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The problems associated with the modification of Hamilton’s principle to cover nonholonomic
constraints by the application of the multiplier theorem of variational calculus are discussed. The
reason for the problems is subtle and is discussed, together with the reason why the proper account
of nonholonomic constraints is outside the scope of Hamilton’s variational principle. However,
linear velocity constraints remain within the scope of D’Alembert’s principle. A careful and
comprehensive analysis facilitates the resolution of the puzzling features of nonholonomic
constraints. ©2005 American Association of Physics Teachers.

@DOI: 10.1119/1.1830501#
d
t
e

-

ro
-
e-

he
y

e-

ic

s
The
.

i-

n-

use
of

for

.

st
tions

d
it
ems

ure.
I. INTRODUCTION

The action integral,

S5E
t1

t2
L~q,q̇,t !dt, ~1!

plays a central role in the dynamics of physical systems
scribed by a LagrangianL. Hamilton’s principle states tha
the actual pathq(t) of a particle is the path that makes th
actionS a minimum. It is well known that Hamilton’s prin
ciple,

dS5dE
t1

t2
L~q,q̇,t !dt50, ~Hamilton’s principle!, ~2!

when applied to problems involvingc-holonomic constraints
with the geometric form,

f k~q1 ,q2 ,...,qn ,t !50, ~k51,2,...,c!, ~3!

leads to Lagrange’s equations of motion whose solution p
vides the time dependence of the (n2c) independent gener
alized coordinatesqj for the unconstrained degrees of fre
dom.

For problems that require additional calculation of t
forcesQj

c of holonomic constraint, Hamilton’s principle ma
be generalized to yield correct results simply by replacingL
in Eq. ~2! by

L†5L~q,q̇,t !1 (
k51

c

lk~ t ! f k~q,t !, ~4!

where thelk are Lagrange multipliers. Equation~2! is there-
fore replaced by Hamilton’s generalized principle,

dS†5dE
t1

t2
L†~h,ḣ,t !dt50,

~Hamilton’s generalized principle!, ~5!

from which the Euler–Lagrange equations

d

dt S ]L†

]ḣ j
D2

]L†

]h j
50, ~ j 51,2,...,n1c! ~6!

can be derived viafree variations of the extended seth
[$q(q1 ,q2 ,...,qn),l(l1 ,l2 ,...lc)% of the (n1c) variables
involved in Eq.~5!. Becausef k(q,t) are independent of the
generalized velocityq̇, the first n-equations of the Euler–
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Lagrange set~6! provide the correct equations of state. B
cause Eq.~4! is independent ofl̇k , the lastc equations of
the Euler–Lagrange set~6! for the lk (k51,2...,c) simply
reproduce the equations~3! of holonomic constraint.

A recurring theme1–4 is whether Hamilton’s principle~2!
may be similarly generalized so as to treat nonholonom
~dynamic! constraints,

gk~q,q̇,t !50, ~7!

which depend on generalized velocitiesq̇, simply by substi-
tuting

L* 5L1 (
k51

c

lk~ t !gk~q,q̇,t ! ~8!

for L in Eq. ~2!. A theorem in the calculus of variation
appears, at first sight, tailor-made for such a conjecture.
theorem5–7 states that the pathq(t) that makes the action Eq
~1! have an extremum under the side conditions~7! is the
same as the path that makes the modified functional,S*
5* t1

t2L* (h,ḣ,t)dt, an extremum, without any side cond

tions imposed. On the basis of this multiplier rule, the co
jecture, the substitution of Eq.~8! in Eq. ~2!, was simply
adopted without reservation for the general case~7! and
equations of state were published.1–3

This conjecture becomes problematic, particularly beca
the multiplier rule does not yield the standard equations
state as obtained from D’Alembert’s more basic principle
systems with less general nonholonomic constraints,

gk
~L !~q,q̇,t !5(

j 51

n

Ak j~q,t !q̇ j1Bk~q,t !50, ~9!

which are now only linear in the velocitiesq̇ j . Yet, the same
multiplier rule5–7 works for the holonomic constraints in Eq
~3!.

The question of whether the use of Eq.~8! in Eq. ~2! is a
viable generalization of Hamilton’s principle is of intere
here, because Ref. 1 advocates its use and cites the equa
of state derived from it.3 However, this generalization ha
previously been acknowledged4 as being incorrect because
did not reproduce the correct equations of state for syst
under linear constraints in Eq.~9!. Some textbooks8–11 also
have indicated the fallacy of using Eq.~8! in Eq. ~2!. How-
ever, the basic reason for its failure has remained obsc
265p © 2005 American Association of Physics Teachers
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The multiplier rule5–7 is indeed correct, as stated, so the fa
that it works for holonomic constraints~3!, but not for non-
holonomic constraints~7! poses a dilemma.

Many examples can be given that explicitly illustrate th
Eq. ~8! does not provide the correct results as obtained fr
Newtonian mechanics.12 In this paper, we search for the re
son why the procedure fails and, in so doing, we also exp
why the proper account of nonholonomic constraints giv
by Eqs.~7! and ~9! is outside the scope of Hamilton’s prin
ciple, even though the linear constraints in Eq.~9! remain
within the scope of D’Alembert’s principle. We will find the
conditions that Eq.~8! must satisfy for valid substitution into
Eq. ~2!. We also will indicate why the general nonholonom
constraints in Eq.~7! are outside the scope of a princip
based on virtual displacements. Rather than beginning f
Eq. ~2! and showing, as has been done, that an applica
involving Eq.~7! or ~9! leads to erroneous results,4,8–12more
insight can be gained by tracing the various stages of de
opment of the variational principle, Eq.~2!, from the more
fundamental principle of D’Alembert. The essential reas
will then become apparent.

