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Abstract The Enhancing NeuroImaging Genetics through

Meta-Analysis (ENIGMA) Consortium is a collaborative

network of researchers working together on a range of large-

scale studies that integrate data from 70 institutions

worldwide. Organized into Working Groups that tackle

questions in neuroscience, genetics, and medicine, ENIGMA

studies have analyzed neuroimaging data from over 12,826

subjects. In addition, data from 12,171 individuals were

provided by the CHARGE consortium for replication of
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results from many sites, ENIGMA has detected factors

that affect the brain that no individual site could detect

on its own, and that require larger numbers of subjects

than any individual neuroimaging study has currently

collected. ENIGMA’s first project was a genome-wide

association study identifying common variants in the

genome associated with hippocampal volume or

intracranial volume. Continuing work is exploring genetic

associations with subcortical volumes (ENIGMA2) and

white matter microstructure (ENIGMA-DTI). Working

groups also focus on understanding how schizophrenia,

bipolar illness, major depression and attention deficit/

hyperactivity disorder (ADHD) affect the brain. We

review the current progress of the ENIGMA Consortium,

along with challenges and unexpected discoveries made on

the way.

Keywords Genetics .MRI . GWAS . Consortium .

Meta-analysis .Multi-site

Introduction

Origins of brain imaging in human populations

During the “Decade of the Brain” in the 1990s (Jones and

Mendell 1999), a number of major neuroimaging centers

began to scan hundreds of patients and healthy individuals
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using a variety of neuroimaging methods. The accelerating

pace of data collection was driven mainly by the wide

availability of MRI around the world. The structure and

function of the living brain was beginning to be mapped in

unprecedented detail in human populations.

In a typical neuroimaging study—both now and 20 years

ago—between ten and a few hundred subjects might have

been scanned, and statistical models would be fitted to identify

factors that affect brain structure and function. Early

studies—such as lesion studies—correlated radiological

measures with clinical diagnosis and behavior, but the

study of large populations represented a new movement

in human brain mapping. Fundamental questions in

neuroscience could now be examined—what are the

effects of aging, degenerative disease and psychiatric

illness on the living brain? How do brain measures

relate to cognition and behavior? Do brain measures

predict our risk for disease, or prognosis in those who

are ill?

There was growing confidence that questions of broad

societal and medical impact could be better understood if

enough brain scans were collected—projects were initiated

to examine effects on the brain of psychiatric medications,

drugs and alcohol abuse, dietary factors, and many other

factors including education, cardiovascular fitness, as well as

pharmacologic and behavioral interventions.

At the same time, the broad availability of brain scans

led to the development of widely adopted tools to analyze

the resulting data. Software such as Statistical Parametric

Mapping (SPM; Friston et al. 1995; Frackowiak 1997),
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FSL (Jenkinson et al. 2012), BRAINS (Pierson et al.

2011) and FreeSurfer (Fischl et al. 2004) among many

other tools, were widely distributed over the internet. This

made it feasible to analyze neuroimaging data and

compute standardized measures from brain scans in a

consistent and agreed way, albeit with methods that are

continually refined.

Early neuroimaging consortia

Early consortium efforts in neuroimaging included the

International Consortium for Brain Mapping (ICBM;

Mazziotta et al. 1995), which recognized the need to establish

normative data on the brain from a wide range of human

populations scanned in different parts of the world. The

ICBM began with an effort to scan around 150 healthy

subjects in Los Angeles, Montreal, and San Antonio, Texas,

and grew to include sites in Europe and Asia that broadened

the age range and ethnic groups assessed. Later, the ICBM

also extended the depth of the neuroimaging measures to

include functional MRI and even post mortem histology and

cytoarchitecture (Amunts et al. 1999).

Given the wide variations in brain anatomy even among

healthy subjects, consortia such as the ICBM developed a

range of “average” anatomical templates based on MRI scans

of hundreds of healthy subjects. Analysis software for brain

images disseminated these average brain templates, and

provided methods to relate new data to previously compiled
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atlases and data collections. This led to the notion of statistical

representations of imaging signals in standardized coordinate

spaces—or “statistical parametric maps”. The wide adoption

of these standard spaces—such as the ICBM or MNI

(Montreal Neurological Institute) spaces—was eased by the

development of automated registration and alignment

methods (Woods et al. 1993; Collins et al. 1994; Ashburner

et al. 1999; Jenkinson et al. 2002) that allowed researchers to

rapidly align their own data to the templates. This effort led to

the rise of voxel-based morphometric approaches and

statistical mapping approaches in general. These

developments also allowed any group to compare and contrast

their findings with ongoing findings from other groups around

the world—a movement that was stimulated by the

development of the Talairach and Tournoux brain atlases,

which defined anatomical regions in stereotaxic space

(Talairach et al. 1993). The Talairach atlas was among the first

to compile a coordinate-based reference system, and it

allowed researchers worldwide to relate their findings to

existing data collections. In the mid-1990s, a group in San

Antonio developed the “Talairach Daemon”, allowing

electronic pooling of findings from brain mapping studies

based on their coordinates in Talairach space. In addition to

the use of standard anatomical templates for reporting results,

this coordinate system opened the door for clinically-oriented

consortia to scan and analyze large-scale patient populations

in a consistent way. The rapid development of nonlinear

registration methods also made it possible to improve the

alignment of new datasets to digital anatomical templates,

for coordinate based reporting of results.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI),

for example (Weiner et al. 2012), scanned around 800 people
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in its first phase, including healthy elderly people, individuals

with mild cognitive impairment and patients with Alzheimer’s

disease. ADNI began in 2005, after testing the feasibility and

reproducibility of a range of scanning protocols. This led to

standardized scanningmethods implemented at 58 sites across

North America (Leow et al. 2009; Jahanshad et al. 2010; Jack

2012; Zhan et al. 2012). Many other neuroimaging consortia

have been established, including the functional Brain Imaging

Research Network (FBIRN) (Potkin and Ford 2009) which

has developed standardized methods for multi-center

functional MRI studies (Glover et al. 2012) and the Mind

Clinical Imaging Consortium (Gollub et al. 2013) focusing

on schizophrenia, as well as research networks focusing on

pediatric imaging (Evans 2006), autism (Ecker et al. 2013),

HIV/AIDS (Cohen et al. 2010) and many others. In fact, the

successes of these multi-site initiatives have led to large-scale

neuroimaging efforts being initiated and funded in other

countries (Carrillo et al. 2012; Alzheimer’s Association

2013; White et al. 2013).

Genome-wide association studies (GWAS)

At the same time, a number of genetic studies using twin or

family-based designs had shown that many brain-derived

measures were significantly heritable (Thompson et al.

2001; Baaré et al. 2001; White et al. 2002; Wright et al.

2002; van Erp et al. 2004a, b; Hulshoff Pol et al. 2006;

Winkler et al. 2010; Kochunov et al. 2010; Blokland et al.

2012; Koten et al. 2009). In other words, a substantial fraction

of the variability in brain measures—especially structural but
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also some functional measures, and even brain metabolites

(Batouli et al. 2012)—could be explained by genetic

relationships among individuals. The total amount of gray

and white matter in the brain, the overall volume of the

brain—and even activation patterns on fMRI or connections

tracked with diffusion MRI—were more similar among

family members than unrelated individuals (Peper et al.

2007; Koten et al. 2009; Glahn et al. 2010; Brouwer et al.

2010; Fornito et al. 2011; Blokland et al. 2012; Jahanshad

et al. 2013a; Thompson et al. 2013; Van den Heuvel et al.

2013).

Arguably, it is equally important to identify regions or

measures with low heritability as well. The reliability of

imaging measures varies considerably by region or network,

and so does the ability to detect heritability, even if present.

Such information is immensely useful in constraining the

potential phenotypes worth pursuing and interpreting results;

we consider this further below.
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Despite the high heritability of many brain measures (h2 up

to 0.89; Kremen et al. 2009; or even up to 0.96: van Soelen et

al. 2012), the specific genetic variants that contribute to this

variability remain largely unknown. A possible exception is

the Alzheimer’s disease (AD) risk gene, APOE : carriers of

one or more risk-conferring alleles (APOE4 ) demonstrate

accelerated gray matter loss with age (Lu et al. 2011). They

also have a roughly three-fold increased risk for late-onset

AD, for each risk allele they carry (Corder et al. 1993). In a

recent meta-analysis of 35 prospective cohort studies with an

average follow-up of 2.9 years, the odds ratio for conversion

from mild cognitive impairment to Alzheimer’s dementia in

APOE4 carriers was determined to be 2.29, relative to non-

carriers (Elias-Sonnenschein et al. 2011). Other prior papers

reported a higher odds ratio, around 4 for heterozygotes and

>7 for homozygotes, with some differences depending on the

ancestry of the cohort. According to another more recent

review, one copy of ApoE4 increases risk by ~2.6–3.4, and

homozygotes for ApoE4 have an odds ratio of 14.9 compared

to the reference genotype of E3/3 (Liu et al. 2013).

