The enigma of nonholonomic constraints
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The problems associated with the modification of Hamilton’s principle to cover nonholonomic
constraints by the application of the multiplier theorem of variational calculus are discussed. The
reason for the problems is subtle and is discussed, together with the reason why the proper account
of nonholonomic constraints is outside the scope of Hamilton’s variational principle. However,
linear velocity constraints remain within the scope of D’Alembert’s principle. A careful and
comprehensive analysis facilitates the resolution of the puzzling features of nonholonomic
constraints. ©2005 American Association of Physics Teachers.
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[. INTRODUCTION Lagrange set(6) provide the correct equations of state. Be-
cause Eq(4) is independent of,, the lastc equations of

The action integral, the Euler—Lagrange sé6) for the A, (k=1,2...¢) simply

ta . reproduce the equatiori8) of holonomic constraint.
S= ft L(a.q,t)dt, ) A recurring them&* is whether Hamilton’s principle2)
! may be similarly generalized so as to treat nonholonomic

plays a central role in the dynamics of physical systems detdynamig constraints,
scribed by a Lagrangiah. Hamilton’s principle states that o
the actual pathy(t) of a particle is the path that makes the ~ 9x(G:a:,1)=0, @

a_ctlionS a minimum. It is well known that Hamilton’s prin- \vnich depend on generalized velocitigssimply by substi-
ciple, tuting

)
5S= 5f L(q,¢,t)dt=0, (Hamilton'’s principle, (2) © ,
4 LY=L+ 2 M(08(a,a,0) ®)
when applied to problems involvingrtholonomic constraints
with the geometric form, for L in Eq. (2). A theorem in the calculus of variations
_ _ appears, at first sight, tailor-made for such a conjecture. The
f(A1,0z,---.Gn =0, (k=1.2,...), ) theoreri” states that the pati(t) that makes the action Eq.
leads to Lagrange’s equations of motion whose solution profl) have an extremum under the side conditigisis the
vides the time dependence of the<{c) independent gener- same as the path that makes the modified functiogl,
alized coordinatesy; for the unconstrained degrees of free- :ftzL*(,,, »,t)dt, an extremum, without any side condi-
1

dom. tions imposed. On the basis of this multiplier rule, the con-

For problems that require additional calculation of the, h L ¢ . il
forcesQ¢ of holonomic constraint, Hamilton’s principle may lecture, the substitution ° Ed8) in Eg. (2), was simply
J ’ adopted without reservation for the general c&ge and

be generalized to yield correct results simply by replading equations of state were publishtd.

in Eq. (2) by This conjecture becomes problematic, particularly because
c the multiplier rule does not yield the standard equations of
LT=L(qg,q,t)+ 2 MO F(a,t), (4) state as obtained from D’Alembert’s more basic principle for
k=1 systems with less general nonholonomic constraints,

where thex are Lagrange multipliers. Equatid®) is there- n
fore replaced by Hamilton’s generalized principle, g(kL)(q,q,t)= 2 Ayi(a,1)§;+By(q,H) =0, (9)
=1

which are now only linear in the velocitieg . Yet, the same

to

5St= 5f LT(#,#,t)dt=0,
t
! multiplier rule’~" works for the holonomic constraints in Eq.

(Hamilton’s generalized principle G  @3.
from which the Euler—Lagrange equations _The question of whether the use of E£8) in Eq.(2) is a
: : viable generalization of Hamilton’s principle is of interest
dfaL’y aLt _0 (i=12 N 6 here, because Ref. 1 advocates its use and cites the equations
dtldn| dn =0, (j=1.2,...n+c) 6) of state derived from it. However, this generalization had

_ ) o previously been acknowledgds being incorrect because it
can be derived vidree variations of the extended se}  gig not reproduce the correct equations of state for systems
={d(d1,92,..-.0n) . MA1,N2,...\o)} of the (n+c) variables  ynder linear constraints in E¢9). Some textbooks™! also
involved in Eq.(5). Becausef(q,t) are independent of the have indicated the fallacy of using E@) in Eq. (2). How-
generalized velocityq, the first n-equations of the Euler— ever, the basic reason for its failure has remained obscure.
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The multiplier rulé~"is indeed correct, as stated, so the factis such that the virtual work); 6q;=F;-4r; is equivalent in
that it works for holonomic constraint8), but not for non-  both representations and may be decomposed into a potential

holonomic constraint§7) poses a dilemma. part,
Many examples can be given that explicitly illustrate that
Eq. (8) does not provide the correct results as obtained from Q(P)(q a)= i(ﬂ) _ ﬂ (13)
Newtonian mechanic¥.In this paper, we search for the rea- oA dt\aq;) dq;’
son why the procedure fails and, in so doing, we also explair& . .
erived from a generalized monogeiiibe same for all par-

why the proper account of nonholonomic constraints givern. ) . .
by Egs.(7) and (9) is outside the scope of Hamilton's prin- t|cIeng potential U(q,q,t) and a nonpotential parQ
ciple, even though the linear constraints in E@) remain  =F; -dri/dq;. D’Alembert's principle is then

within the scope of D’Alembert’s principle. We will find the d ( &L) oL

NP
J

conditions that Eq(8) must satisfy for valid substitution into | — [ —

Eq. (2). We also will indicate why the general nonholonomic LAt d4;

constraints in Eq(7) are outside the scope of a principle (14)

based on virtual displacements. Rather than beginning frofyhere the Lagrangian is