Because variational theorems and methods are esse
tools of modern analytical dynamics and because vari
fallacies underlying their use are subtle and are not gene
well appreciated, it is hoped that the following account w
help illuminate their scope of application.

II. THEORY

We first outline some standard deductions of D’Alembe
principle, which is then expressed in a useful variatio
form that will provide a ‘‘royal road’’ from which Hamilton’s
principle can be easily extracted. The resolution of why
extended Lagrangian Eq.~4! works, while Eq.~8! does not,
in Hamilton’s principle, Eq.~2!, will then become apparen
via this approach.

A. Differential form of D’Alembert’s principle

The motion of a system of particles,i 51,2,...,N of mass
mi located atr i(t) in an inertial frame of reference is gov
erned by Newton’s equations,

Fi1Fi
c5mi r̈ i , ~10!

where the net force acting on each particle is decompo
into an active forceFi and a forceFi

c of constraint. A virtual
displacementdr i is an instantaneous variation from a give
configurationr i performed at a fixed timet and taken con-
sistent with the constraints at that time. The summation c
vention, ai j qj[( j 51

n ai j qj for repeated indicesj will be
adopted.

Assume that the total virtual workFi
c"dr i performed by all

the constraining forces is zero. D’Alembert’s principle,
both Newtonian r i ( i 51,2,...,N) and generalizedqj ( j
51,2,...,3N) coordinate versions, states that1,8–10,13

~mi r̈ i2Fi !"dr i5F d

dt S ]T

]q̇ j
D2

]T

]qj
2Qj Gdqj50, ~11!

where the total kinetic energyT5 1
2mi ṙ i

2(q,q̇,t) is expressed
in terms of then53N generalized coordinates of all th
particles. The generalized force,

Qj[Fi "
]r i

]qj
, ~12!
266 Am. J. Phys., Vol. 73, No. 3, March 2005
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is such that the virtual workQjdqj5Fi "dr i is equivalent in
both representations and may be decomposed into a pote
part,

Qj
(P)~q,q̇,t ![

d

dt S ]U

]q̇ j
D2

]U

]qj
, ~13!

derived from a generalized monogenic~the same for all par-
ticles! potential U(q,q̇,t) and a nonpotential partQj

NP

5Fi
NP"]r i /]qj . D’Alembert’s principle is then

F d

dt S ]L

]q̇ j
D2

]L

]qj
2Qj

NPGdqj50, ~D’Alembert’s principle!,

~14!

where the Lagrangian is

L~q,q̇,t !5T~q,q̇,t !2U~q,q̇,t !. ~15!

B. Holonomic constraints

When thec-constraint conditions in Eq.~3! are utilized to
reduce the number of generalized coordinates fromn to the
minimum number (n2c) of actual independent degrees
freedom, that is, when the constraints are embedded wi
the problem at the outset, then all the (n2c) dqj ’s in Eq.
~14! are independent of each other. Because each displ
ment can take on any value at eacht, the satisfaction of
D’Alembert’s principle, Eq.~14!, demands that each coeffi
cient of dqj in Eq. ~14! separately vanishes to yiel
Lagrange’s equations,1,8–10,13

d

dt S ]L

]q̇ j
D2

]L

]qj
5Qj

NP, ~16!

for the (n2c) independent degrees of freedom.
When the holonomic constraints Eq.~3! are not used to

reduce the set of generalized coordinates to this minim
number, that is, when they are instead ‘‘adjoined,’’ thenc of
the dqj ’s in Eq. ~14! depend on the independent (n2c) co-
ordinates and are constrained by thec conditions,

] f k

]qj
dqj50, ~k51,2,...,c! ~17!

which is obtained by differentiating Eq.~3! and keepingt
fixed. The Lagrange multiplierslk(t) can then be introduced
by subtracting the quantitylk(] f k /]qj )dqj50 from the left-
hand side of Eq.~14! to give

F d

dt S ]L

]q̇ j
D2

]L

]qj
2lk~ t !

] f k~q,t !

]qj
2Qj

NPG
3dqj~ t !50. ~ j 51,2,...,n!. ~18!

Nonpotential forcesQj
NP are included in Eq.~18!. If we

denote the m5n2c independent~free! coordinates by
q1 ,q2 ,...,qm and the c-dependent ones by
qm11 ,qm12 ,...,qn , then the previously unassignedc multi-
pliers,lk , are now chosen to satisfy thec equations,

d

dt S ]L

]q̇ j
D2

]L

]qj
5lk~ t !

] f k~q,t !

]qj
1Qj

NP

~ j 5m11,m12,...,n!. ~19!

Equation~18! then reduces to
266M. R. Flannery
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F d

dt S ]L

]q̇ j
D2

]L

]qj
2lk~ t !

] f k~q,t !

]qj
2Qj

NPG
3dqj~ t !50, ~ j 51,2,...,m! ~20!

for the freem5n2c coordinates. Because them dqj ’s in
Eq. ~20! are all independent and arbitrary, each of thedqj
coefficients in Eq.~20! must separately vanish. The set,

d

dt S ]L

]q̇ j
D2

]L

]qj
5lk~ t !

] f k~q,t !

