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Abstract

Although number words are common in everyday speech, learning their meanings is an arduous, drawn-out process for
most children, and the source of this delay has long been the subject of inquiry. Children begin by identifying the few small
numerosities that can be named without counting, and this has prompted further debate over whether there is a specific,
capacity-limited system for representing these small sets, or whether smaller and larger sets are both represented by the
same system. Here we present a formal, computational analysis of number learning that offers a possible solution to both
puzzles. This analysis indicates that once the environment and the representational demands of the task of learning to
identify sets are taken into consideration, a continuous system for learning, representing and discriminating set-sizes can
give rise to effective discontinuities in processing. At the same time, our simulations illustrate how typical prenominal
linguistic constructions (‘‘there are three balls’’) structure information in a way that is largely unhelpful for discrimination
learning, while suggesting that postnominal constructions (‘‘balls, there are three’’) will facilitate such learning. A training-
experiment with three-year olds confirms these predictions, demonstrating that rapid, significant gains in numerical
understanding and competence are possible given appropriately structured postnominal input. Our simulations and results
reveal how discrimination learning tunes children’s systems for representing small sets, and how its capacity-limits result
naturally out of a mixture of the learning environment and the increasingly complex task of discriminating and representing
ever-larger number sets. They also explain why children benefit so little from the training that parents and educators usually
provide. Given the efficacy of our intervention, the ease with which it can be implemented, and the large body of research
showing how early numerical ability predicts later educational outcomes, this simple discovery may have far-reaching
consequences.
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Introduction

Although number words are highly frequent in languages like

English, and appear regularly in child-directed speech, children’s

acquisition of them is slow and labored [1]. Ask a three-year old

for ‘‘3 balls,’’ and they are likely to give you a handful instead,

having treated ‘‘3,’’ rather indiscriminately, like ‘‘some’’ [2]. This

behavior does not stem from an inability to recognize differences

between set-sizes: even 6-month-olds are able to discriminate

between large set-sizes if the ratio is at least 2:1 [3]–[6] and this

discriminability ratio becomes more fine-tuned over time [7]–[[9].

Children’s difficulties with number are thus unlikely to be due to

problems with detecting differences in quantity [10]. Yet nor do

they stem from an inability to grasp the relationship between

language and quantity: one- and two-year-olds grasp that number

words relate to quantities [1], [11] and are often quite adept at

reciting the count sequence [1], [12]. The puzzle, then, is why

children – who clearly both recognize number words as quantity

designators and discriminate between set-sizes – go through an

extended phase where they fail to understand how specific words

match to specific quantities [13].

An ordinary child learning about number certainly will not

suffer from any lack of exposure to count-relevant auditory and

visual stimuli: count words are highly frequent and sets of items are

everywhere. However, learning to discriminate which words

match with which sets is not an insignificant problem: it involves

1) abstracting representations of specific set-sizes from the variable

objects that make up any particular set, and then 2) mapping those

representations on to specific number words. Here, we show how

tightly coupled these processes are in learning [14] and how they

are effectively impeded by the way information is structured in

English, and many other languages. We present a formal analysis

and series of simulations that illustrate the problem and suggest a

means of correcting it. Further, our simulations offer a solution to

a puzzle relating to the nature of numerical knowledge: while most

English speaking children will eventually learn to recognize and

name sets of items in the small number range 1–4 without relying

on counting [15], [16], in most cases, this ability does not reliably

develop much beyond these values [17]. In our model, this pattern

emerges naturally as a result of the discriminatory requirements of

number learning, and the characteristics of the environment in

which children learn numbers words.
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A training experiment then puts this analysis of number

learning to the test, contrasting the performance gains of children

after typical number training – in which information was

presented as usual – with that of children after restructured

number training – in which the sequencing of linguistic

information was manipulated to make it more conducive to

learning and discrimination. The experiment reveals that when

information is structured appropriately, 3-year olds rapidly

improve their accuracy and consistency on not only trained

number sets (2, 4, 6) but also on untrained sets (3, 5, 7). The

improvement of the children following our intervention is

particularly remarkable given that other recent training studies

with older children have failed to find improvement even for

trained numbers [18], a finding replicated by the children in our

‘typically structured’ training condition.

The Role of Information in Learning
In what follows, we describe and model the problem of learning

number sets in learning and information theoretic terms. Given

that straightforward applications of this approach are rare in

language research, it is helpful to provide a basic outline of

learning theory at the outset, particularly since contemporary

models of learning represent a significant departure from the

classic stimulus-response paradigm and do not share many of its

limitations [19], [20].