Eqg. (2) and showing, as has been done, that an application ] . )

involving Eq.(7) or (9) leads to erroneous resuft&;?more L(g,9,t)=T(q,q,t) —U(q,q,t). (15

insight can be gained by tracing the various stages of devel-

opment of the variational principle, E¢2), from the more B. Holonomic constraints

fundamental principle of D’Alembert. The essential reason

will then become apparent. When thec-constraint conditions in Ed3) are utilized to
Because variational theorems and methods are essenti@duce the number of generalized coordinates froto the

tools of modern analytical dynamics and because variougminimum number (—c) of actual independent degrees of

fallacies underlying their use are subtle and are not generallifeedom, that is, when the constraints are embedded within

well appreciated, it is hoped that the following account will the problem at the outset, then all the-(c) 8q;'s in Eq.

69;=0, (D’Alembert’s principlg,

help illuminate their scope of application. (14) are independent of each other. Because each displace-
ment can take on any value at eachthe satisfaction of
Il. THEORY D’Alembert’s principle, Eq.(14), demands that each coeffi-

We first outline some standard deductions of D'’AlembertsCi€nt of 4g; in _E(rqf.ssgg)lsseparately vanishes to yield
principle, which is then expressed in a useful variational-23range’s equatiors,
form that will provide a “royal road” from which Hamilton’s d/aL JL
principle can be easily extracted. The resolution of why the a(;) - T=QJ-NP, (16)
extended Lagrangian E¢4) works, while Eq.(8) does not, 9 qi
in Hamilton’s principle, Eq.(2), will then become apparent for the (n—c) independent degrees of freedom.
via this approach. When the holonomic constraints E(B) are not used to
A. Differential form of D’Alembert’s principle reduce the set of generalized coordinates to this minimum

) o number, that is, when they are instead “adjoined,” tiweof
The motion of a system of particleis=1,2,..,N of mass  he 8q;’s in Eq. (14) depend on the independent<c) co-

erned by Newton’s equations,

Fi+Fi=mf;, (10)
where the net force acting on each particle is decomposed, . = . . . L .
into an active forcér; and a forceF; of constraint. A virtual which is obtained by differentiating Eq3) and keepindt

displacementr; is an instantaneous variation from a given fixed. The Lagrange multipliens,(t) can then be introduced

configurationr; performed at a fixed time and taken con- by subtracting the quantity,(9fy/4q;) 6q; =0 from the left-

sistent with the constraints at that time. The summation conhand side of Eq(14) to give

afy
a—qjéqj—o, (k=1,2,..,¢) (17)

vention, a;;q;=={_,a;;q; for repeated indiceg will be d aL) aL of(at) e
adopted. dt 19_q, _a_%_)‘k(t) Jq; !
Assume that the total virtual work’-Sr; performed by all )
the constraining forces is zero. D’Alembert’s principle, in x6q;()=0. (j=12,...n). (18)
both Newtonianr; (i=1,2,..,N) and generalizedy; (j Nonpotential forceQ}" are included in Eq(18). If we
=1,2,..,N) coordinate versions, states thét'*** denote them=n—c independent(free) coordinates by
d/oT oT d1,02,.--,0n and the c-dependent ones by
(mify —Fy)-ori=| o a_qj> - (9_qj_Qj 6q;=0, (1) gps1.0ms2,---.0n, then the previously unassignednulti-

pliers, A, are now chosen to satisfy tlreequations,
where the total kinetic energy= %mii?(q,q,t) is expressed

in terms of then=3N generalized coordinates of all the i(ﬁ _iz)\k(t)&fk(q’t) +QNP
particles. The generalized force, dt\dq;) dq; aq; !
ar. (j=m+1m+2,...n). (19
Qj=F--—, (12) _
Jq; Equation(18) then reduces to
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d/aL JL gfk(q t) P the displaced paths must be geemetrica]ly possible by satis-
dtl 74 ) o —Ai(t) i fying the equation$24) of constraint. As will be shown next,
! ] this condition is violated, in general, by honholonomic con-
X 8q;(t)=0, (j=1,2,...,m) (200 straints.

