumulated every 

7.8125 kHz

15 Hz

15 Hz power 

Hadoop data storage

ETL

SSL/TCP

Fig. 3 Data collection schematic.
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Fig. 4 Data snippets from two houses: color-coded according to the appliance type.

Fig. 5 Data snippets from six di�erent appliances.
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increases from 1/6 Hz (one sample each 6 seconds), to 1 Hz, and then to 15 Hz. �e two lower rates correspond to 
the sampling rates of UK-DALE and REDD, respectively. Although the overall shapes of the patterns are similar, 
the rice cooker and washing machine data are conspicuous at the 15 Hz sampling rate, whereas the shapes start to 

Fig. 6 Data snippets from six refrigerators from six di�erent houses. All of the six refrigerators show distinct 
patterns that are visually distinguishable from one another.

Fig. 7 Power consumption measurements at sampling rates of 1/6, 1, and 15 Hz. �e TV, rice cooker, and 
washing machine show distinct and visually distinguishable patterns at 15 Hz, but the patterns become less 
distinguishable at 1 Hz and become visually comparable at 1/6 Hz. Each plot shows 120 seconds of duration; 
1/6 and 1 Hz data were generated by down-sampling (taking the �rst measurements of every 6 seconds and 
1 second, respectively).

https://doi.org/10.1038/s41597-019-0212-5
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become ambiguous as the sampling rate is reduced to 1 Hz and 1/6 Hz. At 1/6 Hz, the power consumption patterns 
of most appliances are elusive, limiting the ability to disaggregate the appliances. Although appliances sampled 
at the 1 Hz rate are more distinguishable than those sampled with the 1/6 Hz rate, the micro-patterns are much 
clearer in the 15 Hz data than the 1 Hz data. For example, the oscillation frequency and amplitude are clearly visi-
ble in the washing machine consumption pattern acquired at the 15 Hz rate; however, the 1 Hz and 1/6 Hz data do 
not show these frequency and amplitude characteristics in such detail.

�e ENERTALK dataset is not only useful for energy disaggregation research, but also for lifestyle analyses. 
Figure 8 shows house 00’s hourly power usage distribution over 24 hours. Total power consumption is concen-
trated in the morning and evening, which would be a typical pattern for a house occupied by someone who 
is a daytime worker. As expected, the refrigerator’s power consumption is evenly distributed over the 24 hours 
because the cooling system in the refrigerator operates periodically. Consumption associated with the cooking 
appliances (rice cooker, microwave) is concentrated in the morning and evening, indicating that the occupants 
took meals at home at these times. �e patterns also show that the washing machine was mainly used in the 

Fig. 8 Hourly distribution of average power consumption (house 00).

Fig. 9 Top four cluster centers found with adaptive K-means clustering on the normalized data. Each cluster 
center shows one of the most typical patterns of the daily total power consumption patterns.

https://doi.org/10.1038/s41597-019-0212-5
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morning, and the TV was mainly used late at night. �ese types of lifestyle analyses based on electricity consump-
tion patterns can be used for user segmentation41,42.

As an example of total usage analysis, adaptive K-means clustering was conducted on normalized daily 
total usage based on the method presented by Kwac et al.41. In their study, they convert hourly measurements 
into a 24-hour daily consumption pro�le, in which a house’s power consumption in one day is represented as a 
24-dimension vector; they then normalized each daily pro�le with the house’s total consumption of 24-hour and 
applied clustering methods to the normalized daily pro�les to �nd typical daily consumption patterns. Following 
this method, we down-sampled the aggregate power consumption data in our dataset into hourly measurements 
and applied Kwac et al.’s data processing method and clustering. Figure 9 shows the top four cluster centers from 
the results of the adaptive K- means clustering, with cluster numbers assigned in the order of the number of data 
points belonging to each cluster. Because the data collection targets were mainly the houses where o�ce employees 
lived, the electricity consumption patterns in cluster centers 1, 2, and 4 were closely related to typical o�ce hours 

Fig. 10 Box plot of daily on-ratio for all 22 houses. For each sample, an appliance was considered to be on if the 
appliance’s active power was above 15 W.