Importantly, learning is no longer conceived of as simply a

running tally of rewards and punishments; nor is it thought to be a

process of accumulating simple associations between cues and

outcomes in isolation. Instead, learning is best understood as a

process that has evolved to help a learner better predict events in

the world around her by weighing and assessing the informa-

tivity of cues for predicting relevant outcomes. In a similar vein,

learning is no longer conceived of as simply a series of

stimulusRresponse associations. Rather, it is understood as a

process in which all the information available to a learner – both

from the environment, and prior experience – is brought to bear

on the task of predicting an outcome. Learning models describe

the way that this information is sampled and processed for the

purpose of better predicting events in the environment [21].

In line with this, experimental work in animal learning has

demonstrated that when learning the predictive relationship

between a given cue and a given outcome, animals do not simply

chart how often cues predict certain outcomes, they also track how

often cues fail to predict potential outcomes. The engine that

drives learning is not positive reinforcement, but surprise, or more

formally, ‘prediction error’ [22], [23]. In learning models,

prediction error is formalized as the discrepancy between the

expected and actual outcomes a learner experiences, and learning

is a process of incrementally updating a learner’s expectations in

response to events [24].

These formalized learning rules have been shown to accurately

predict the behavior of humans and animals across a wide variety

of learning tasks, and to accurately reflect the firing patterns of

mid-brain dopamine neurons [25]–[27]. When an event in a

learner’s environment is incorrectly predicted, it provokes an error

response [20]. This response is bidirectional: if an unexpected

event occurs, dopaminergic activity spikes; if an expected event

does not occur, activity dampens. More subtly, the strength of this

spike – or dampening effect – is contingent on how poorly

predicted the event was to begin with. Greater discrepancies

between expectation and reality result in more error, and so more

learning occurs; conversely, as discrepancies shrink, errors

decrease in kind, and learning asymptotes [27]–[30].

Given the weight of behavioral and neurobiological support for

this learning process, and the insight it offers into the way children

learn of other verbal categories [21], we next consider whether it

might help explain why children are so taxed by the challenge of

acquiring an understanding of number.

Information Structure in English
The first problem that a child learning number words must

overcome is that she will never encounter numerical sets

independently: she may encounter three apples, or three bears,

but she will never encounter a ‘‘set of three’’ on its own [31]. To

further complicate matters, it is virtually impossible to ascertain

the meaning of a given number word from a single encounter. For

example, for a child faced with two apples and three oranges, the

cues to the words ‘‘2’’ and ‘‘less’’ and ‘‘3’’ and ‘‘more’’ will initially

be identical. This creates a discrimination problem: over time, a

child must learn to discriminate which features appropriately

match a given word in a given context (Figure 1).

In many biological and computational models of learning, this

kind of problem is solved by adjusting the degree to which various

features in the environment are valued as cues to predicting a

relevant outcome. This ‘adjustment process’ is competitive. Over

the course of learning, features compete for predictive value, a

contest which highlights reliably informative features, while

downgrading or even eliminating uninformative features [21],

Figure 1. The challenges presented by number learning. This picture contains nine objects: one red ball, two hats, three balls and four
bears; there are more bears than balls or hats, fewer hats than balls, and more balls and hats than bears. Somehow, a child must discern the cues
that discriminate between appropriate and inappropriate usage of each word. Unless one assumes that children’s vocabulary is innate, this problem
will have to be solved even if children are granted some innate representation of number. That is, even if children have some internal concept of two,
they still need to map the presence of two things in the environment to the word ‘‘2’’ and not to, say, ‘‘3,’’ which might be heard in the same context.
doi:10.1371/journal.pone.0022501.g001

How Children Learn the Value of Numbers

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e22501



[23], [32], [33]. Characterized in these terms, number learning is a

process of coming to value the appropriate set-size as the most

reliable cue to a given number word, while at the same time

discriminating it from other less reliable competitors (such as

alternate set-sizes and other object features). The end goal is one of

establishing which set-size best predicts which number word.

Notably, so long as a specific set-size is the most informative

predictor of a number word in the learning environment,

competitive discrimination learning ought to lead naturally to

successful number learning [21], [23], [32], [33], allowing a child

to discover and form a strong association between, say, set-size

three and the word ‘‘3,’’ while simultaneously weakening any

spurious associations to ‘‘3’’. With the correct association in place

– and with ever-reducing interference from competitors – a child

will then be able to accurately use and comprehend ‘‘3’’ (Figure 2).