for the freem=n—c coordinates. Because time &qg;’s in
Eq. (20) are all independent and arbitrary, each of thg
coefficients in Eq(20) must separately vanish. The set, The virtual displacementsq; for nonholonomic systems
d (aL L ﬁfk(q t) with ¢ linear constraints,

dtlag) " 7g MO T QT (7120, 0l(0,6.0) = Ay(a.0) 3+ Be(9,) =0, (25
(21) obeyed by the actual path, are themselves constrained to

therefore represents the equations of state for the full array afbey ¢ instantaneous conditions
dependent and independent varialdesq,,...,q, - A (0.1 S = k=12 26

Now adjoin the constraint equatiok) to the Lagrangian _k'(q' ) 9' 0’_.( ' C) _ _ (26)
set in Eq.(21) of n-equations to provide-+ c equations for ~obtained by first writing Eq(25) in differential form as
then+c unknowns, then g;’s and thec \,’s, so that the sets g dt=A(q,t)dg;+ B (g,t)dt (27)
q=1{q;} and A={\,} may in principle be determined. By “ ¥ K
comparing Eq.(21) with Eq. (16), it is seen thatQf
=>\k(afk/aq,-) are additional forces acting on the system.
TheseQ must therefore be the forces of constraint which,.
because of Eq(17), do no virtual work, as required for the
validity of D’Alembert’s principle. Although standarcf~*
the above review will help provide the context to what now;

C. Nonholonomic constraints

and then by settingit=0 anddg;=6q; as prescribed. As
with Eq. (17), the linear conditiong26) also may be ab-
sorbed in D’Alembert’s principle because HG4) is linear

'in 6q; . By adding\Ay;5q;=0 to the right-hand side of Eq.
(14, and by proceeding as before in Sec. Il B, the equations
of state under the linear constraints in E25) are obtained

in the form
follows.
Becausef, is independent of the velociti€g a general- d [ dL L NP .
ized D'Alembert principle, dt! aq; _T%_kk(q't)Aki(q’tHQi » (1=12,..,n)
dfoty ot | (29)
[a(ﬁﬁ-)_é’_n'_Qj 67;=0, (j=12,...,n+c) for all the coordinates. We now examine the validity of
) ! D’Alembert’'s generalized principle
D’Alembert generalized princi 22
( 9 principle (221 d[o(L+m@0] L+ mg0
can therefore be introduced wherel (7, 9,t)=L at| am - Q" om;=0,
+ N (1) f(q,t) is an augmented Lagrangian over an ex- ]
tended set of coordinateg=(q,\). On regarding ally; as (1=1,2,..p+0), (29
free, then applied to nonholonomic constraints Ed), whereu,(t) are
d[a(L+NF)]  AL+NF a different set of multipliers and where alily; are regarded
gt Y } am Q , (j=12,..,n+0c) as free. On introducin@,;, where
(23 d{dge) 9| .
. : 9=t 7 | " g | =120, (30
are the generalized Lagrange equations for the extended set dt\dq;) dq;
7j- The firstn equations of Eq(23) reprodl_Jce the correct and is zero fof >n, Eq.(29) can be rewritten as
equations of statg21), and the last equations reproduce
the constraint equationg,=0. Hence, D'Alembert's prin- | d[dL} dL . gy
- = + =+ Gy — gk Q =0,
ciple in Eq.(14), with the displacementsq; subject to the dt\ d; ar;J an (9
conditions in Eq(17), is equivalent to the generalized prin- (i=1.2....n+c). (31)

ciple, Eq.(22), with all coordinatesy; free. The replacement
of the basic principle Eq.14) with the subsidiary conditions The first n equations of Eq(31) provides the equation of
Eq. (17) by the generalized principle E22) without sub-  state,

sidiary conditions is the Lagrange multiplier rule. Both prin-

ciples provide identical equations of state, E2{l), and the E &L) iz _ﬂk%_ﬂkek__i_QNP (j=1,2,...n)
multiplier rule in Eq.(22) provides the shortcut. dtidq;) dq; am; e o '
It is important to note that the displaced patyjs- 5q; , (32

not only comply with the essential conditions in Efj7) for ~ as derived from D’'Alembert’s generalized principle, Eq.

the displacements, but also satisfy the equations of con29). The lastc equations of Eq(31) yield the constraint

straint, equations7), as expected. But E432) reproduces the cor-

_ _ rect equation(28) of state for the linear constraints in Eq.

fla+ g, =fd(a,n+sf(q.H)=0, 24 (25), only when Eq(30) for linear constraints vanishes, that

because there is no changé,=(df,/dq;)6q;=0 to the s, provided

constraint Eq(3). The displaced paths are therefore all geo- IAL IAL JA.  IB

metrically possible because they all conform to Exf). The cH= ( ki _ k') : _+< ki _ _k) } -0.

key requirement for application of the multiplier rule is that ! J9q;  Jq; gt dq;