]qj
1Qj

NP, ~ j 51,2,...,n!,

~21!

therefore represents the equations of state for the full arra
dependent and independent variablesq1 ,q2 ,...,qn .

Now adjoin the constraint equations~3! to the Lagrangian
set in Eq.~21! of n-equations to providen1c equations for
then1c unknowns, then qj ’s and thec lk’s, so that the sets
q[$qj% and l[$lk% may in principle be determined. B
comparing Eq. ~21! with Eq. ~16!, it is seen thatQj

c

5lk(] f k /]qj ) are additional forces acting on the syste
TheseQj

c must therefore be the forces of constraint whic
because of Eq.~17!, do no virtual work, as required for th
validity of D’Alembert’s principle. Although standard,1,8–13

the above review will help provide the context to what no
follows.

Becausef k is independent of the velocitiesq̇, a general-
ized D’Alembert principle,

F d

dt S ]L†

]ḣ j
D2

]L†

]h j
2Qj

NPGdh j50, ~ j 51,2,...,n1c!

~D’Alembert generalized principle!, ~22!

can therefore be introduced whereL†(ḣ,h,t)5L
1lk(t) f k(q,t) is an augmented Lagrangian over an e
tended set of coordinatesh[(q,l). On regarding allh j as
free, then

d

dt F]~L1lkf k!

]ḣ j
G2

]~L1lkf k!

]h j
5Qj

NP, ~ j 51,2,...,n1c!

~23!

are the generalized Lagrange equations for the extende
h j . The firstn equations of Eq.~23! reproduce the correc
equations of state,~21!, and the lastc equations reproduce
the constraint equations,f k50. Hence, D’Alembert’s prin-
ciple in Eq.~14!, with the displacementsdqj subject to thec
conditions in Eq.~17!, is equivalent to the generalized prin
ciple, Eq.~22!, with all coordinatesh j free. The replacemen
of the basic principle Eq.~14! with the subsidiary conditions
Eq. ~17! by the generalized principle Eq.~22! without sub-
sidiary conditions is the Lagrange multiplier rule. Both pri
ciples provide identical equations of state, Eq.~21!, and the
multiplier rule in Eq.~22! provides the shortcut.

It is important to note that the displaced pathsqj1dqj ,
not only comply with the essential conditions in Eq.~17! for
the displacements, but also satisfy the equations of c
straint,

f k~q1dq,t !5 f k~q,t !1d f k~q,t !50, ~24!

because there is no changed f k5(] f k /]qj )dqj50 to the
constraint Eq.~3!. The displaced paths are therefore all ge
metrically possible because they all conform to Eq.~24!. The
key requirement for application of the multiplier rule is th
267 Am. J. Phys., Vol. 73, No. 3, March 2005
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the displaced paths must be geometrically possible by s
fying the equations~24! of constraint. As will be shown next
this condition is violated, in general, by nonholonomic co
straints.

C. Nonholonomic constraints

The virtual displacementsdqj for nonholonomic systems
with c linear constraints,

gk
~L !~q,q̇,t !5Ak j~q,t !q̇ j1Bk~q,t !50, ~25!

obeyed by the actual path, are themselves constraine
obeyc instantaneous conditions

Ak j~q,t !dqj50, ~k51,2,...,c! ~26!

obtained by first writing Eq.~25! in differential form as

gk
~L !dt5Ak j~q,t !dqj1Bk~q,t !dt, ~27!

and then by settingdt50 anddqj5dqj as prescribed. As
with Eq. ~17!, the linear conditions~26! also may be ab-
sorbed in D’Alembert’s principle because Eq.~14! is linear
in dqj . By addinglkAk jdqj50 to the right-hand side of Eq
~14!, and by proceeding as before in Sec. II B, the equati
of state under the linear constraints in Eq.~25! are obtained
in the form

d

dt S ]L

]q̇ j
D2

]L

]qj
5lk~q,t !Ak j~q,t !1Qj

NP, ~ j 51,2,...,n!

~28!

for all the coordinates. We now examine the validity
D’Alembert’s generalized principle

H d

dt F]~L1mkgk!

]ḣ j
G2

]~L1mkgk!

]h j
2Qj

NPJ dh j50,

~ j 51,2,...,n1c!, ~29!

applied to nonholonomic constraints Eq.~7!, wheremk(t) are
a different set of multipliers and where alldh j are regarded
as free. On introducingGk j , where

Gk j5F d

dtS ]gk

]q̇ j
D2

]gk

]qj
G ~ j 51,2,...,n!, ~30!

and is zero forj .n, Eq. ~29! can be rewritten as

F d

dtS ]L

]ḣ j
D2

]L

]h j
1ṁk

]gk

]ḣ j
1mkGk j2gk

]mk

]h j
2Qj

NPGdh j50,

~ j 51,2,...,n1c!. ~31!

The first n equations of Eq.~31! provides the equation o
state,

d

dtS ]L

]q̇ j
D2

]L

]qj
52ṁk

]gk

]ḣ j
2mkGk j1Qj

NP ~ j 51,2,...,n!,

~32!

as derived from D’Alembert’s generalized principle, E
~29!. The lastc equations of Eq.~31! yield the constraint
equations~7!, as expected. But Eq.~32! reproduces the cor
rect equation~28! of state for the linear constraints in Eq
~25!, only when Eq.~30! for linear constraints vanishes, tha
is, provided

Gk j
~L !5F S ]Ak j

]qi
2

]Aki

]qj
D q̇i1S ]Ak j

]t
2

]Bk

]qj
D G50. ~33!
267M. R. Flannery
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Because condition Eq.~30! is basic to validity of Eq.~29!,
the significance of this auxiliary restriction on the linear co
straints~25! will now be explored.