However, the picture is somewhat more complicated than this

suggests. Given that learning is driven by prediction, the temporal

structure of information can play a critical role in whether or not

competitive learning actually occurs. Indeed, the effects of

competitive learning can be isolated by comparing learning in a

situation where complex (multi-feature) stimuli predict a series of

discrete classes, to its inverse [21]. As Figure 2 shows, learning to

predict a discrete Label – such as ‘‘2’’ or ‘‘3’’ – from a complex set

of Features (FL-learning) [21] allows for competitive learning

amongst features, causing value to shift from features that produce

more error to those that produce less. However, when this

arrangement is temporally reversed, and the process becomes one

of learning to predict a complex set of Features from a discrete

Label (LF-learning), competition between cues cannot occur, since

the label is the only cue present (value cannot transfer to other cues

when there are no other cues) [21], [23]. Although these two

processes appear similar, the differences in their temporal

sequencing result in their having markedly different information

structures, which produce very different patterns of learning [21].

This can be illustrated in relation to color, another aspect of

vocabulary that children master only after a noticeable delay [34].

Children’s pattern of delay in learning colors words bears a

striking resemblance to the pattern observed in number learning.

Although color words appear in children’s vocabularies from a

very young age, sighted children’s early use of them is comparable

to that of blind children: that is, they can produce them in familiar

contexts (‘‘yellow banana’’), but cannot pick out novel objects by

color, or reliably apply color words in unfamiliar contexts [35],

[36]. Here again, children do not appear to grasp how specific words

match to specific hues.

Colors and numbers share several notable characteristics that

may help explain the common pattern. First, like numbers, colors

are properties of the environment, and cannot be encountered

independently. Second, as with set-sizes, many different shades of

color are present in any given context (Figure 1). This means that

in order to learn to map colors to their labels, a child must

somehow discriminate the range of hues that best predict a specific

color label from an environment in which color is ubiquitous [21],

[37]. Fortunately, the difficulty of this problem can be significantly

reduced if a child is encouraged to localize mappings – for

example, by seeking to extract color matches from known objects.

This situation allows the environment to be sampled in way that is

far more informative [36]. Unfortunately, as we will show in a

moment, the structure of many languages proves largely unhelpful

to learners in this regard [21].

To understand why, consider a child learning about the

relationship between the features of a ball and various color labels

(Figure 3). As noted above, there are two possible ways this process

can be structured temporally: either the various Features of the

ball can predict the color Label (Feature-to-Label-learning, FL) or

the color Label can predict the ball’s Features (Label-to-Feature

learning, LF) [21]. Because FL-sequencing produces competitive

learning, whereas LF does not, the results of learning from these

information structures differ markedly [21], [38]. However, as

Figure 3 illustrates, which learning sequence results depends

critically on how a child’s attention is directed in time, which, in

turn, depends on whether the novel color label is introduced before

or after the familiar noun.

Like adults, children track linguistically relevant events in their

environment as speech unfolds in time [41]–[44], often directing

their gaze at objects or object features as they are labeled in

discourse. However, this kind of linguistically mediated visual

attention requires that children actually know the meanings of

labels. Because children learn the semantics of common nouns

long before they learn those of common colors and numbers [45],

Figure 2. How the number three is learned over time. In competitive discrimination learning, positive evidence (reinforcement) increases
associative value for cues, whereas negative evidence (prediction-error) correspondingly decreases value. In the left panel, each of the features
present potentially predicts ‘‘3.’’ In the center panel, many of these unhelpful features will later erroneously cause ‘‘3’’ to be expected. Because these
unhelpful cues will result in prediction-error when ‘‘2’’ is heard instead, they will lose value as cues to ‘‘3,’’ both in this instance, and in other cases
where they erroneously predict a number word. Further, because discrimination learning is competitive, they will lose associative value to more
reliably predictive cues (namely, set-size three). In the right panel, further positive evidence means that three continues to gain value with respect to
the initial set of cues. As can be seen, learning is facilitated both by positive evidence – hearing the word ‘‘3’’ after seeing sets of three – and negative
evidence – unlearning erroneous cues to ‘‘3,’’ like round and green. Provided that the relationship between the labels and the set-sizes is reliable, set-
size three will eventually be learned as the meaning of ‘‘3.’’
doi:10.1371/journal.pone.0022501.g002
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[46], a typical 2K year old will readily direct her gaze toward a

ball (or ball-like item) upon hearing the word ‘‘ball,’’ whereas a

color word such as ‘‘blue’’ or ‘‘red’’ will not direct her visual

attention in this way [47]. What this means, in practice, is that the

sequence of events in an English sentence employing a postnominal

construction (such as ‘‘Look! The ball is blue’’) presents the

information a child needs for color-label discrimination prior to the

label that needs to be learned about, a sequence which supports

FL-learning. However, the opposite is true for prenominal

constructions (such as ‘‘Look at the blue ball’’). Here, the color

label is heard prior to the known label, which means that the child’s

attention is not drawn to the ball until after she hears ‘‘blue.’’