(33
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Because condition Eq30) is basic to validity of Eq.(29),

95)(9,8) = (40, +303) 41+ 20,028,=0, (42)

the significance of this auxiliary restriction on the linear con-

straints(25) will now be explored.
In order for Eq.(25) to be a perfectexacy} differential of
a functionf,(q,t), we must have

ars

- Jf,
_{9_qui+_

et (34)

] d
Ayi(,1)q; +By(q,t) = afk

The correspondencky;=df,/dq; and B, = df, /dt provides
the (necessary and sufficiontonditions

A Pl PR Ay @5
dq;  4q9joq;  4qidq; g
By Ff P A -

9q;  dqiat  dtaq, at
for the “exactness” of Eq.(25). Provided the linear con-
straints(25) satisfy conditiong(35) and (36), an integrated
form f, therefore exists but may be unknown. Such con
straints are termedsemiholonomicand are denoted by
g"(g,0,t)=0. But the conditiong35) and (36) for exact-
ness yield condition Eq(33), for all g; which satisfy the

constraints. Semiholonomic constraints can therefore be co

rectly treated by D’Alembert’s generalized principle, Eq.
(29). In addition to exactness, semiholonomic constraint

(G =
tions of constraint appropriate to the displaced pathssq
are

gk(a+ 60,9+ 59,t) =gy(a,0,t) + 59x(q,a,1). (37)

Becauseg,(q,q,t) =0 for the true dynamical paty(t), the
constraint equations for the displaced paths change by

00t D0(0)+ S 35,1, 39
With the aid ofﬁqj(t)=d[6qj(t)]/dt, this difference is
59k=i%5q-(t)}—G j60;(t). (39)
dt og; KITH

The condition for the displaced paths to be all geometrically

possible is thag,(q+ 89,9+ 8q,t)=0, that is5g,=0 and

the constraints are invariant to displacements. For the linear

constraintg25), Eq. (39) reduces to

(L)

d (L)
k= 7:(Ajod)) — Gy’ éa; .

dt
On invoking the basic restrictiof26) on the displacements
and the exactness conditioia(k']f)=0, Eq. (40) reduces to

59"=0, which implies geometrically possible paths.
D’Alembert’s generalized principl€9) with Eq. (25) there-

Y| (40

is not exact but can be integrated via the integrating factor
®, (=q?) to give f,=q7+q3q5=constant. All exact con-
straints are therefore integrable, but all integrable constraints
are not necessarily exact. The conditiq3s) and (36) are

too restrictive for integrable constrairgg) , which can how-
ever be rendered in exact form by multiplying by the inte-
grating factor®,(q,t). Theng®"=d g now satisfies the
condition(33) for both exactness and geometrically possible
displaced paths. For example, the constraint,

of™@) =)= 4+ e - 20l =0,
43

now satisfies conditioi33) and is therefore in exa¢semi-
holonomig form. A known integrating factorb, implies a
_known integrated holonomic forh,=0, so that the simpler
holonomic result EqQ.(23) can be used rather than
D’Alembert’'s generalized principl€29).

The linear constraint&5) which do not satisfy the exact-
ness condition (33) are classified as nonholonomic.
B'Alembert's generalized principlé29) is therefore not ap-

ropriate for nonholonomic constraint®5), as is also con-
irmed by the fact that Eq(32) is not the correct equation

0) possess a further important property. The equagog) of state, becausG(kﬁ);éO, in general.

D’Alembert’s basic principle, Eq.14), is not amenable to
general nonholonomic constraintg), because there is now
no relation such as Eg26) which connects the displace-
ments4dq; in a linear form. The fact that Eq7) is, in gen-
eral, not a linear function ofj; prohibits writing a linear
interrelation between théq;’s essential for the application
of D’Alembert’s principle. General nonholonomic con-
straints(7) are therefore outside the scope of all principles
based on virtual displacements.

The key conclusions of Secs. IIB and 11 C are the follow-
ing:

(1) D’Alembert’s basic principle, Eq(14), is applicable to
holonomic and linear nonholonomic constraints, as is al-
ready known.

) D’Alembert’s generalized principle, E@22), applies to

holonomic constraints and E¢R9) applies to semiholo-

nomic systems, because the displaced paths are also geo-
metrically possible paths, an essential criterion for the
validity of the underlying multiplier rule. The solution of
both sets provides the actual pdiy(t)} and the con-
straint forces{Qj}.

The displaced pathg;+ dq; for linear nonholonomic

systems are not geometrically possible and therefore do

not satisfy the multiplier-rule condition.

It is important to distinguish restrictions imposed on vir-

)

(4)

fore holds for semiholonomic systems where the displaced
paths are all geometrically possible. Semiholonomic systems
are, in essence, holonomic, although the integrated holo-
nomic formf,=0 may not be known.