In order for Eq.~25! to be a perfect~exact! differential of
a function f k(q,t), we must have

Aki~q,t !q̇i1Bk~q,t !5
d

dt
f k5

] f k

]qi
q̇i1

] f k

]t
. ~34!

The correspondenceAki5] f k /]qi andBk5] f k /]t provides
the ~necessary and sufficient! conditions

]Aki

]qj
5

]2f k

]qj]qi
5

]2f k

]qi]qj
5

]Ak j

]qi
, ~35!

]Bk

]qi
5

]2f k

]qi]t
5

]2f k

]t]qi
5

]Aki

]t
, ~36!

for the ‘‘exactness’’ of Eq.~25!. Provided the linear con
straints~25! satisfy conditions~35! and ~36!, an integrated
form f k therefore exists but may be unknown. Such co
straints are termedsemiholonomicand are denoted by
gk

~sh!(q,q̇,t)50. But the conditions~35! and ~36! for exact-
ness yield condition Eq.~33!, for all q̇i which satisfy the
constraints. Semiholonomic constraints can therefore be
rectly treated by D’Alembert’s generalized principle, E
~29!. In addition to exactness, semiholonomic constrai
(Gk j

(L)50) possess a further important property. The eq
tions of constraint appropriate to the displaced pathsq1dq
are

gk~q1dq,q̇1dq̇,t !5gk~q,q̇,t !1dgk~q,q̇,t !. ~37!

Becausegk(q,q̇,t)50 for the true dynamical pathq(t), the
constraint equations for the displaced paths change by

dgk5
]gk

]qj
dqj~ t !1

]gk

]q̇ j
dq̇ j~ t !. ~38!

With the aid ofdq̇ j (t)5d@dqj (t)#/dt, this difference is

dgk5
d

dtF]gk

]q̇ j
dqj~ t !G2Gk jdqj~ t !. ~39!

The condition for the displaced paths to be all geometrica
possible is thatgk(q1dq,q̇1dq̇,t)50, that isdgk50 and
the constraints are invariant to displacements. For the lin
constraints~25!, Eq. ~39! reduces to

dgk
~L !5

d

dt
~Ak jdqj !2Gk j

~L !dqj . ~40!

On invoking the basic restriction~26! on the displacement
and the exactness conditionGk j

(L)50, Eq. ~40! reduces to
dgk

~sh!50, which implies geometrically possible path
D’Alembert’s generalized principle~29! with Eq. ~25! there-
fore holds for semiholonomic systems where the displa
paths are all geometrically possible. Semiholonomic syste
are, in essence, holonomic, although the integrated h
nomic form f k50 may not be known.

Linear constraints~25! can be integrable and yet violat
the exactness condition~33!. For example, the constraint,

g1
(sh)~q,q̇!5~3q1

212q2
2!q̇114q1q2q̇250, ~41!

is exact because~33! is satisfied and it integrates directly t
give f 15q1

312q2
2q15constant. The constraint,
268 Am. J. Phys., Vol. 73, No. 3, March 2005
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g2
(I )~q,q̇!5~4q113q2

2!q̇112q1q2q̇250, ~42!

is not exact but can be integrated via the integrating fac
F2 (5q1

2) to give f 25q1
41q1

3q2
25constant. All exact con-

straints are therefore integrable, but all integrable constra
are not necessarily exact. The conditions~35! and ~36! are
too restrictive for integrable constraintsgk

(I ) , which can how-
ever be rendered in exact form by multiplying by the int
grating factorFk(q,t). Thengk

(sh)5Fkgk
(I ) now satisfies the

condition~33! for both exactness and geometrically possib
displaced paths. For example, the constraint,

g2
(sh)~q,q̇!5F2g2

(I )5~4q1
313q1

2q2
2!q̇112q1

3q2q̇250,
~43!

now satisfies condition~33! and is therefore in exact~semi-
holonomic! form. A known integrating factorFk implies a
known integrated holonomic formf k50, so that the simpler
holonomic result Eq. ~23! can be used rather tha
D’Alembert’s generalized principle~29!.

The linear constraints~25! which do not satisfy the exact
ness condition ~33! are classified as nonholonomic
D’Alembert’s generalized principle~29! is therefore not ap-
propriate for nonholonomic constraints~25!, as is also con-
firmed by the fact that Eq.~32! is not the correct equation
~28! of state, becauseGk j

(L)Þ0, in general.
D’Alembert’s basic principle, Eq.~14!, is not amenable to

general nonholonomic constraints~7!, because there is now
no relation such as Eq.~26! which connects the displace
mentsdqj in a linear form. The fact that Eq.~7! is, in gen-
eral, not a linear function ofq̇ j prohibits writing a linear
interrelation between thedqj ’s essential for the application
of D’Alembert’s principle. General nonholonomic con
straints~7! are therefore outside the scope of all principl
based on virtual displacements.

The key conclusions of Secs. II B and II C are the follow
ing:

~1! D’Alembert’s basic principle, Eq.~14!, is applicable to
holonomic and linear nonholonomic constraints, as is
ready known.