A number of groups around the world began to perform

GWAS on measures derived from brain images, with the goal

of finding new genetic variants that might account for more of

the variation in brain structure and function, and also for

disease risk. The genetic variants of interest in a GWAS are

single nucleotide polymorphisms, or SNPs, commonly carried

variants in the genetic code. SNPs are DNA sequence

variations that occur when a single nucleotide (A, G, C, or

T) is altered; SNPs are thought to be point mutations that were

not so damaging that evolution allowed them to be retained in

a significant proportion of the population of a species. Within

a population, SNPs can be assigned a minor allele

frequency—the proportion of chromosomes in the population

carrying the less common variant. Figure 1 illustrates the ideas

behind this approach. Before we discuss GWAS, it is worth

noting a distinction between narrow and broad-sense

heritability: broad-sense heritability is the proportion of

variation in a phenotype (here, individual variations in brain

measures) that can be explained by genetic effects. These

effects may include dominance and epistasis—interactions

between SNPs or genes in different parts of the genome. The

narrow-sense heritability is the proportion of variance in a

brain measure that is accounted for by additive genetic factors

(and this is typically a smaller proportion of the trait variance).

These additive genetic effects are the types of statistical effects

that GWAS aims to detect.

In a typical GWAS analysis, one might test ~2.5 million

common SNPs in the genome, to see if any of these genetic

variants are associated with a trait, such as a brain-derived

measure, or a specific disease such as AD. Although not the

only important type of genetic variation, SNPs can be

measured using readily available genotyping arrays, and

individually provide adequate statistical power as the variants

are common enough to test their effects statistically. Because

only selected SNPs capturing the variability of the genome are

genotyped, many authors have argued that this genotyping

technology is much less expensive than whole-genome

sequencing. However, new technologies using low coverage

sequencing with imputation may in some cases yield several

times the effective sample size of GWAS based on SNP array

data, and a commensurate increase in statistical power as

described in Pasaniuc et al. (2012).

GWAS has had many successes. Many common poly-

morphisms have now been found that increase genetic risk

for AD (Harold et al. 2009; Lambert et al. 2009; Naj et al.

2011), age-related cognitive decline (Davies et al. 2012),

schizophrenia (Almasy et al. 2008; Stefansson et al. 2009;

Ripke et al. 2011; Rietschel et al. 2012), bipolar disorder

(Sklar et al. 2011; Cichon et al. 2011) as well as obesity

(Yang et al. 2012), alcohol drinking (Schumann et al. 2011),

tobacco smoking (Thorgeirsson et al. 2008), cardiovascular

disease (CARDIoGRAMplusC4D Consortium et al. 2013),

osteoporosis (Estrada et al. 2012), prevalent psychiatric

disorders (Cross-Disorder Group of the Psychiatric

Genomics Consortium et al. 2013) and for many other traits

and diseases.

Imaging may play a role in finding out how these genes

create risk for illness through their impact on the brain, by

comparing brain scans of carriers versus non-carriers. One

such example is the ZNF804A story. A variant within

ZNF804A was the first genome-wide significant SNP

associated with risk for schizophrenia (O’Donovan et al.

2008). The function of this variant was initially not clear.

Prominent papers later appeared (e.g., Esslinger et al. 2009)

using imaging to establish disturbed connectivity as a

neurogenetic risk mechanism for psychosis. They showed that

some variant in ZNF804A (or some variations in linkage

disequilibrium with them) must be functional in the human

brain. This was one of many early studies to validate the

intermediate phenotype strategy in psychiatry.

Ongoing work comparing genome-wide data from patients

with AD and healthy elderly people had begun to unearth a

growing set of new AD risk genes (Bertram 2009). By 2009,

meta-analyses of GWAS from multiple elderly cohorts had

implicated a trio of new AD risk genes—CLU , CR1 and

PICALM (Harold et al. 2009). Each of these appeared to affect

AD risk by around 10–20 %, consistently, in cohorts around

the world (Logue et al. 2011). Additional AD risk variants

were rapidly discovered as GWAS expanded to more

populations with dementia and healthy controls (Hollingworth

et al. 2011).

A flurry of such studies occurred—some showed brain

differences in Alzheimer’s disease risk gene carriers a full

50 years before AD typically strikes (Braskie et al. 2011;

Bralten et al. 2011). Others showed a pattern of brain changes

in unaffected carriers that resembled the “footprint” of
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Alzheimer’s disease in the living brain (Biffi et al. 2010; Erk et

al. 2011, Rajagopalan et al. 2013). These findings will require

follow-up but illustrate the potential of using neuroimaging

measures to explore the effects of genetic variation.

But a much more adventurous goal provided the driving

force behind the new and emerging fields of imaging

genomics. This goal was to use neuroimaging data directly,

to screen the genome for common variants that might affect

the brain. In other words, rather than using the images in

secondary studies of what disease risk genes do, images could

be screened to discover important genetic associations.

(Instead of imaging genetics, the somewhat interchangeable

term “imaging genomics” is also used; genomics tends to refer

to any method that directly assesses variation in the genome,

as opposed to studies that may assess a single locus only, or

simpler family studies that may not even analyze DNA). The

growing computational power to screen very large

neuroimaging datasets—for the purpose of extracting

meaningful features from them—made this an interesting

and achievable objective. Advocates of “imaging genetics”—

the genetic analysis of brain images (Glahn et al. 2007; Turner

et al. 2006)—suggested that it might even be more efficient to

screen traits derived from brain images to provide

endophenotypes for brain disorders.

The main motivation to screen brain images was to find

some heritable measure of disease burden that might be closer

to the underlying genetic effect than clinical diagnosis based

on cognitive and clinical tests. The endophenotype

hypothesis, long advocated by psychiatric geneticists such as

Irving Gottesman (Gottesman and Gould 2003; Blangero

2004; Goldman 2012; White and Gottesman 2012; Kendler

and Neale 2010) suggested that one might fruitfully apply

genetic screening to any reliable and heritable biomarkers of

a disease—measures from the blood or cerebrospinal fluid

(CSF), or even from brain scans, which by now had become

quite plentiful. The original definition of “endophenotype” for

an illness or disorder (see Gottesman and Gould 2003)

suggested that an endophenotype should (i) be associated with

the illness/disorder of interest, (ii) be heritable, (iii) be state-

independent, i.e., seen in people even when they do not show

symptoms of the illness/disorder, (iv) co-segregate with

illness/disorder within families, and (v) be observed in

relatives of affected family members at a higher rate than in

the general population.

The search for endophenotypes of disease, for genetic

analysis, is related to the goal of finding biomarkers for AD

or any psychiatric illness, although the quest for biomarkers

pre-dated efforts to find endophenotypes of disease. In

addition, biomarkers may not be stable, as they may change

during the disease course. The term “biomarkers” has been

used with many different meanings, but in general biomarkers

are measures of disease burden that can be objectively

quantified, ideally allowing more objective or earlier

diagnosis, and making it easier to test the effects of treatment

or prevention.

Advocates of using imaging for genetic analysis pointed to

several advantages that imaging provides now, as well as

several potential advantages that it could provide in the

foreseeable future. First, neuroimaging can yield reproducible

measures of brain structure and (perhaps to a lesser extent) brain

function. Structural measures of the brain, from MRI, tend to

have relatively high reproducibility across measurement

methods, and are generally consistent with expert tracings of

the same structures (see Supplement of Stein et al. 2012; many

Fig. 1 Steps involved in a genome-wide association study. A heritable

brain measure (or “phenotype”) - which could be binary, such as a disease

state, or continuous, such as the intracranial volume (ICV) - is extracted

from brain imaging scans from a large group of people. To determine if

there is any statistical association between this brain measure and the

inter-subject variations at a single SNP, the genetic variations among

individuals can be assessed at a single location along the genome, and

correlated with differences in the trait of interest (here, ICV). Genome-

wide association scans involve an unbiased search across the whole

genome to discover novel genetic loci associated with the trait. Testing

a million or more SNPs requires a strict multiple comparisons correction

threshold, to avoid reporting spurious results; normally, credible findings

have to achieve a significance value more extreme than p <10−8. The so-

called “Manhattan plot” on the right (by analogy with the Manhattan

skyline in New York) displays the −log10 of the p-value for associations
between the brain measure and genetic variation at each position along

the genome; the higher the point on the plot, the more likely it is that an

association exists. Of course, it is important not to see genome-wide

significance as a “binary state”, whose conditions are either fulfilled or

not—but rather a measure of the level of evidence for a genetic

association. Findings in these plots must typically be replicated in several

independent cohorts before they are considered credible or generalizable
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studies have investigated the reliability of measures from brain

MRI, e.g., Pengas et al. 2009). In a recent GWAS analysis,

Holmes et al. (2012) showed high reliability for automated

brain volumes of hippocampus (r =.98), amygdala (r =.91),

and intracranial volume (r =.99) for a cohort of data collected

across investigators and matched scanners. Nugent et al. (2012)

also studied the inter-scanner reliability of the FIRST software

for segmentation (Patenaude et al. 2011), and found it to be

high. However, it is overly optimistic to always expect high

reproducibility from automated segmentations of brain MRI,

and the reproducibility is region specific. For example, both

FSL and FreeSurfer tend to do less well in segmenting small

structures relative to larger structures. There are also differences

in accuracy and reliability among different methods for

automated segmentation of the brain (Shokouhi et al. 2011).