Linear constraint§25) can be integrable and yet violate
the exactness conditiof33). For example, the constraint,

9P°"(a,a) = (30%+293) 4, + 40,0,0,=0, (41)

is exact becausg3) is satisfied and it integrates directly to (5)
give f;= q§+ 2q§q1= constant. The constraint,
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tual displacements, such as E®6), from the actual
equations of constraint, such as E®), which must only

be satisfied within the equations of state that are eventu-
ally determined by some variational procedure. The con-
straint equationg,(q,q,t) =0 satisfied by the true dy-
namical pathq(t) do not necessarily imply that the
corresponding equatiorg (q+ 89,4+ 6g,t) =0 are sat-
isfied by the displaced paths.

General nonholonomic constraintg) are completely
outside the scope of even the most fundamental principle
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of D’Alembert. The generalizatidn® of any principle
based on Eq.14) to general nonholonomic constraints is
without foundation.

D. The 6L version of D’Alembert’s principle
The Lagrangian for the varied paths is

L(g+ 69,9+ 69,t)=L(q,q,t) +6L(a,q,1), (44)

where the change ib due to the virtual displacemerdi;
from the actual patly is

SL= i5q-('[)+ iﬁq-(t). (45)
ﬁqj J &qj J
With the aid of 5¢;(t) =d[ 6q;(t) ]/dt, the change is
d d L
5L=a[pj5qj'(t)]— E(a_qj)_a_m 6q;(t), (46)

where the generalized momentum is defined ps
=dL/9q;. D’Alembert's basic principle(14) can then be
recast indL form as
d NP
oL = 47 (P;da;) — Q94 - (47)
The differential version, Eq(14), and thedsL version, Eq.
(44), of D’Alembert’s principle are equivalent and are fun-

E. Generalization of Hamilton’s variational principle

Hamilton’s integral principle,

tp t2 t,  ['2 NP
: SLdt=46 : L dt=[p;60;]~ t [Q; 6q;]dt,
1 1

1

(50)

is D’Alembert’s principle, Eq.(47), integrated between the
timest, andt,. The § operator does not affect the time and
was therefore taken outside the integral. The appropriate Eq.
(28) for linear nonholonomic constraints is recovered by
making the time integration in Eq50) redundant. The ap-
plication of Eq.(50) then reduces simply to an application of
D’Alembert’s basic principlg14), as in Sec. I C. The main
advantage, however, of the integral principle Egp) is that

it becomes a variational principle,

t
5S= 5J ’L dt=0, (51)
t

1

by admitting only those pathg;(t) that pass through the
fixed end pointsq;(t,) =0, and by considering only po-
tential systems, that iQ'"=0. The virtual variations en-
sures that the transit time=t,—t; remains the same for all
the varied paths. Equatiof51) is Hamilton’s principle for
the least actiors= f:iL dt.

When attempting to generalize Hamilton’s variational

damental equations of dynamics. When the holonomic conprinciple, Eq.(51), the conditions for generalization of the

straints(3) are adjoined, rather than embedded, therecare
dq;'s in Eq. (46) that are dependent on the remaining (
—c) displacements. Because there is no chadfgs 0, to
the holonomic equation@®) among the varied paths, we may
add S\ (t) f]=0 to the left-hand side of Eq47). By uti-
lizing the augmented Lagrangiar over the extended set of
free generalized coordinateg=(q,\), the generalized ver-
sion of D’Alembert’s principle, Eq(47), is

. d
SL™ (i, m,0) = AL+ MO ()] = 53 (P07 — Q) 87,
(48)

If we use the definitior{46) for 5L, the generalized version
(48) reproduces the correct equations of state, (), and
provides another example of the multiplier rule.

For semiholonomic systems, the Lagrangianan also be
replaced by LY=L+ 4,9 because the constraints

0™(q,4,t)=0 are exact, thereby satisfying the condition

5gM=0 for geometrically possible paths. D'Alembert's
generalized principlé47) therefore yields the equations of
AL+ mgl™)

state
} am;

d [ oL+ g™
=Q\", (j=12,..n+c) (49)

dt 7,

for the extended coordinateg€q, u) for a semiholonomic
system. The multiplier rule of replacing in Eq. (47) by
L* =L+ u,Qx is, however, not valid for inexact linear or

general nonholonomic constraints, because the displace’Nd (53), respectively. Becausgy

more fundamental differential anil. versions, Eqs(14) and

(47) of D’'Alembert’s principle by the multiplier rule, are still

in effect. Equation(51) can be directly applied to holonomic
systems with the embedded constraints in @jto recover

the correct equations of stat&6) with Q'"=0. When holo-
nomic constraints are adjoined in order to determine the con-
straint forces, them. in Eq. (51) can be replaced by =L