~2! D’Alembert’s generalized principle, Eq.~22!, applies to
holonomic constraints and Eq.~29! applies to semiholo-
nomic systems, because the displaced paths are also
metrically possible paths, an essential criterion for t
validity of the underlying multiplier rule. The solution o
both sets provides the actual path$qj (t)% and the con-
straint forces$Qj

c%.
~3! The displaced pathsqj1dqj for linear nonholonomic

systems are not geometrically possible and therefore
not satisfy the multiplier-rule condition.

~4! It is important to distinguish restrictions imposed on v
tual displacements, such as Eq.~26!, from the actual
equations of constraint, such as Eq.~9!, which must only
be satisfied within the equations of state that are eve
ally determined by some variational procedure. The c
straint equationsgk(q,q̇,t)50 satisfied by the true dy
namical pathq(t) do not necessarily imply that th
corresponding equationsgk(q1dq,q̇1dq̇,t)50 are sat-
isfied by the displaced paths.

~5! General nonholonomic constraints~7! are completely
outside the scope of even the most fundamental princ
268M. R. Flannery
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of D’Alembert. The generalization1–3 of any principle
based on Eq.~14! to general nonholonomic constraints
without foundation.

D. The dL version of D’Alembert’s principle

The Lagrangian for the varied paths is

L~q1dq,q̇1dq̇,t !5L~q,q̇,t !1dL~q,q̇,t !, ~44!

where the change inL due to the virtual displacementdqj
from the actual pathq is

dL5
]L

]qj
dqj~ t !1

]L

]q̇ j
dq̇ j~ t !. ~45!

With the aid ofdq̇ j (t)5d@dqj (t)#/dt, the change is

dL5
d

dt
@pjdqj~ t !#2F d

dt S ]L

]q̇ j
D2

]L

]qj
Gdqj~ t !, ~46!

where the generalized momentum is defined aspj

5]L/]q̇ j . D’Alembert’s basic principle~14! can then be
recast indL form as

dL5
d

dt
~pjdqj !2Qj

NPdqj . ~47!

The differential version, Eq.~14!, and thedL version, Eq.
~44!, of D’Alembert’s principle are equivalent and are fu
damental equations of dynamics. When the holonomic c
straints~3! are adjoined, rather than embedded, there arc
dqj ’s in Eq. ~46! that are dependent on the remainingn
2c) displacements. Because there is no change,d f k50, to
the holonomic equations~3! among the varied paths, we ma
addd@lk(t) f k#50 to the left-hand side of Eq.~47!. By uti-
lizing the augmented LagrangianL† over the extended set o
free generalized coordinatesh[(q,l), the generalized ver
sion of D’Alembert’s principle, Eq.~47!, is

dL†~ḣ,h,t !5d@L1lk~ t ! f k~q,t !#5
d

dt
~pjdh j !2Qj

NPdh j .

~48!

If we use the definition~46! for dL, the generalized version
~48! reproduces the correct equations of state, Eq.~21!, and
provides another example of the multiplier rule.

For semiholonomic systems, the LagrangianL can also be
replaced by L (sh)5L1mkgk

(sh) because the constrain
gk

(sh)(q,q̇,t)50 are exact, thereby satisfying the conditio
dgk

(sh)50 for geometrically possible paths. D’Alembert
generalized principle~47! therefore yields the equations o
state

d

dt F]~L1mkgk
(sh)!

]ḣ j
G2

]~L1mkgk
(sh)!

]h j

5Qj
NP, ~ j 51,2,...,n1c! ~49!

for the extended coordinates (h[q,m) for a semiholonomic
system. The multiplier rule of replacingL in Eq. ~47! by
L* 5L1mkgk is, however, not valid for inexact linear o
general nonholonomic constraints, because the displa
paths are not geometrically possible paths, as explaine
Sec. II C.
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E. Generalization of Hamilton’s variational principle

Hamilton’s integral principle,

E
t1

t2
dL dt5dE

t1

t2
L dt5@pjdqj # t1

t22E
t1

t2
@Qj

NPdqj #dt,

~50!

is D’Alembert’s principle, Eq.~47!, integrated between the
times t1 and t2 . Thed operator does not affect the time an
was therefore taken outside the integral. The appropriate
~28! for linear nonholonomic constraints is recovered
making the time integration in Eq.~50! redundant. The ap-
plication of Eq.~50! then reduces simply to an application
D’Alembert’s basic principle~14!, as in Sec. II C. The main
advantage, however, of the integral principle Eq.~50! is that
it becomes a variational principle,

dS5dE
t1

t2
L dt50, ~51!

by admitting only those pathsqj (t) that pass through the
fixed end points,dqj (t1,2)50, and by considering only po
tential systems, that is,Qj

NP50. The virtual variationd en-
sures that the transit timet5t22t1 remains the same for al
the varied paths. Equation~51! is Hamilton’s principle for
the least actionS5* t1

t2L dt.

When attempting to generalize Hamilton’s variation
principle, Eq.~51!, the conditions for generalization of th
more fundamental differential anddL versions, Eqs.~14! and
~47! of D’Alembert’s principle by the multiplier rule, are stil
in effect. Equation~51! can be directly applied to holonomi
systems with the embedded constraints in Eq.~3! to recover
the correct equations of state~16! with Qj

NP50. When holo-
nomic constraints are adjoined in order to determine the c
straint forces, thenL in Eq. ~51! can be replaced byL†5L
1lk(t) f k(q,t), becaused f k50, to give Hamilton’s gener-
alized principle

dS†5dE
t1

t2
L†~ḣ,h,t !dt5dE

t1

t2
@L1lk~ t ! f k~q,t !#dt50,

~52!

where thedh j ’s involved are free and independent. F
semiholonomic constraints, Hamilton’s principle is gener
ized to

dS(sh)5dE
t1

t2
L (sh)~ḣ,h,t !dt

5dE
t1

t2
@L1mk~ t !gk

(sh)~q,q̇,t !#dt50. ~53!