Cortical thickness and other local gray matter density measures

can show reduced reliability owing to sensitivity to image

contrast variability, which becomes particularly challenging in

multicenter studies (Schnack et al. 2010). The volumes of some

structures, such as the caudate, may even show systematic

biases in certain populations because of tissue class ambiguity

that arises as a consequence of white matter degradation near

graymatter structures. Some cortical regions are also difficult to

delineate accurately due to the large intersubject variability. As

noted below, one goal of ENIGMA has been to screen brain

measures for reproducibility, heritability, and association with

disease, to see which ones are likely to be promising for genetic

analysis (we return to this topic below; see also Table 1).

Second, measures of brain volume, integrity, receptor

distribution, or chemical composition, might be more directly

related to the function of genes—both genes whose function is

unknown, and known candidate genes—such as growth

factors, transcription factors, guidance molecules, or

neurotransmitters and their transporters. Many of these had

already been implicated in the risk for psychiatric illness, and

imaging offered the opportunity to study differences in brain

connectivity or function, in carriers of genetic variants

associated with disease risk. In the future, advanced MRI

methods such as [1H]MR spectroscopy could be used for

population genetic studies of the brain’s chemical

composition, or PET studies to measure receptor distribution,

but work soon began in earnest on the genetic analysis of more

common and widely available types of brain scans—MRI and

DTI (Diffusion Tensor Imaging).

At the same time, some seasoned geneticists were skeptical

about imaging genetics. Concerns were raised about the costs

of image acquisition, relative to a standard psychiatric

diagnostic test. For a study to be feasible, the cost of data

collection must be borne in mind, regardless of which method

is ultimately more efficient in discovering genes and

mechanisms contributing to brain disease.

By 2009, a number of GWAS studies had been performed

on neuroimaging data. Among the first studies to report a

positive finding—a so-called “genome-wide hit”—was the

report by (Potkin et al. 2009a) that identified a key genetic

variant in TOMM40 , in linkage disequilibrium with APOE ,

the known risk gene for AD. Using hippocampal atrophy as a

quantitative phenotype in a genome-wide scan, they assessed

381 participants in the ADNI (Alzheimer’s Disease

Neuroimaging Initiative) study, to identify SNPs for which

there was an interaction between the genotype and diagnosis

on the quantitative trait. Variants in TOMM40 appeared to

affect hippocampal volume differently in AD patients versus

controls. Working with genetic-founder populations, some

GWAS-based studies revealed genome-wide hits in relatively

small samples; in the Saguenay Youth Study, genetic

variations in the KCTD8 region were associated with brain

size in a community-based sample of adolescent girls

(rs716890, P=5.40×10−9); (Paus et al. 2012). Furthermore,

genotype in the top hit (rs716890) interacted with prenatal

exposure to maternal cigarette smoking vis-à-vis cortical area

and cortical folding; in exposed girls only, this genotype

explained ~21 % of variance in the cortical area (Paus et al.

2012).

The ADNI work analyzed a publicly available dataset

(adni.loni.usc.edu) for which MRI scans and GWAS data

could be freely downloaded from approximately 800 people.

The ease of access of the ADNI data, and the principle of

broad dissemination of the genomic data with fairly few

restrictions led to over 100 genetic studies of the ADNI data,

many of them using GWAS designs (Saykin et al. 2010).

The ADNI dataset stimulated work in imaging genetics, as

evidenced by the large number of published papers using the

data (all ADNI genetics studies from the period 2009–2012,

are reviewed by Shen et al., 2013; this volume). Even so, data

from other elderly cohorts is needed to determine how well

ADNI’s genetic findings generalize to other non-selected

cohorts. ADNI deliberately selected participants who are

predominantly Caucasian, and relatively free from drug or

alcohol abuse and vascular disease. Genetic associations

detected in ADNI may be stronger or weaker, or even not

supported at all, in cohorts with different ethnic composition,

or with other co-morbid health conditions. Because of this, it

is important to recognize that some genetic associations may

depend on the cohort studied, diagnostic or demographic

criteria, and we should not expect all true genetic associations

to be detectable in all cohorts.

Sample sizes and power for GWAS

As with other phenotypes, the first GWAS findings for

imaging phenotypes were difficult to replicate, probably due

to the limited availability of replication samples. Prior work

had cautioned that, using the most standard kind of univariate

analysis of SNP effects, very large sample sizes would be

required—far larger than a typical neuroimaging study—to
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discover influential genetic variants, unless their effect sizes

on the brain phenotypes being analyzed were unusually large

(Potkin et al. 2009b). The power of a GWAS study depends on

the number of null genetic variants assessed, the expected

effect size of the genetic variant (typically less than 1 % of

the trait variance), and the population frequency of the variant

(Potkin et al. 2009b; Flint et al. 2010; Paus et al. 2012). The

power obviously also depends on the genetic architecture of

the trait—key factors are the large number of effectively

independent LD regions in the genome (regions of linkage

disequilibrium, with correlated SNPs) and the number of

detectable causal loci per phenotype (which is typically

small). The first series of studies identifying genetic markers

for MRI phenotypes that replicated across independent

samples, used a Norwegian discovery sample and replicated

the findings in the ADNI or PING cohorts (Joyner et al. 2009;

Rimol et al. 2010; Bakken et al. 2012).

Even for high frequency variants, neuroimaging databases

of 1,000 subjects would be underpowered to detect commonly

observed effect sizes. We must bear in mind that, in the

standard experimental design (see below for others), the

significance of a genome-wide hit has to be at least 20 million

to one, to account for the very large number of variants tested.

Some have argued that neuroimaging studies reporting effects

of candidate genes—such as COMT or BDNF—are also at

risk for false positive effects, in the sense that any number of

genes could have been assessed, with no way to verify

whether the paper was selectively reporting the successes

(Flint and Munafo 2013; Ioannidis 2005). While this problem

is shared by selective reporting of results in many fields,

imaging genetics is particularly at risk because of the ease

of retesting the same data. Some have raised the concern

that a considerable proportion of neuroimaging genetics

associations, especially those found in small samples, may

Table 1 Selection of brain measures for genetic analysis. In ENIGMA,

the brain measures chosen for analysis had to be feasible to measure

consistently and efficiently at a large number of sites, according to agreed

protocols (available at enigma.ini.usc.edu). As power is limited in

GWAS, various tactics may be useful in the future to boost the power

to find genetic associations. Some of these are categorized here

Power enhancement approach Principle Pros and cons

1. Enhance the dataset Increase the sample size (some GWAS studies now

assess 100,000+ subjects (Lango Allen et al. 2010;

Speliotes et al. 2010))

Identifies variants with smaller effect sizes, but is more

costly

Increase genomic coverage/sequencing Picks up rarer variants, but requires evenmore subjects for

power to detect effects of low frequency variants. Also

is more costly than genotyping common SNPs through

genotyping arrays, but the cost is rapidly decreasing

Increase the range of phenotypes studied May be able to find a high effect size phenotype, but also

need to correct for the number of measures assessed,

which may be large (e.g., in “voxel-based” GWAS;

Stein et al. 2010; Ge et al. 2012); if too many are

assessed, power is low

2. Data reduction Focus on candidate SNPs/genes, candidate pathways,

candidate phenotypes

Avoids heavy statistical correction, but may miss

unexpected variants or phenotypes

2.1. Based on classical genetics

principles

Heritability screening—remove or de-emphasise

measures with low heritability

This may empower genomic screens of complex

phenotypes (e.g., genome-wide connectome-wide

screens; Jahanshad et al. 2013b), see ENIGMA-DTI

(Jahanshad et al. 2013a).

Genetic Clustering—find parts of an image or 3D

cortical surface with common underlying genetic

determination

GWAS on the resulting “genetic clusters” appears to

have higher power than standard voxel-based

approaches (Chiang et al. 2011, 2012; Chen et al.