+ N\ (V) f(q,t), becausest =0, to give Hamilton’s gener-
alized principle

sst= 5ft2|_*( 7, b)dt= 5ft2[L+)\k(t)fk(q,t)]dtzo,
ty ty
(52

where the d7;'s involved are free and independent. For
semiholonomic constraints, Hamilton’s principle is general-
ized to

t
SS= 5 J LGN 3, p,t)dt
ty

t
=5 [ Tt mveaaa=o (53

The essential reason for the validity @&2) and (53) is that
the pathsg+ §q admitted into the variational procedures are
all geometrically possible, that if,=0 andsg{*"=0 and
that thes and | operations commute. The correct equations
of state(19) and (49) with Q}'"=0 are recovered fron62)

(N js, by definition, the

paths are not geometrically possible paths, as explained iperfect differentiald f, /dt, then provided that, is known,

Sec. Il C.
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Eq. (53) reduces to
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Ill. ATEST CASE

Some of these key points may be tested by the physical
system depicted in Fig. 1. The solution of this spinning—
rolling problem does not appear to have been provided in
any standard textbook, although the limiting cases of rolling
without spinning down a plafieand rolling—spinning on a
horizontal plan&'® have been analyzed. Let,,=Xi+y]

+zk be the Cartesian coordinate of the center of nfasa)
of the coin of mas# and radiusR, where the origirO is at

the top of plane and where the directiang, andk form a

Cartesian X,Y,Z) fixed set of axes, with pointing directly
downward along the plane. Létand ¢ be the angles asso-
ciated with the rolling and spinning motions about the sym-
metry axis(which is perpendicular to the coimnd the axis
pointing anngR, the fixed outward normal to the plane. The
Lagrangian is

Fig. 1. An upright coin rolls and spins down an inclined plane of argle
Directions of space-fixed axes arej, andk, as indicated. Coin rolls with
angular velocity@ge= 6p about axisp which in turn spins with angular L= iM(®+y?) + 316%+ 31 pdp?+Mgxsina, (55
velocity wg= ¢k about fixed axisk. The center of mass has velocity

—RUE. wherels= BMR? and |, are the moments of inertia of the

body about the symmetry axis and the fixdigure axis,
respectively. Cases involving a solid sphere, coin, solid cyl-
inder, spherical shell, hoop, or cylindrical shell, can be
d _ treated by takingd=2/5, 1/2, 1/2, 2/3, 1, and 1, respectively.
L+ 7 (i) — mific | dt . . R . .
dt Rolling without spinningy=0, ¢=0. This example is a
. simple test of our proof that semiholonomiexact linear
- 5j “[L— ju(t)F(q,)]dt=0, (54)  constraintgy{*"(q,q,t) =0 are covered by D'Alembert’s and
t Hamilton’s generalized principles, E¢49) or Eq. (53), re-

the holonomic form(52), as expected. The relationship be- spectively. The rolling constrairg=X—R6#=0 is exact so
tween the multipliers is\,= — ., as also shown in Sec. that the generalized principles should work. If we apply ei-
Il C. ther Eq.(49) or (53) to the augmented Lagrangian,
Hamilton’s variational principle(51) cannot be general- . . . : . .
ized to inexact linear orpmorepge(engral nonholon%mic con-  LEVmip= MK+ 31507+ Mgxsina+ u(x—R0),
straints, Eq.(9) or (7), by replacingL by L+ gy in Eq. (56)
(51), as has been suggestedThe fact thatsg,# 0 for these  for the extended sep=(x, 6, ) of free coordinates, we ob-

cases implies that the varied paths are not geometrically pogain the equations of stath|x=Mg sina— i, | 6= iR, and

sible. We have shown that generalization of Hamilton’s and —RY. When d led. th i ield th |
D’Alembert’s principles rests on the multiplier rule which x= . 'én decoupled, these equations yield the accelera-
demands that the varied paths be geometrically possible, 4PN X=9sina/(1+p) and the frictional constraint forcp

property reserved only for holonomic and semiholonomicVhich produces the torque needed for rolling motion,
systems. [(B/(1+B)]Mgsina, in agreement with standard