The essential reason for the validity of~52! and ~53! is that
the pathsq1dq admitted into the variational procedures a
all geometrically possible, that isd f k50 anddgk

(sh)50 and
that thed and* operations commute. The correct equatio
of state~19! and ~49! with Qj

NP50 are recovered from~52!
and ~53!, respectively. Becausegk

(sh) is, by definition, the
perfect differentiald fk /dt, then provided thatf k is known,
Eq. ~53! reduces to
269M. R. Flannery
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dS(sh)5dE
t1

t2FL1
d

dt
~mkf k!2ṁkf kGdt

5dE
t1

t2
@L2ṁk~ t ! f k~q,t !#dt50, ~54!

the holonomic form~52!, as expected. The relationship b
tween the multipliers islk52ṁk , as also shown in Sec
II C.

Hamilton’s variational principle~51! cannot be general
ized to inexact linear or more general nonholonomic c
straints, Eq.~9! or ~7!, by replacingL by L1mkgk in Eq.
~51!, as has been suggested.1–3The fact thatdgkÞ0 for these
cases implies that the varied paths are not geometrically
sible. We have shown that generalization of Hamilton’s a
D’Alembert’s principles rests on the multiplier rule whic
demands that the varied paths be geometrically possib
property reserved only for holonomic and semiholonom
systems.

F. Validity of generalized principles and multiplier rule

The generalized principles of D’Alembert and Hamilto
are effected by the multiplier rule~see the Appendix!. The
theorem~rule! applies only when all varied paths (q1dq)
preserve the side conditionsgk(q1dq,q̇1dq̇,t)50, that is
the dq variation causes no changedgk50 to gk . The dis-
placed paths are then geometrically possible in that they
isfy the same equations of constraint. It is only for ho
nomic and semiholonomic constraints that the appropr
criteria,d f k50 anddgk

(sh)50, are satisfied. For all nonholo
nomic constraints, the conditionsgk50 cannot be satisfied
by the displaced paths and are therefore not good cons
side conditions, as the multiplier rule demands. The inv
ance of the constraint equations to displacements is the
condition for application of the multiplier rule. The applica
tion of Eq.~6! to nonholonomic constraints is therefore wit
out justification.

Fig. 1. An upright coin rolls and spins down an inclined plane of anglea.

Directions of space-fixed axes areî , ĵ , andk̂, as indicated. Coin rolls with

angular velocityvW Rot5 u̇ r̂ about axisr̂ which in turn spins with angular

velocity vW S5ḟ k̂ about fixed axisk̂. The center of mass has velocityvW
5Ru̇ t̂ .
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III. A TEST CASE

Some of these key points may be tested by the phys
system depicted in Fig. 1. The solution of this spinning
rolling problem does not appear to have been provided
any standard textbook, although the limiting cases of roll
without spinning down a plane1 and rolling–spinning on a
horizontal plane8,10 have been analyzed. Letr c.m.5x î1y ĵ

1zk̂ be the Cartesian coordinate of the center of mass~c.m.!
of the coin of massM and radiusR, where the originO is at

the top of plane and where the directionsî , ĵ , andk̂ form a

Cartesian (X,Y,Z) fixed set of axes, withî pointing directly
downward along the plane. Letu andf be the angles asso
ciated with the rolling and spinning motions about the sy
metry axis~which is perpendicular to the coin! and the axis
pointing alongk̂, the fixed outward normal to the plane. Th
Lagrangian is

L5 1
2 M ~ ẋ21 ẏ2!1 1

2 I Su̇21 1
2 I Dḟ21Mgx sina, ~55!

where I S5bMR2 and I D are the moments of inertia of th
body about the symmetry axis and the fixedZ-figure axis,
respectively. Cases involving a solid sphere, coin, solid c
inder, spherical shell, hoop, or cylindrical shell, can
treated by takingb52/5, 1/2, 1/2, 2/3, 1, and 1, respectivel

Rolling without spinning: ẏ50, ḟ50. This example is a
simple test of our proof that semiholonomic~exact linear!
constraintsgk

(sh)(q,q̇,t)50 are covered by D’Alembert’s and
Hamilton’s generalized principles, Eq.~49! or Eq. ~53!, re-
spectively. The rolling constraintg5 ẋ2Ru̇50 is exact so
that the generalized principles should work. If we apply
ther Eq.~49! or ~53! to the augmented Lagrangian,

L (sh)~h,ḣ!5 1
2 Mẋ21 1

2 I Su̇21Mgx sina1m~ ẋ2Ru̇ !,
~56!

for the extended seth5(x,u,m) of free coordinates, we ob

tain the equations of state,Mẍ5Mg sina2ṁ, I Sü5ṁR, and

ẋ5Ru̇. When decoupled, these equations yield the accel
tion ẍ5g sina/(11b) and the frictional constraint forceṁ
which produces the torque needed for rolling motio
@(b/(11b)#Mg sina, in agreement with standar
results1,8–10,13obtained from holonomic theory, Eq.~22!.