2011, 2012)

2.2. Based on relevance to disease Endophenotype ranking value (ERV; Glahn et al. 2012),

aims to rank biomarkers in terms of their promise as

endophenotypes for any heritable illness

Balances the strength of the genetic signal for the

endophenotype and the strength of its relation to the

disorder of interest

2.3. Based on using multivariate

statistics

Use multiple predictors in the genome or image or both

(reviewed inHibar et al. 2011a; Thompson et al. 2013;

Meda et al. 2012);

Sparse regression (Vounou et al. 2010, 2012; Ge et al.

2012; Silver et al. 2012), compressive sensing,

parallel ICA, machine learning methods

Can search both the image and the genome simultaneously

Difficult to apply to distributed remote datasets for meta-

analysis andmay be difficult to interpret the biological

relevance of the signal

3. Multimodality approaches

Exploit joint information in several

imaging modalities or other

biomarkers at the same time

Multimodal data fusion using ICA (Calhoun et al. 2009)

Seemingly Unrelated Regression to pool information

across simultaneous models (SUR; Jahanshad et al.

2013c)

More work required to analyse multiple data modalities

at once (e.g., anatomical MRI and DTI)
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not replicate in subsequent analysis. Clearly, although the

number of genes in the human genome is limited, an almost

unlimited number of candidate genes could be still tested

(Bishop 2013; Flint and Munafo 2013).

Even so, others have argued that this might be an obvious

but not in itself sufficient argument for needing very large

sample sizes, as it does not take into account the increase in

effect sizes enabled by careful selection of phenotypes (this is

an area of neuroimaging research in itself; see Table 1),

nor corroborative evidence from other sets of data, nor

independent replication of top hits—which is commonly

performed in GWAS studies. Clearly, an alternative way to

avoid false positives is to collect additional functional evidence

for a variant (the “convergent approach”). A final approach is

to focus on candidate variants with known molecular function,

and there is a long tradition of work relating genetic variants in

the monoamine neurotransmitter pathways to risk for

psychiatric illness. For instance, lower hippocampal but larger

amygdala volumes have been associated with the long variant

of the serotonin transporter polymorphism in major depression

(Frodl et al. 2004, 2008), and variants in the 5-HT1A receptor

gene have been related to amygdala volume in borderline

personality disorder (Zetzsche et al. 2008). Variants in the

Huntington’s disease gene have also been shown to affect

normal brain structure (Mühlau et al. 2012).

As the field began to come to terms with the sample sizes

needed to demonstrate or replicate a genome-wide hit,

alliances began to form and some studies reported genetic

associations with volumetric brain measures supported by

evidence from more than one cohort. Stein et al. (2011)

reported a variant associated with caudate volume in young

and old cohorts scanned on two continents at two different

field strengths. Hibar et al. (2013b) also reported a variant

associated with the volume of the lentiform nucleus on MRI

scans. In some of these reports, a meta-analysis approach was

used, to combine the evidence for genetic association across

cohorts, in a way that weights the cohorts by their sample size

or error variance.

Formation of the ENIGMA Consortium and first project

(ENIGMA1; Stein et al. 2012)

In December 2009, a group of researchers expert in large-scale

neuroimaging or large-scale genetics studies formed a

network called “Enhancing NeuroImaging Genetics through

Meta-Analysis” or ENIGMA. The goal of the effort was to

bring together researchers with genome-wide data and images,

to meta-analyze evidence in neuroimaging datasets worldwide

(see Fig. 2).

In Stein et al. (2012), the ENIGMA consortium, in

collaboration with another multi-site consortium (CHARGE;

Seshadri et al. 2010; Fornage et al. 2011; Bis et al. 2012;

Ikram et al. 2012) reported that the mean bilateral volume of

the hippocampus was significantly associated with the

intergenic variant rs7294919 (see Forest plots, Fig. 3).

The genotype at that locus was also nominally associated

with expression levels of the positional candidate gene TESC

in adult human temporal lobe tissue, based on the UCL

database of brain tissue resected during epilepsy surgeries.

TESC is currently not well studied, but it is known that it is

expressed during brain development in mice and chickens

(Bao et al. 2009). It encodes tescalcin, which interacts with

the Na+/H+ exchanger (NHE1) (Baumgartner et al. 2004),

important in the regulation of intracellular pH, cell volume

and cytoskeletal organization. In addition, intracranial volume

was significantly associated with a variant (rs10784502) in the

HMGA2 gene that had been previously tied to height. The

CHARGE consortium had focused on elderly cohorts

recruited primarily for studies of cardiovascular health in old

age, whereas ENIGMA had aggregated data from cohorts

across the lifespan showing the genetic effect was strong,

happening over multiple stages of brain growth. Both efforts

had strengths—the number of cohorts in ENIGMA (23) was

larger than that of CHARGE, but some of the constituent

cohorts in CHARGE numbered over 2,800 individuals.

Practical considerations and opportunities

The first ENIGMA project demonstrated the feasibility of

discovering statistically significant effects of “single letter”

genomic differences in brain data worldwide, using imaging

and genetic data collected using diverse protocols. Novel,

harmonized data analysis and meta-analysis protocols were

vital to the success of this project.

First, all genotypic data was imputed to the HapMap3

reference dataset to correct for diversity of the genotyping

chips (this reference was subsequently updated to the 1,000

Genomes dataset for ENIGMA2, which began in May 2012).

The imputation protocols (detailed at enigma.ini.usc.edu) and

the standard reference datasets allow the consistent reporting

of genotypes at the same set of genetic loci across cohorts.

Imputation effectively adds prior knowledge to the data and

may in this way also increase the power of a study. Not all

ENIGMA cohorts are Caucasian: the GOBS cohort consists of

Mexican-Americans and the NIMH cohort contains a

significant number of African-Americans. As in any GWAS,

population structure is taken into account during the statistical

modeling of associations, to ensure that differences in SNP

frequencies with ancestry are not picked up as spurious

associations. Also in the imputation step, the appropriate

reference populations are used for each individual, which

may in some cases be Yoruban or Hispanic, as well as the

CEU population that is used to represent Caucasians.

However, it is not a computationally trivial task to impute

very large samples of data from so many subjects. The

successive refinement of reference panels means that re-

Brain Imaging and Behavior (2014) 8:153–182 167



imputing the same dataset to the most current standards is

likely to further boost power.

Second, the exchange of data between the ENIGMA and

CHARGE consortia, for the Stein et al. (2012) study, involved

a reciprocal look-up rather than an exchange of the full meta-

analyzed data across the entire genome. This effort found that

the top hits of both consortia were in fact the same ones—

providing extremely high credibility to the hits. Even so, the

full genomic data were not exchanged or meta-analyzed; this

more powerful effort is currently underway.

Third, the effort to harmonize the analysis of imaging data

involved development of new quality control procedures.

Considerable time was devoted to checking outliers, testing

of the histograms and statistical distributions of brain structure

volumes, and checking the allele frequencies, genomic

inflation factors, and other statistical summaries of the cohort

data. The genetic and MRI analysis protocols used in

ENIGMA2, including quality control steps, are available online,

at http://enigma.ini.usc.edu/ongoing/gwasma-of-subcortical-

structures/ and the DTI analysis protocols are available at

http://enigma.ini.usc.edu/ongoing/dti-working-group/.

In a project of such a scale, the need for adequate data

curation is paramount. Several measures were assessed to

determine whether structures had values in the expected range

for volume, hemispheric asymmetry, etc. In the end, the large

number of contributing authors and contributing sites made it

easier to identify sites that had outliers in their genotypic or

brain measurement data, partly because normative data were

becoming available from all the other sites. All relevant

demographic factors were controlled for at each site, including

population structure that might lead to ancestry differences

masquerading as true genetic associations to brain traits.

Among these tests, we demonstrated that different, widely-

used programs to measure regional brain volumes produced

consistent results on a broad range of cohorts worldwide,

based on data from young and old samples and mixtures of

both (Stein et al. 2012; see supplement comparing FSL and

FreeSurfer segmentations). It was not feasible to require all

sites to use one specific program to measure brain regions; as

might be predicted, no single algorithm performed best for

quantifying brain volumes across all datasets.

Fourth, ENIGMA did not use the “mega-analysis” model

adopted by the Psychiatric Genomics Consortium, where all

phenotypic and genotype data are sent to a centralized site for

analysis. Instead, ENIGMA uses a “meta-analysis” concept:

GWAS was run locally using pre-agreed covariates—often

with and without adjustments that may affect interpretation

(e.g., adjustments for overall head size). Subsequently, and

after quality control at each site, the p -values and regression

coefficients were combined and meta-analyzed in a way that

weights the results based on the sample sizes of each

contributing cohort.

Many cohorts within ENIGMA have restrictions on data

use and data access. Some preclude the sending of data out of

Fig. 2 ENIGMA founding sites. The first ENIGMA project (Stein et al.