result$®-1013ppbtained from holonomic theory, EQR2).
Rolling and spinning in two dimensiong/e now test to
F. Validity of generalized principles and multiplier rule see if linear conditions exist between the displaceméns
needed for D’Alembert’s basic principld4) and then see if
The generalized principles of D’Alembert and Hamilton the constraints imply geometrically possible displaced paths,
are effected by the multiplier rulésee the Appendix The  as needed for the generalized principles. The constraint for
theorem(rule) applies only when all varied pathsg|{ 5q) rolling is now
preserve the side conditiomg(q+ 89,4+ 69,t)=0, that is R T S o
the &q variation causes no changi,=0 to g,. The dis- 9:0%Y, ) =[X"+y" 7= (R0)"=0, (57)
placed paths are then geometrically possible in that they sawhich is nonintegrable and quadratic in the generalized ve-
isfy the same equations of constraint. It is only for holo-locities. There is no velocity component perpendiculaf to
nomic and semiholor(l%nic constraints that the appropriatgo that a second constraint is
criteria, 6f,=0 and5g,>"=0, are satisfied. For all nonholo- CN e g _
nomic constraints, the conditiorggy =0 cannot be satisfied _92(_)('y) xsmd-; ycos¢=0, ) ) (58)_
by the displaced paths and are therefore not good constaMthich is also nonintegrable, but linear in the generalized
side conditions, as the multiplier rule demands. The invarivelocities. That the coin remains upright implies that the cen-
ance of the constraint equations to displacements is the kdgr of mass coordinatesy) are also those for the point of
condition for application of the multiplier rule. The applica- contact of the coin with the plane and thatR, a holo-
tion of Eq.(6) to nonholonomic constraints is therefore with- nomic constraint which can be embedded from the outset
out justification. unless the normal reactiofconstraint of the plane on the

SSSN= 5 f “
ty
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coin is sought. From Eq$57) and(58), the virtual displace- nomic (exact lineay constraints which have the property that
ments satisfy all displaced paths are geometrically possible in accord with
2 2_p2 2_ the multiplier rule.
(20)7+(0y)"~R(69)"=0, (59 We have traced the development of various generalized
X sin¢g— 8y cos¢g=0. (60 principles from D’Alembert’s basic principle in such a way
as to render transparent their scope of application. It is useful

The relation(60) is linear in 6q; and therefore amenable to to keep the following conclusions in mind.

being absorbed into D’Alembert’s principle, E(L4). The
quadratic relation(59) cannot be directly absorbed. Fortu- (1) D’Alembert’s basic principle, Eq(14), is the most fun-
nately, for this case, the offending quadratic constré&sm) damental of all the principles considered here.

can be replaced by the combinatigh=g;?—g5 of g; and  (2) D’Alembert’s basic principle, Eq(14), and Hamilton's

g, to give variational principle, Eq(2), are well designed for holo-

_ _ nomic systems. Equatiofi6) is the equation of state.
g1(X,y,0)=%Xcos¢p+ysing—RO=0, (61)  (3) When constraint forces in holonomic systems are sought,
D’'Alembert's generalized principle, Eq{(22), and
Hamilton’s generalized principle, E@5), are appropri-

SX C0S¢p+ 8y sinp—RS50=0, (62 ate, because the varied paths under holonomic con-
straints are all geometrically possible and the underlying
multiplier rule is then valid. Equatio®) is the equation

which leads to the linear form,

which is now suitable for application of D’Alembert’s prin-
ciple. The displaced pathg + 6q; cause the changes,

of state.
59,= 6X COS+ 8y sinp— RSO (4) The correct equations of stat@8) for general linear
o _ nonholonomic constraints are furnished only by
—(Xsing—y cose) e, (633 D’Alembert’s basic principle, Eq.14), or its time-
50,= OX Sin— 8 COSh+ (X CoSh-+Y Sin ) 5¢b, |(rét0e)grated version, Hamilton’s integral principle, Eq.
s shown here, the generalized principles, an
(63D (5) As shown here, th lized principles, E88) and
in the constraint conditiong58) and (61). Becausedq; (53), are valid for semiholonomic systems. In these gen-
=d(4q;)/dt, then, on using the time derivatives of E¢S0) eralized principles, the constraints are automatically in-
and(62) together with the relation€8)—(62), 59, and 59, cluded and the displacements); are all free. Equation

(49 is the equation of state for semiholomic systems,
that is, those which satisfy conditions for exactness and
therefore geometrically possible displaced paths.

(6) Generalized principles are inappropriate for linear non-
holonomic constraints, because the constraint equations

reduce to 0 an®R(0#5¢— ¢356), respectively. Therefore, the
constraint(61) is semiholonomic. Integration yields the ho-
lonomic formx2+y?—R?#?=0. Because the sumi(\gy)
=6(N,g,) #0, we cannot use D’Alembert’s or Hamilton’s
gfg;;?gé_ed principles, Eq$29) and (53), respectively, as gk:O are not exact and changg from varied path to var-
Because the conditior60) and(62) on the displacements ied path. The underlying multiplier rule then loses valid-

are now all linear, the problem can be solved b ity. . . .
D'Alembert's basic principle(F1)4), or by its time-integrated y(7) The theory for nonholonomic constraints with a general

version, Hamilton’s integral principl¢50). The solution is velocity dependence remains outside the scope of the

straightforward and reduces to the standard restfitfor most fundamental principle, E¢14) of D'Alembert. It
horizontal motion ¢ =0). is impossible to extract from the equatiaps=0 of gen-

eral nonholonomic constraints the linear relation be-
tween the 6q;'s required for the application of