Fig. 11 Heatmap of daily observation ratio for all 22 houses. White spaces represent the days with no 
observation (no data collection). �e observation ratio was calculated by dividing the number of collected data 
samples by the maximum number of samples collectable in a day (1,296,000 samples).

https://doi.org/10.1038/s41597-019-0212-5
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(09:00–18:00 or 10:00–19:00, depending on the type of working hours). �e electricity consumption patterns in 
clusters 1, 2, and 4 show increases in the rush hour and in the hours a�er work. �us, clusters 1, 2, and 4 appear to 
represent di�erent typical working days that depend on the commute time, the ratio of standby power consump-
tion, and other lifestyle characteristics. Cluster 3 appears to represent power consumption patterns on the weekend, 
given that power consumption is concentrated at lunchtime or in the evening rather than at the commute time.

�e extent to which people use each appliance can help to determine the importance of each appliance in that 
person’s lifestyle. Figure 10 shows how long each appliance is used on average during the day. �e TV shows an 
average on ratio of slightly over 20%, which represents an average of approximately 5 hours per day of TV usage. 
�e refrigerator and kimchi refrigerator show high on ratios because their periodic cooling systems work all day 
long. �e rice cooker and water puri�er show much higher on ratios than people generally expect because the 
rice cooker’s “keep warm” mode and the water puri�er’s heating and cooling processes operate periodically. �e 
washing machine and microwave show relatively low on ratios because these appliances are not frequently used, 
and they are used for only a �xed amount of time.

Usage Notes
When using time series data such as the ENERTALK dataset, the approach to handling missing values is the most 
di�cult and practical problem. In our data collection process, missing values occurred owing to diverse causes, 
including network problems and measurement device errors. As shown in Fig. 11, the ENERTALK dataset was 
acquired with nearly perfect observation ratios for most days. However, imputation methods were still required 
to handle the missing values properly54.

In the NILM literature, forward �lling methods are generally used for this purpose34,37, whereby missing val-
ues are �lled with the closest of the previously observed values. Other methods such as linear interpolation and 
EM algorithms can be used to address missing values, as appropriate for the researcher’s intention and task.

Fig. 12 Average daily occurrence of data gaps for all 22 houses. Gap thresholds of 1 s, 10 s, 30 s, 1 min, 5 min, 
30 min, 60 min, and 180 min were considered.

Fig. 13 Observation ratio of House 00. Apparently, where data collection occasionally failed. In particular, the 
refrigerator data collection for the �rst one month completely failed.

https://doi.org/10.1038/s41597-019-0212-5
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One of the considerations when we pre-process data is the length of each sequence of missing values because 
this length can a�ect the suitability of the imputation method. For example, although short sequences of missing 
values can be e�ectively �lled using forward �lling or linear interpolation, long sequences should perhaps be 
discarded for that interval. In37, NILM researchers de�ned a “gap” as an interval between any pair of consecutive 
samples where the time elapsed between them is larger than a prede�ned threshold. �e average daily occurrence 
of gaps in the ENERTALK dataset is shown in Fig. 12, with di�erent prede�ned thresholds.

�e number of gaps decreased exponentially as the threshold increased from one second to one minute. �ese 
results could be used to determine the imputation method. We thus used linear interpolation for values missing 
for less than thirty seconds and discarded values missing for over thirty seconds. �e number of gaps lasting over 
thirty seconds decreased exponentially, and interpolation for such long sequences is meaningless.

Data timestamp alignment is another challenge when using aggregate and appliance-level data. First, mil-
liseconds are not easy to align because the timestamp in each appliance is recorded based on measurements in 
each individual ENERTALK device without considering other appliances connected to such devices. A solution 
for this problem is to discretize milliseconds into 15 bins and use the discretized values to align the aggregate and 
appliance-level data, and Fig. 4 was plotted using the solution. �e second problem is that the missing values from 
each dataset require a choice as to whether to discard only the a�ected appliance data for that day or to discard all 
data for that day, as exempli�ed in Fig. 13. �ese cases can be handled in di�erent ways depending on the purpose 
of the research. For example, when using the ENERTALK dataset to disaggregate TV power consumption from 
aggregated consumption, researchers can select those days with high observation ratios of total and TV power 
consumption while ignoring other appliances.

Our github repository (https://github.com/ch-shin/ENERTALK-dataset) contains the basic tools for handling 
problems such as missing values and misalignments. In addition to the basic tools, we provide visualization note-
book and an NILMTK converter37 speci�cally designed for NILM researchers. �e codes are provided only as a 
default option, and the users should modify or rewrite the codes according to the purpose of using the dataset.

Code Availability
�e scripts used for pre-processing and visualization in Data Records and Usage Notes are available at our github 
(https://github.com/ch-shin/ENERTALK-dataset). Unfortunately, the codes for collecting and storing data are the 
private property of the enterprise (Encored Inc.) and cannot be opened.
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