2012) was initiated in 2009, by a consortium of research groups

worldwide involved in neuroimaging and genetics. Several existing

consortia and research networks are taking part, including IMAGEN,

EPIGEN, SYS, FBIRN, and ADNI. Many of these efforts pre-dated

ENIGMA and continue today; each conducts its own projects in addition

to their collaborative work within ENIGMA. ADNI collects data at 58

sites around the U.S.; for clarity, not all data collection sites are shown

here. Each symbol represents a site contributing to ENIGMA, as

of June 2013
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the lab where the data were collected. Some restrict the

sending of personally identifying information to any other

site. A founding goal of ENIGMAwas to not require cohort

data to be shared outside the center that collected it, to avoid

creating ethical and legal issues for the study sites. Although

data sharing is a laudable goal in science, a more pragmatic

compromise has been to send protocols to distributed sites and

analyze summaries of the resulting data that lack personally

identifying information. This also encourages maximum

participation as each site retains fiduciary responsibility for

their data and its curation and integrity. Nevertheless, there is a

growing perception of the community that data sharing is one

fundamental building block of reproducibility in science, and

a rapidly expanding number of imaging datasets are being

shared thus facilitating discoveries. Newways of acknowledging

data acquisition are being developed concurrently (Poline et al.

2012).

However, there are also disadvantages associated with the

meta-analysis approach. For instance, it is more challenging to

perform meta-analyses for more complex and potentially

more informative analyses such as (1) polygenic scoring,

which determines how much of the phenotypic variance can

be explained by common SNPs in aggregate (Purcell et al.

2009), (2) structural equation modeling to demonstrate

evidence for the endophenotype concept (Kendler and Neale

2010), and (3) stepwise linear or ridge regression, to identify

the causal variant at an associated locus (McCarthy et al.

2008; McCarthy and Hirschhorn 2008). Not being able to

perform interaction analyses (e.g., disease by SNP) is also a

limitation, although this could be overcome as ENIGMA’s

disease related working groups expand.

In the aftermath of ENIGMA1, several investigators

requested access to the GWAS meta-analyzed results, and

the meta-analyzed data were made available online through

an interactive website named ENIGMA-Vis (Novak et al.

2012; http://enigma.ini.usc.edu/enigma-vis/). This interface

allows a user to input any gene (or SNP) that they are

interested in, and query its effects on a wide variety of brain

measures. The current dataset also allows targeted studies of

individual genes, enabling research groups, even if they are

Fig. 3 Forest plots from the ENIGMA1 study (adapted from Stein et al.

2012). Forest plots are a graphical display designed to illustrate the

relative strength of an effect in different cohorts. In the left panel , we

show the effect of the genetic variant at rs7294919 on the hippocampal

volume, in a range of cohorts in ENIGMA. In ADNI, for example, the

confidence interval on the effect overlaps zero, which means that there is

no evidence to reject the hypothesis of no effect, if only that cohort were

considered. The “ENIGMA Discovery” line combines the effects of all

cohorts above it. At the bottom of the figure, the meta-analysis of all

effects above the line includes data from another large consortium,

CHARGE, and several replication samples. The area of each square is

proportional to the study’s weight in the meta-analysis. The right panel

shows a similar plot for the effect on intracranial volume of the common

genetic variant at rs10784502. It is not necessary for the effect to be

detected in all cohorts for the meta-analysis to support the effect. The

abbreviations denote the names of the different cohorts in ENIGMA

(please see Stein et al. 2012, for details). [Adapted, with permission, from

Stein et al., Nature Genetics, April 15 2012]
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not involved in human studies, to assess the possible impact

on the brain of genes they are studying (via the ENIGMA-Vis

search tool).

In one study, Bulayeva and colleagues (Bulayeva et al.

2013) performed a linkage analysis of psychosis and mental

retardation in population isolates in remote areas of Dagestan

and Chechnya. They were able to implicate the top hits in

ENIGMA1 in these illnesses, supporting a psychiatric effect

of the genetic variant in human populations. Erk et al. (2013)

also studied rs7294919—ENIGMA1’s top hit for association

with hippocampal volume, and found that it related to

behavioral differences and different patterns of brain

activation in memory tasks. Work by Ming Li and colleagues

(Li et al. 2013) also found SNPs in the candidate geneCREB1

that were associatedwith bipolar disorder (themost significant

of which was rs6785) and were also associated with measures

of hippocampal volume and function.

Current projects of the ENIGMA Consortium

ENIGMA2 is a follow-on study from ENIGMA1, in which

the volumes of all major subcortical structures are subjected to

genome-wide association analysis (Hibar et al. 2013a). These

volumes are known to be moderately to highly heritable, with

one recent study reporting highest heritability estimates for the

thalamus (0.80) and caudate nucleus (0.88) and lowest for the

left nucleus accumbens (0.44; den Braber et al. 2013). The

structures are also implicated in a wide range of psychiatric

and degenerative brain disorders, making it crucial to identify

genetic and environmental factors that may influence them.

Preliminary meta-analysis is underway which will be

followed by functional characterization of the key hits, with

a full report to be submitted soon. A range of functional

evaluations is envisaged over the short and long term, ranging

from in silico assessments of eQTL data (for instance), all the

way to new functional experiments in neuronal cell lines or

animal models. This kind of follow up study is crucial, given

the difficulties of obtaining robust functional variants from

GWAS studies.

ENIGMA-CHARGE genome-wide meta-analysis

Researchers from the ENIGMA and CHARGE consortia have

recently joined forces to perform a genome-wide meta-analysis

of hippocampal and intracranial volume using updated versions

of the data analyzed in ENIGMA1. Specifically, both CHARGE

and ENIGMA will be meta-analyzing GWAS results from the

much more densely sampled 1,000 Genomes reference set;

rather than exchanging only the top hits, the entire genome-wide

data is being meta-analyzed. In addition, the ENIGMA project

will be contributing updated results from many new samples

who have joined the effort since the completion of the

ENIGMA1 project. This analysis is currently ongoing.

ENIGMA-DTI is a Working Group developing a

harmonized protocol for analyzing DTI data for GWAS

meta-analysis (Kochunov et al. 2012). Diffusion tensor

imaging offers a range of measures that reflect the

microstructure of both white and gray matter (by probing the

diffusion profile of the water molecules). It is also possible to

reconstruct macroscopic structures such as tracts, using the

tensor’s directional information. Understanding the genetic

factors underlying the connections of the brain is one of the

most challenging projects in the imaging genetics field. This is

especially true since the inherent plasticity of the developing

brain allows for the remodeling of connectivity based on

environmental influences. Interestingly though, heredity of

diffusion weighted measures remains quite high, suggesting

that factors related to brain growth, development, and

plasticity are also highly heritable (White et al. 2013).

A major theme in prioritizing brain phenotypes for large-

scale genetic analyses is the presence of significant

heritability, indicating that a proportion of individual variance

in the phenotypes can be explained by genetic variation. The

effect size of individual variants cannot be inferred from the

heritability and higher heritability does not translate to a

higher likelihood of a positive GWAS finding. However,

phenotypes whose heritability is not significantly different

from zero may not be good candidates for GWAS analysis

because of the lack of variance due to additive genetic factors.

Jahanshad et al. (2013a) screened a number of regions of

interest across multiple cohorts, finding high heritability for

most major white matter pathways and consistent heritability

across pedigree-based and twin-based samples (Fig. 4;

Kochunov et al. 2012; Jahanshad et al. 2013a). A variety of

DTI parameters could be measured reliably among

individuals, and genetic factors explained a substantial

proportion of the variance for the most commonly used DTI

measures.

Penke et al. (2010) showed strong correlations among

measures of DTI-derived fractional anisotropy (FA) from a

range of major white matter tracts in the Lothian Birth Cohort

1936 (LBC1936), a group of community-dwelling subjects in

their seventies. Applying principal component analysis, a

general white matter integrity factor was found that explained

around 45 % of the individual differences in FA across eight

tracts, and was significantly correlated with processing speed.

Lopez et al. (2012) conducted a GWAS on this general white

matter integrity factor on 535 subjects of the LBC1936 study

and found suggestive genome-wide association with SNPs in

ADAMTS18 and LOC388630 . Initial studies suggest that a

proportion of the variance in fiber integrity can be predicted

from common variants (Kohannim et al. 2012; Jahanshad et

al. 2012, 2013c; Thompson and Jahanshad 2012; Braskie et

al. 2012; Sprooten et al. 2013).

Genome-wide screens of connectome data have also been

successful, and have shown the benefit of ranking connections
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by their heritability, prior to entering the genome-wide

screening phase (Jahanshad et al. 2013b; Thompson et al.

2013). ENIGMA has not yet attempted a multi-site genetic

study of brain connectivity. Agreement on a protocol depends

on ongoing harmonization of DTI analysis across ENIGMA

sites, which is being finalized by the ENIGMA-DTI working

group (Jahanshad et al. 2013a). The harmonized DTI analysis

will also allow a multi-cohort examination of the association

between white matter integrity and general cognitive ability

across the life course from late adolescence to old age (see also

Penke et al. 2012). Also underway is a harmonization of

cortical segmentation, which is being studied empirically by

the ENIGMAworking groups that focus on psychiatric illness

(see below).