Rolling and spinning in two dimensions. We now test to
see if linear conditions exist between the displacementsdqj
needed for D’Alembert’s basic principle~14! and then see if
the constraints imply geometrically possible displaced pa
as needed for the generalized principles. The constraint
rolling is now

g18~ ẋ,ẏ,u̇ !5@ ẋ21 ẏ2#1/22~Ru̇ !250, ~57!

which is nonintegrable and quadratic in the generalized
locities. There is no velocity component perpendicular tov̂
so that a second constraint is

g2~ ẋ,ẏ!5 ẋ sinf2 ẏ cosf50, ~58!

which is also nonintegrable, but linear in the generaliz
velocities. That the coin remains upright implies that the c
ter of mass coordinates (x,y) are also those for the point o
contact of the coin with the plane and thatz5R, a holo-
nomic constraint which can be embedded from the ou
unless the normal reaction~constraint! of the plane on the
270M. R. Flannery
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coin is sought. From Eqs.~57! and~58!, the virtual displace-
ments satisfy

~dx!21~dy!22R2~du!250, ~59!

dx sinf2dy cosf50. ~60!

The relation~60! is linear indqj and therefore amenable t
being absorbed into D’Alembert’s principle, Eq.~14!. The
quadratic relation~59! cannot be directly absorbed. Fortu
nately, for this case, the offending quadratic constraint~57!
can be replaced by the combinationg1

25g18
22g2

2 of g18 and
g2 to give

g1~ ẋ,ẏ,u̇ !5 ẋ cosf1 ẏ sinf2Ru̇50, ~61!

which leads to the linear form,

dx cosf1dy sinf2Rdu50, ~62!

which is now suitable for application of D’Alembert’s prin
ciple. The displaced pathsqj1dqj cause the changes,

dg15d ẋ cosf1d ẏ sinf2Rdu̇

2~ ẋ sinf2 ẏ cosf!df, ~63a!

dg25d ẋ sinf2d ẏ cosf1~ ẋ cosf1 ẏ sinf!df,
~63b!

in the constraint conditions~58! and ~61!. Becausedq̇ j

5d(dqj )/dt, then, on using the time derivatives of Eqs.~60!
and ~62! together with the relations~58!–~62!, dg1 anddg2

reduce to 0 andR( u̇df2ḟdu), respectively. Therefore, th
constraint~61! is semiholonomic. Integration yields the ho
lonomic form x21y22R2u250. Because the sumd(lkgk)
5d(l2g2)Þ0, we cannot use D’Alembert’s or Hamilton’
generalized principles, Eqs.~29! and ~53!, respectively, as
predicted.

Because the conditions~60! and~62! on the displacement
are now all linear, the problem can be solved
D’Alembert’s basic principle~14!, or by its time-integrated
version, Hamilton’s integral principle~50!. The solution is
straightforward and reduces to the standard results8,10 for
horizontal motion (a50).

IV. SUMMARY AND CONCLUSIONS

This paper has presented the basic reason why Hamilt
variational principle and the more basic principle
D’Alembert cannot be generalized by substituting the a
mented Lagrangian Eq.~8! in either Eq.~2! or Eq. ~14! to
cover general nonholonomic constraints, as the multip
rule5–7 in the calculus of variations might suggest.1–3 The
multiplier rule requires that the side conditionsgk50 be sat-
isfied by all varied paths, which must therefore be geome
cally possible. The displacementsdqj in nonholonomic sys-
tems violate this rule because they cause nonzero cha
dgkÞ0 in the constraint conditions and the displaced pa
are not geometrically possible. The constraintgk50 is satis-
fied only by the actual physical pathq(t) in configuration
space and not by the individual members of the family
varied paths for nonholonomic systems. The multiplier r
cannot therefore be used to generalize Hamilton’s
D’Alembert’s principles to cover nonholonomic constrain
It can however be applied to all holonomic and semiho
271 Am. J. Phys., Vol. 73, No. 3, March 2005
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nomic ~exact linear! constraints which have the property th
all displaced paths are geometrically possible in accord w
the multiplier rule.

We have traced the development of various generali
principles from D’Alembert’s basic principle in such a wa
as to render transparent their scope of application. It is us
to keep the following conclusions in mind.

~1! D’Alembert’s basic principle, Eq.~14!, is the most fun-
damental of all the principles considered here.

~2! D’Alembert’s basic principle, Eq.~14!, and Hamilton’s
variational principle, Eq.~2!, are well designed for holo-
nomic systems. Equation~16! is the equation of state.

~3! When constraint forces in holonomic systems are sou
D’Alembert’s generalized principle, Eq.~22!, and
Hamilton’s generalized principle, Eq.~5!, are appropri-
ate, because the varied paths under holonomic c
straints are all geometrically possible and the underly
multiplier rule is then valid. Equation~6! is the equation
of state.

~4! The correct equations of state~28! for general linear
nonholonomic constraints are furnished only
D’Alembert’s basic principle, Eq.~14!, or its time-
integrated version, Hamilton’s integral principle, E
~50!.

~5! As shown here, the generalized principles, Eqs.~29! and
~53!, are valid for semiholonomic systems. In these ge
eralized principles, the constraints are automatically
cluded and the displacementsdh j are all free. Equation
~49! is the equation of state for semiholomic system
that is, those which satisfy conditions for exactness a
therefore geometrically possible displaced paths.