D’Alembert’s principle unless the constraints are either
IV. SUMMARY AND CONCLUSIONS linear in velocity or holonomic. Nonholonomic con-

_ _ ] straints are therefore outside the scope of any of the prin-
This paper has presented the basic reason why Hamilton’s  ¢jples based on D’Alembert’s principle.

variational principle and the more basic principle of

D’Alembert cannot be generalized by substituting the aug- The above conclusions reflect the intrinsic merit of recon-
mented Lagrangian Ed8) in either Eq.(2) or Eq.(14) to  structing the variational principle, Eq2), from the more
cover_general nonholonomic constraints, as the multipliefyndamental D’Alembert principle, Eq14) via Eq. (47), so
rule>" in the calculus of variations might suggést. The  that the validity of the various stages involved becomes di-
multiplier rule requires that the side conditiogis=0 be sat-  rectly exposed. Pitfalls® can easily occur by arbitrarily in-
isfied by all varied paths, which must therefore be geometrivoking the multiplier rule to assert generalized principles
cally possible. The displacemends; in nonholonomic sys-  such as Eqg29) and(53), without first ascertaining the criti-
tems violate this rule because they cause nonzero changeal but hidden condition that the varied paths must be geo-
89, #0 in the constraint conditions and the displaced pathsnetrically possible. We have shown here that the condition is
are not geometrically possible. The constrajpt=0 is satis-  satisfied only for holonomic and semiholonomic systems.
fied only by the actual physical pati(t) in configuration General nonholonomic constrainf® can be analyzed by
space and not by the individual members of the family ofother principles® that involve, for example, the virtual ve-
varied paths for nonholonomic systems. The multiplier rulelocity (Jourdain displacements, constructed by maintaining
cannot therefore be used to generalize Hamilton’s oboth the configuratiom and timet fixed, in contrast to vir-
D’Alembert’s principles to cover nonholonomic constraints. tual displacementsq; which keep onlyt fixed. The Jourdain

It can however be applied to all holonomic and semiholo-variational principle is the subject of a separate paper.
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APPENDIX: THE MULTIPLIER THEOREM generalized velocitie§; , thenp;§;=2T and the least action
principle, Eq. (A5), reduces to the Euler—Lagrange—

We will determine the pathg;(t); i=1,2,..,n that pro- Maupertuis principle;&1+12

vide an extremum to the functional

t tr
J= f “Fg.g.0dt, (A1) A ft 2T dt=0, (AB)
ty 1
subject to thec<n-finite auxiliary (side) conditions of least action. The multiplier theorem, Eq#3) and (A4),
0«(0,9,t)=0. (k=1,2....c). (A2) ~ ¢annow be applied to extract Lagrange’s equations from Eq.

(A6). The condition for the variatiofA6) is that the Hamil-

A basic theoremt” in the calculus of variations can be tonianH does not depend on time and remains fixed at the
invoked, provided we admit to the variational competitionsame value for all the paths considered. In the sense that
only those curves(t) that satisfy fixed end-point conditions (t,—H) are conjugate variables, the principla6), which
dq(t1,) =0 andc-finite fixed side conditions as in EGA2).  admits paths with the same constahtis complementary to
The varied curves must all be geometrically possible by satHamilton’s variational principle, Eq(2), which admits only
isfying gi(q+ 59,9+ 60,t) =09k(d,4,t) + 59x(d,4,t) =0, so  those paths with the same transit timest,—t, into the
that 6g,=0. The physical pathy(t) is then determined by variation. ForT=T,, H equals the total enerdy=T+V, so

the extremum determined by the free variation of the modithat Eq.(A6) becomes modified, under the fixed constraint

fied functional,

t t
"T:ftzFWq,q:t)th ft TF(0.8,D +\(Dgaa,0]dt,
(A3)

without any side conditions imposed. The physical p#tt)
then satisfies the Euler—Lagrange system of equations,

d (oF! aFT—O =12 + Ad
gt (9—77] (9—771_— , (j=1,2....n+c) (A4)
for the extended sey={q;,d,..-,0n N1, 2,... Ac} Of (n

+c¢) variables. Because" does not depend oR(t), the
last c members of the set of equatiofd4) reproduce the
side conditiongA2). The validity of the multiplier theorem,
Egs. (A3) and (A4), rests on the fact that conditior{s\2)

must be satisfied bwll the varied paths therein, that is,
89,=0. This condition is satisfied for holonomic and semi- 3

g=(T+V)—E=0 for all varied paths, to finding a station-
ary value of

ta
Aft [2T(q,)+M1{T(q,q)+V(q)—E}]dt=0. (A7)

The applicatioft'**2 of this modified version(A7) of the
Euler—Lagrange—Maupertuis principle leads directly to the
standard Lagrange’s equatiofis), with Q}'"=0 for poten-
tial systems.
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