ENIGMA Disease Working Groups

An implicit goal of ENIGMA is to see whether genetic

variants impact the brain in a way that affects disease risk. In

fact, a number of imaging genetics papers have identified

genetic variants that appear to affect the brain and behavior;

Hall et al. (2006) and McIntosh et al. (2008) reported a variant

in the neuregulin 1 gene that was associated with abnormal

cortical function, altered white matter integrity, and with

psychosis, and there are many other examples of variants with

wide-ranging effects.

Around a third of the data in ENIGMA is from patients with

psychiatric illness, so once ENIGMA1 was complete, a large

volume of new data could be brought to bear on the question of

brain differences in a variety of disorders. To make connections

between psychiatric risk genes and brainmeasures, it maymake

sense to prioritize brain measures with robust case–control

differences. Of course, robust case–control differences do not,

in themselves, imply that the same genetic variants influencing

the phenotype will be the same as those associated with disease

risk. A more informed way to rank brain measures for genetic

screening is to use the endophenotype ranking value (ERV;

Glahn et al. 2012), which aims to rank biomarkers in terms of

their promise as endophenotypes for any heritable illness.

The ERV balances the strength of the genetic signal for the

endophenotype and the strength of its relation to the disorder

of interest. It is defined using the square-root of the heritability

of the illness (h i
2), the square-root of the heritability of the

endophenotype (he
2), and their genetic correlation (ρg):

ERVie ¼ √hi
2 √he

2
ρg

�

�
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In schizophrenia, for example, decades of studies have

reported morphometric differences in patients versus controls,

for a range of different structures. ENIGMAoffers a promising

framework to rank brain measures in order of their effect sizes

for case–control differences; these effects could also be further

weighted based on their genetic correlation with the illness, to

give another ranking. Nor is it expected that the disease should

have identical effects on the brain in all cohorts; the variety of

participating cohorts in ENIGMA makes it possible to dig

deeper into medication-related, or even geographic or

demographic factors to explain why brain differences vary so

drastically across different studies (see Fig. 5 for the locations

of ENIGMA sites in disease-related working groups).

In a meta-analysis of data from 1,136 patients and 1,401

controls, the ENIGMA-Schizophrenia Working Group found

that hippocampal volume gave among the highest effect sizes

for any subcortical brain structural difference in schizophrenia
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Fig. 4 A meta-analysis of tract-wise heritability, by the ENIGMA-DTI

working group, showed most tracts in the brain are moderately to highly

heritable across cohorts of different ethnicities, even though they were

imaged with different parameters. The “skeleton” of the white matter,

reconstructed using a widely used DTI analysis program called “tract-

based spatial statistics” (TBSS; Smith et al. 2006), is shown in purple for

reference. The corticospinal tract (in light blue) was the least heritable

region of interest and therefore, will not be carried forward as a phenotype

in an initial GWAS of DTI-FA measures. Other methods for phenotype

selection and prioritization are summarized in Table 1
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(Turner et al. 2013; van Erp et al. 2013). In a related meta-

analysis of structural MRI data from 1,022 patients and 1,415

controls, the ENIGMA-Bipolar Disorder Working Group

found consistent differences across the subcortical regions,

but in a different pattern than that characteristic of

schizophrenia (Hibar et al. 2013a). There were significant

reductions in the bilateral thalamus, hippocampus, and

amygdala in patients diagnosed with bipolar disorder. In

general, the trend revealed a decrease in subcortical volumes

throughout the brain in patients with bipolar disorder. This

work is clinically important, as the alterations in limbic and

some cortical regions are thought to underlie some of the

affective symptoms in bipolar disorder; even so, the source

of many of the subcortical and cortical differences in the

disorders has been a matter of debate, and for many structures,

morphometric findings have not always been consistent. This

work is still ongoing, with a total sample of 4,729 subjects

from 15 cohorts worldwide (2,060 patients and 2,669 controls,

as of November 2013).

In addition, following the model of the Schizophrenia

and Bipolar Disorder and working groups, an ENIGMA-

Major Depressive Disorder (MDD) Working group was

recently initiated. It already includes structural MRI data

from 1,850 patients and 3,483 controls. Data analysis is currently

in progress.

An additional working group on attention deficit/

hyperactivity disorder is currently being formed, ENIGMA-

ADHD, which will analyze data from more than 1,500 cases

(children and adults) with the disorder and over 2,000 controls.

An even more recent extension is a developing ENIGMA-

Addiction working group that will analyze data relevant to

addiction phenotypes including case-control comparisons

across a variety of substances, and going beyond this to

examine the influence of comorbidities, gender and stages of

disorder. The ENIGMA meta-analytic approach will be used

to aggregate data from case-control and developmental

cohorts to examine the relative contribution of various genetic

and brain correlates to risk for early onset substance misuse,

transition to regular use, susceptibility to dependence, and

individual differences in relapse vulnerability. We will also

examine variants common to all addictive behaviors, and

attempt to identify those that might be specific to

homogeneous addiction profiles. To date, a pooled sample

of 8,000 participants with neuroimaging, genetics and

addiction phenotypes has been identified; their data will be

re-analyzed to address these questions.

Clearly, these studies aggregate data from cohorts that are

heterogeneous in terms of duration of illness, disease etiology,

medication history, demographics, exposure to potentially

neuroprotective substances such as lithium, and many other

Fig. 5 Locations of the ENIGMA Working Groups. After ENIGMA’s

first project was completed (ENIGMA1; Stein et al. 2012), large amounts

of brain imaging data had been analyzed from patients with a variety of

psychiatric disorders. Working groups (WGs) were formed to understand

the effects on the brain of bipolar disorder, major depressive disorder

(MDD), schizophrenia, by pooling and comparing data from many

neuroimaging centers. These groups are open to any researchers who

have collected MRI scans from patients with these illnesses. No genetic

data is needed to join. In fact, most projects study factors that might

influence how these disorders affect the brain—medications, geographic

factors, and the age and gender of the patient. A further working group

focuses on diffusion tensor imaging, which assesses white matter

integrity; current projects relate DTI measures to individual differences

in cognition and genetic make-up. The institutions in the working groups,

as of June 2013, are shown on the map (see color key, inset)
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factors. But part of the richness of the ENIGMA efforts is that

they afford sufficient power to begin to see which of these

factors—including geographic factors, perhaps—affect disease

expression in the brain and the universality, or otherwise, of the

biomarkers of brain disease. Based on these findings, a key

direction for ENIGMA is to see how genes that affect the brain

relate to genes that affect risk for psychiatric illness (identified

by the Psychiatric Genomics Consortium, https://pgc.unc.edu/),

to identify shared biology between brain characteristics and

disease. A collaboration between ENIGMA and the PGC is

now underway to study these relationships.

One limitation of ENIGMA to date is that the sites

contributing to the meta-analysis include a clinically somewhat

heterogeneous group of population-based studies, and case–

control cohorts from multiple psychiatric and neurological

diseases. ENIGMA’s working groups on psychiatric disorders

are meta-analyzing representative datasets from schizophrenia,

bipolar, depressed, ADHD, autism, OCD, 22q deletion

syndrome, HIV, addiction, and other cohorts worldwide.

Eventually, cross-disorder comparisons should be able to

identify common and distinctive patterns of brain morphometry,

and how they depend on genetic variation, and diagnostic

criteria. Psychiatric cohorts vary in their inclusion and exclusion

criteria, and in duration of illness, medication history, ethnicity,

and in other demographics. Some studies include patients with

co-morbid conditions deliberately excluded by other studies.

The diversity of psychiatric cohorts in ENIGMA suggests a

second wave of analyses to understand cohort-specific factors

that might account for, or contribute to, the heterogeneity in

results across sites. Recent work by the Psychiatric Genomics

Consortium Cross-Disorders working group has identified

considerable genetic overlap between several major disorders,

at the level of common genetic variants (Lee et al. 2013).

ENIGMA may be able to do the same from a neuroimaging

perspective, to determine if genetic factors implicated in

different disorders account for some of the cross-disorder

differences in the brain imaging meta-analyses.

Future directions and caveats

Perhaps the most exciting strength of ENIGMA is its ability to

unite researchers using neuroimagingworldwide in a common

purpose. The fact that so many investigators are actively

involved makes it possible to benefit from the combined

resources and talents of all participants for “crowd-sourcing”

discovery. Also, the sample sizes involved—unprecedented

for a neuroimaging study—alleviate some of the concerns

about underpowered studies and unreliable findings (Button

et al. 2013). In addition, apart from identifying genetic

variants, another important role for the ENIGMA consortium

is to help understand how GWAS-derived genetic variants for

behavioral phenotypes influence the brain. Exploring the

effects of disease risk alleles on brain measures can help us

understand the brain systems affected, and at which stage—

and also whether the effects are pervasive or selective

(de Geus 2010).