~6! Generalized principles are inappropriate for linear no
holonomic constraints, because the constraint equat
gk50 are not exact and change from varied path to v
ied path. The underlying multiplier rule then loses vali
ity.

~7! The theory for nonholonomic constraints with a gene
velocity dependence remains outside the scope of
most fundamental principle, Eq.~14! of D’Alembert. It
is impossible to extract from the equationsgk50 of gen-
eral nonholonomic constraints the linear relation b
tween the dqj ’s required for the application o
D’Alembert’s principle unless the constraints are eith
linear in velocity or holonomic. Nonholonomic con
straints are therefore outside the scope of any of the p
ciples based on D’Alembert’s principle.

The above conclusions reflect the intrinsic merit of reco
structing the variational principle, Eq.~2!, from the more
fundamental D’Alembert principle, Eq.~14! via Eq. ~47!, so
that the validity of the various stages involved becomes
rectly exposed. Pitfalls1–3 can easily occur by arbitrarily in-
voking the multiplier rule to assert generalized principl
such as Eqs.~29! and~53!, without first ascertaining the criti-
cal but hidden condition that the varied paths must be g
metrically possible. We have shown here that the conditio
satisfied only for holonomic and semiholonomic systems

General nonholonomic constraints~7! can be analyzed by
other principles13 that involve, for example, the virtual ve
locity ~Jourdain! displacements, constructed by maintaini
both the configurationq and timet fixed, in contrast to vir-
tual displacementsdqj which keep onlyt fixed. The Jourdain
variational principle is the subject of a separate paper.14
271M. R. Flannery
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APPENDIX: THE MULTIPLIER THEOREM

We will determine the pathsqi(t); i 51,2,...,n that pro-
vide an extremum to the functional

J5E
t1

t2
F~q,q̇,t !dt, ~A1!

subject to thec,n-finite auxiliary ~side! conditions

gk~q,q̇,t !50. ~k51,2,...,c! . ~A2!

A basic theorem5–7 in the calculus of variations can b
invoked, provided we admit to the variational competiti
only those curvesq(t) that satisfy fixed end-point condition
dq(t1,2)50 andc-finite fixed side conditions as in Eq.~A2!.
The varied curves must all be geometrically possible by
isfying gk(q1dq,q̇1dq̇,t)5gk(q,q̇,t)1dgk(q,q̇,t)50, so
that dgk50. The physical pathq(t) is then determined by
the extremum determined by the free variation of the mo
fied functional,

J†5E
t1

t2
F†~q,q̇,t !dt[E

t1

t2
@F~q,q̇,t !1lk~ t !gk~q,q̇,t !#dt,

~A3!

without any side conditions imposed. The physical pathq(t)
then satisfies the Euler–Lagrange system of equations,

d

dt S ]F†

]ḣ j
D2

]F†

]h j
50, ~ j 51,2,...,n1c! ~A4!

for the extended seth[$q1 ,q2 ,...,qn ,l1 ,l2 ,...,lc% of (n
1c) variables. BecauseF† does not depend onl̇k(t), the
last c members of the set of equations~A4! reproduce the
side conditions~A2!. The validity of the multiplier theorem
Eqs. ~A3! and ~A4!, rests on the fact that conditions~A2!
must be satisfied byall the varied paths therein, that i
dgk50. This condition is satisfied for holonomic and sem
holonomic constraints. It is not satisfied for nonholonom
constraints becausedgkÞ0 for this case; the conditiongk

50 is satisfied only by the physical path to be eventua
determined. The theorem is therefore irrelevant to nonho
nomic systems.

However, the multiplier theorem is directly relevant to t
related principle1,8,11,13

DSA5DE
t1

t2
piq̇idt5@piDqi # t1

t250 ~A5!

of least abbreviated actionSA , valid for varied curves, all
chosen to obey the same constant HamiltonianH and to pass
through the end points, that is,Dqi(t1,2)50. It is similar in
form to Eqs.~50! and~51!. TheD operator causes nonsimu
taneous variationsDqi5dqi1q̇iDt, which also involve dis-
placementsDt in time, in addition to the usual virtual dis
placementsdqi . When the kinetic energyT reduces to a
homogeneous quadratic functionT25 1

2Mi j (q)q̇i q̇ j of the
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generalized velocitiesq̇i , thenpiq̇i52T and the least action
principle, Eq. ~A5!, reduces to the Euler–Lagrange
Maupertuis principle,1,8,11,13

DE
t1

t2
2T dt50, ~A6!

of least action. The multiplier theorem, Eqs.~A3! and ~A4!,
can now be applied to extract Lagrange’s equations from
~A6!. The condition for the variation~A6! is that the Hamil-
tonianH does not depend on time and remains fixed at
same value for all the paths considered. In the sense
(t,2H) are conjugate variables, the principle~A6!, which
admits paths with the same constantH, is complementary to
Hamilton’s variational principle, Eq.~2!, which admits only
those paths with the same transit timest5t12t2 into the
variation. ForT5T2 , H equals the total energyE5T1V, so
that Eq.~A6! becomes modified, under the fixed constra
g5(T1V)2E50 for all varied paths, to finding a station
ary value of

DE
t1

t2
@2T~q,q̇!1l~ t !$T~q,q̇!1V~q!2E%#dt50. ~A7!

The application8,11,13 of this modified version~A7! of the
Euler–Lagrange–Maupertuis principle leads directly to
standard Lagrange’s equations~16!, with Qj

NP50 for poten-
tial systems.
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