Much of this overview of the history and future efforts of

ENIGMA highlights its relevance to studies of disease,

focusing on psychiatric and neurodegenerative disorders such

as Alzheimer’s disease. Even so, only around a third of the

ENIGMA data comes from patients with psychiatric illness,

and much can be learned about the genetic factors that drive

normal variation in the general population. A great deal of

fundamental information on the biology of the human brain

can be discovered from efforts such as ENIGMA, irrespective

of whether it has a direct relevance to any specific disease.

There are limitations to a study like ENIGMA despite its

strengths. The first is that many other types of genetic or

epigenetic variation other than GWAS are important—rare

variants, CNVs, expression and methylation analyses are all

crucial; they simply have not yet been evaluated through

ENIGMA, but that is likely to change in the future. In recent

genome-wide complex trait analyses (“GCTA” analyses;

Yang et al. 2011; Lee et al. 2011), Wray, Visscher and their

colleagues have shown that GWAS data may account for a

surprisingly high proportion of genetic variance in a trait, even

when the individual predictive value of a given locus or SNP

is low.

As a basic principle of genetics, an overall large heritability

does not guarantee locus specific heritability, but recent

discoveries have surprised some geneticists in supporting the

explanatory power of SNPs. For example, despite early results

that accounted for about 5 % of the variance in height, large

studies have now demonstrated SNPs can account for around

45 % of the variance in height (for which the overall

heritability is around 80 %). Also, common causal variants

may account for around 23 % of the risk for schizophrenia

(Lee et al. 2013) and up to 60 % of the risk for autism (Klei et

al. 2012). Given the polygenic architecture of these disorders,

these results suggest that more individual SNP associations

will be detected for each disorder, as sample sizes increase.

Some authors have emphasized that similar kinds of

“polygene” scores to the ones used to predict illness risk can

be used to explain variation in related phenotypes, such as

cognition (Davies et al. 2011), structural MRI (Holmes et al.

2012), neural activation on functional MRI (Whalley et al.

2013a) and white matter integrity (Whalley et al. 2013b).

Even so, some geneticists argue that rarer variants are in

some cases more worthy of study than GWAS as they tend to

have larger effects that are more easily validated functionally.

GWAS has been successful when used for QTL localization,

but the over-arching goal of complex disease genetics is to

identify the causal genes and functional variants responsible

for phenotypic variation. So some have argued that GWAS is

useful for detecting the signal from common variants, but that

few GWAS results have turned into functional variants or
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genes (across all disease domains). In principle, ENIGMA

could be used to study rare variants as well, but a range of

complementary approaches are always necessary.

Second, the geographical diversity of ENIGMA is higher

than that of most neuroimaging studies, but there may be

important ethnic differences in allele frequency that complicate

the generalization of results to all human populations. This

limitation is not specific to ENIGMA, and its consortium

structure could be expanded geographically to assess ethnic

differences in factors associated with disease and their

relationship to brain structure. Ethnic differences in genetic

effects are well known: the meta-analysis of the effects of the

APOE risk gene for Alzheimer’s disease shows a difference

between European and Asian populations. So far, people in

Africa and Asia are under-represented on the ENIGMA map;

we are therefore keen to include samples from these continents.

Third, the need for multivariate analysis has long been

known in the neuroimaging field—no serious neuroscientist

would predict diagnosis from a single pixel or voxel in an

image—the multivariate pattern of signals is paramount.

Methods to access and recover the maximum amount of

pertinent information in an image dataset are only just in their

infancy in the fields of genetics and neuroimaging—partially

due to the lack of sufficient data to test competing methods,

until recently (Liu et al. 2009; Stein et al. 2010; Hibar et al.

2011b; Vounou et al. 2010; Le Floch et al. 2012; Rosenblatt et

al. 2013; Meda et al. 2010, 2012).

Fourth, the discovery of a GWAS hit—in ENIGMA or any

other GWAS study—is the beginning of a long road of

discovery, especially if the finding is intergenic or in a gene

of unknown function. Some genomic screens of anatomical or

structural connectivity data have implicated genes such as

SPON1 (Jahanshad et al. 2013b) and FRMD6 (Ryles et al.

2012) that were discovered in later case–control studies to be

risk genes for AD (Hong et al. 2012; Sherva et al. 2013).

Functional validation of genetic variants reliably implicated in

large scale studies will be the way we learn new biological

processes and further our understanding of risk for psychiatric

diseases.

Fifth, ENIGMA has started by analyzing those phenotypes

that are easily measured in a standardized way. Brain images

can be analyzed in more sophisticated ways than traditional

morphometric methods; shape analysis, for example, has long

been used to characterize features of brain structure, including

cortical complexity, curvature, fractal dimension, spectral

content, and other indices. Also, the reporting of regional

summaries from DTI data clearly does not exploit all of the

available information in the data—DTI can be analyzed using

automatic whole-brain tractography to reveal the brain’s fiber

patterns and measure connectivity, and even the topology of

these brain networks. Despite the ever-expanding landscape

of brain features that can be studied, the large samples

required for genetic analysis have motivated the study of the

simplest brain measures first. Undoubtedly the future will

hold large scale genetic studies of brain connectivity,

anatomical shapes, functional networks, and features that are

as yet unknown and undiscovered.

As a final limitation, ENIGMA analyses have been

cross-sectional to date, rather than longitudinal. Genetic

predictors of brain changes over time have substantial

importance for clinical trial enrichment (e.g., TREM2 ,

which harbors variants that predict rates of brain atrophy

over time; Rajagopalan et al. 2013; see Kohannim et al.

2013, for an approach to boost power in drug trials by

multi-locus genetic profiling; see Andreasen et al. 2012,

for an approach examining epistatic relationships

between multiple genes and progressive brain tissue loss

in schizophrenia).

Are fewer subjects needed with imaging?

An open question is whether GWAS meta-analyses really do

require fewer subjects with imaging than they do when

behavior is the target of study. In 2009, before ENIGMA

began, one of its founders noted, “Just because the phenotypes

are expensive to collect does not change the power

calculations.” (N. Martin, pers. commun., 2009). But more

recently, Rose and Donohoe (2013) performed an empirical

analysis of effect sizes in genetic studies of cognitive and

neuroimaging traits in schizophrenia, and found evidence

supporting the efficiency of using imaging traits. However,

some evidence does suggest that imaging traits may have

intermediate effect sizes when compared to phenotypes

theoretically closer or farther away from the underlying

biology. The percent variance explained in gene expression

GWASs (often called eQTL studies) for the top SNP hits are

well above 10 % of the variance in the expression of a

particular gene (Stranger et al. 2007). The percentage of trait

variance in hippocampal volume explained by the top genetic

variant in ENIGMA1 was 0.27 % (Stein et al. 2012) although

independent cohorts will be required to estimate the explained

variance in the population at large. Finally, the top hit in one

genome-wide analysis of traits correlated with cognition—

such as educational attainment—explained 0.02 % of the

variance (Rietveld et al. 2013).

It is interesting to compare the effect of ENIGMA’s top

SNPs with the effects of common psychiatric and neurological

conditions on hippocampal volumes. In a recent meta-analysis

(Barnes et al., 2009), patients with Alzheimer’s disease have a

24.1 % mean hippocampal volume deficit. Patients with mild

cognitive impairment have a 15.3 % deficit relative to

cognitively healthy controls (calculated from Table 9 in

Leung et al. 2010). In psychiatric disorders, the hippocampal

volume deficit is typically reported to be smaller. Although

hippocampal volume deficits are one of the more robust MRI

findings in schizophrenia, they are not always evident in
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single site studies (Shenton et al. 2001). The ENIGMA

Disease Working Groups now suggest a mean hippocampal

volume deficit, relative to controls, of around 3.6 % in

schizophrenia and 2.9 % in bipolar disorder—depending, of

course, on cohort-specific factors (medication, duration of

illness, etc.). By contrast, in ENIGMA1, the rs7294919

genetic variant was associated with a hippocampal volume

decreased by 47.6 mm3 or by 1.2 % of the average

hippocampal volume per risk allele. Bearing in mind that the

cause of the effects is quite different, the effect of ENIGMA’s

top hippocampal SNPs on hippocampal volume is

approximately 5 % of the mean effect of Alzheimer’s disease,

around one-third of the effect of schizophrenia, and around

40 % of the effect of bipolar disorder. If such effect sizes are

typical, sample size requirements will generally be larger in

genetic association studies than in neuroimaging studies of

disease effects on the same phenotypes, but not vastly larger.

To some researchers, these preliminary observations

suggest an expected pattern of effect sizes, whereby GWAS

for cognitive traits may have top hits with smaller effect sizes

than those for imaging traits, which in turn may tend to have

smaller effect sizes than expression traits. Also, now that

consistent hits have been identified in ENIGMA1 and

ENIGMA2, it should be possible to estimate effect sizes for

the same hits in new replication samples, to understand what

sample sizes are sufficient to detect them. Conversely, some

have argued that the available data on genetic effect sizes at

different levels of neuroscience are currently too limited to

draw conclusions from only the three data points cited here.

Clearly, we do not yet have sufficient information to say

whether imaging genetics effects sizes will always be larger

than effect sizes for cognitive/behavioral phenotypes. One

way to begin to address this question might be to quantify

effects of some specific functional SNP at three different

related levels, such as eQTL data from the hippocampus,

hippocampal volume on MRI, and a behavior that is tightly

dependent on hippocampal function; this may show the

appropriate differential effect sizes in one framework.

A further interesting angle is the follow-up of the top

ENIGMA1 hits in ethnically isolated cohorts of Dagestan

and Chechnya by Bulayeva et al. (2013). Genetic isolates

can be valuable for studying any human phenotypes; required

sample sizes for studying genetic effects can be smaller than in

heterogeneous outbred populations due to the genetic

homogeneity of these isolates. This has long been noted by

classical statistical and population geneticists (e.g., Falconer

1960; Neel 1992; Bulayeva et al. 2005). As genetic isolates

have a high rate of traditional endogamy and inbreeding, it is

not possible to perform GWAS, but genome-wide linkage

analysis is possible (Sheffield et al. 1998). In particular, the

analysis of isolated populations makes it less challenging to

study polygenic disorders by reducing the number of loci

possibly involved in the disorder.

ENIGMA now focuses on genetic analysis of

neuroimaging measures, but psychiatric diagnosis is

important as well. ENIGMA does not simply relate imaging

data to genetics; many of its working groups study the

relationship between imaging measures and diagnosis. So, in

a sense, psychiatric diagnosis is also a key target of study. For

example, recent GWAS and follow-up studies have provided

strong statistical evidence that variation in theNCAN gene is a

common risk factor for bipolar disorder and schizophrenia

(Cichon et al. 2011; Mühleisen et al. 2012). Both studies

found that the A allele of SNP rs1064395 is a risk-mediating

allele and that rs1064395 influences risk to a broad psychosis

phenotype. To identify a putative mechanism, Schultz et al.

(2013) tested whether the risk allele has an influence on brain

structure. In patients with schizophrenia, they found a

significant association with higher folding in a right lateral

occipital region and at a trend level for the left dorsolateral

prefrontal cortex. Controls did not show an association. The

findings suggest a role of NCAN in visual processing and top-

down cognitive functioning. Both major cognitive processes

are known to be disturbed in schizophrenia. Another GWAS

study by Rietschel et al. (2012) identified a risk factor for

schizophrenia in a chromosomal region harboring the genes

AMBRA1/CHRM4/DGKZ/MDK (rs11819869). In an

independent follow-up analysis, they found that healthy

carriers of the risk allele T showed altered activation in the

subgenual cingulate cortex during a cognitive control task.

This brain region is a critical interface between emotion

regulation and cognition, which are structurally and

functionally abnormal in schizophrenia and bipolar disorder.

The recent successes of psychiatric GWAS have unearthed

a vast resource of findings when sample sizes became

very large (Ripke et al. 2011, for the Schizophrenia

Psychiatric Genome-Wide Association Study (GWAS)

Consortium; Sklar et al. 2011, for the Psychiatric

GWAS Consortium Bipolar Disorder Working Group;

Cichon et al. 2011, for the MooDS consortium Bipolar

Disorder Group; Rietschel et al. 2012, for the MooDS

consortium Schizophrenia Group; Cross-Disorder Group

of the Psychiatric Genomics Consortium et al. 2013). In

fact, it was the need for large samples that encouraged

the ENIGMA groups to work together, realizing that

otherwise their power tomake credible discoveries in genomic

scans would be severely limited.

A second question is which of the recently reported GWAS

findings are true or credible if they were discovered in small

cohorts. ENIGMA focuses on meta-analyses, but some have

argued that smaller individual studies—when replicated—

may discover interesting (and strong) associations. Paus et

al. (2012) noted that they had run a successful GWAS in only

around 300 participants. Also, some GWAS signals may be

important in the context of some individual cohorts, but may

be washed out in meta-analyses. A more skeptical line of
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argument is that if we need 20,000+ samples to detect an

effect, most likely what we see has very small effect size.

Even so, some recent GWAS analyses appear to have picked

up variants with strong effects—e.g., that roughly double

disease risk (e.g., in TREM2), and these effects have been

confirmed in smaller cohorts by comparing brain images from

carriers and non-carriers (Rajagopalan et al. 2013).

One testable hypothesis is that GWAS would be more

powerful and efficient if we select imaging phenotypes in a

principled way; if this is true, it may be possible to perform

GWAS with consistently replicated hits, that do not require

tens of thousands of subjects to reject the null hypothesis. In

fact, the ENIGMAworking groups each aim to find heritable

brain measures that maximize case–control differentiation, for

studies of disease. This will help us to prioritize the future

targets of study for influential genes. Although ENIGMA is

data-driven, that does not mean that we cannot use patterns in

the findings to design more targeted approaches that prioritize

phenotypes and genetic loci for follow-up analyses.

One such analysis (Desrivieres et al. 2013) evaluates pre-

selected genes that are expressed in the brain and change in

their expression throughout brain development. By narrowing

the search space to genes that are likely to play a role—and

whose functions have more chance of being understood—the

power of the study is also increased, as is its practical value for

neuroscience and medicine. This must be balanced with the

knowledge that approximately 88 % of GWAS hits are in

intergenic regions (Hindorff et al. 2009) and almost all genes

are expressed at some location in the brain at some period of

the lifespan (www.brainspan.org).

ENIGMA, to date, has used a mass-univariate analysis,

where each trait (or brain measure) is considered on its own,

and each genetic variant is considered on its own. Recent

multivariate analyses can cluster voxels in the brain—or

SNPs on the genome—to empower analyses, sometimes with

both forms of clustering occurring at once (Hibar et al. 2011a;

Thompson et al. 2013). Some of these multivariate analysis

methods have been used to detect significant hits in image-

wide genome-wide searches in cohorts of under 1,000

subjects (Ge et al. 2012; Chen et al. 2012b; Jahanshad et al.

2013b). In most analyses, multivariate refers to condensing

information on the imaging side, not the genetic side, although

both methods and joint methods are emerging. Multivariate

methods can be quite sophisticated mathematically. Some

draw upon a century of powerful work in classical quantitative

genetics and twin designs. Chiang and colleagues (Chiang et

al. 2011, 2012), for example, computed the “cross-trait cross-

twin correlation” between all pairs of voxels in an image, to

pull out “image clusters” with common genetic determination

(see also Chen et al. 2011, 2012a). Others have incorporated

knowledge of the genetic or imaging relationships to guide the

solution (Chen et al. 2013). Such tactics, among others, offer a

principled way to mine high-dimensional datasets, boosting

power for any subsequent GWAS.

A further line of work studies the “interactome”: it is now

possible to search pairs or sets of SNPs for interaction effects

in images (Hibar et al. 2013c) and some have argued that this

is the norm for mechanisms of gene action, and the context of

other genetic variants should be included in the analyses

(Hariri and Weinberger 2003). For instance, Roffman et al.

(2008) were the first to show functional MRI evidence of

epistasis in schizophrenia. Their findings were consistent with

epistatic effects of the COMT and MTHFR polymorphisms

on prefrontal dopamine signaling, suggesting that in

schizophrenia patients, the MTHFR 677 T allele exacerbates

prefrontal dopamine deficiency. Andreasen et al. (2012) used

a machine learning algorithm to identify genes/SNPs that were

interacting with one another and predicting a continuous

outcome measure that is a biologically meaningful phenotype

(“intermediate phenotype”) for schizophrenia: changes in

brain structure occurring after the onset of the illness.

Expanding the study of interactions to the whole genome,

Kam-Thong et al. (2012) presented a whole genome analysis

of epistasis (SNP-by-SNP) on several traits, including

hippocampal volume. Pandey et al. (2012) reported a pathway

analysis, which includes information from the network of

gene–gene interactions as well as main effects when prioritizing

genes for pathway analysis. Clearly no genetic variant acts

alone; however, multiple comparisons increase exponentially

with this approach implying difficulty obtaining enough power.

In conclusion, when the next round of ENIGMA studies

has been completed, there will be a scaffolding of credible

genetic variants on which to build and test new models of

macroscale brain development, the implications of those

variants for neuropsychiatric disease, and a new basis to probe

the genetic architecture of the living human brain.
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