Accordingly, prenominal presentation typically promotes LF-

learning.

These two information structures can have dramatically

different effects on learning. In FL-learning, all of the features of

the ball are initially available as potential cues to ‘‘blue,’’ but with

experience, unreliable features (such as shape, size and texture)

lose value to the most reliable feature (color). This results in

competitive learning, which produces predictive representations that

value features relative to their informativity - that is, how well they

predict the relevant label. Over time, this allows children to master

the meanings of color labels [21]. By contrast, in LF-learning,

competitive learning amongst features is not possible – as there is,

in effect, just one feature – and as a consequence, a child will learn

a simple, probabilistic representation of the relationship between the

label and object features (specifically, the co-occurrence probabil-

ity between the label and each feature, normalized by the

probability of the label). Because overlapping, unreliable features

will not be appropriately ‘unlearned,’ color discrimination will be

poor. Consistent with this analysis, a prior study found that

training with postnominal constructions (FL) significantly im-

proved the accuracy and consistency of two-year olds’ color word

application, whereas a similar schedule of prenominal training (LF)

had no effect on performance at all [21].

Unfortunately for English-speaking children, however, color

words are used prenominally around 70% of the time in child-

directed speech [48], which may help explain why color

acquisition is typically delayed [21], [35]. This also raises the

question of whether information structure plays a similar role in

the acquisition of number words. In English and many other

languages, number words are far more likely to occur in a

prenominal position (e.g., ‘‘those three chairs’’), than in a

postnominal position (e.g., ‘‘those chairs, the three of them’’). If

our analysis is correct, hearing a number word postnominally will

facilitate competitive discrimination learning (helping a child

discriminate what it is about, say, those chairs that predicts the word

‘‘three’’), while instances in which number words occur pre-

nominally will be far less helpful to a child trying to learn to isolate

the appropriate semantic cues to number words (i.e., set-sizes).

Of course, words are not the only cues that a child has to guide

visual attention, and there may be alternate ‘routes’ to FL-

learning, even when a prenominal expression is used. Research

into joint attention has shown that children also make use of social

cues such as gaze and gesture in learning to discriminate a word’s

meaning [49]–[51]. For example, a parent might hand a child a

handful of cookies before saying, ‘‘Here are three cookies,’’ or else

point or look directly to a trio of cookies before mentioning their

set-size. However, situations in which this kind of explicit

instruction takes place are not representative of the majority of

contexts in which children encounter number words [45].

Moreover, there is a great deal of variability in caregiver-child

interaction during language learning: while some parents engage

in frequent and sustained verbal interactions with their children,

and explicitly label new objects, others only rarely communicate

directly with their children, and do not engage in overt teaching

behaviors [52].

To better isolate the effects of word order on number learning,

we make a simplifying assumption here that all prenominal

constructions support LF-learning, and all postnominal construc-

tions support FL-learning. The analysis we present suggests that

even learning in socially guided situations will benefit greatly from

the information structure in postnominal constructions, and that

postnominal ordering may be critical for learning in the majority

Figure 3. Linguistic sequence determines learning sequence. Learning can be dramatically affected by how information is presented to a
learner in time [39]. Here, a child learns about the relationship between the features of a ball and various color labels. As illustrated, there are two
possible ways this process can be structured temporally: either the child hears the color word used postnominally, which promotes Feature-to-Label
learning (the Features of the ball predict the color Label, bottom panel), or the child hears the color word used prenominally, which promotes Label-
to-Feature learning (the color Label predicts the ball’s Features, top panel) [21]. Prior research into category learning indicates that only FL-
sequencing facilitates accurate category acquisition, whereas LF-sequencing does not [21,38,40].
doi:10.1371/journal.pone.0022501.g003
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of contexts in which children naturally encounter number words in

speech.

Analysis

To formally illustrate the problems involved in number

learning, we conducted three sets of simulations. The first

simulated the effects of prenominal (LF) and postnominal (FL)

presentation on number learning; the second examined the effects

that the peculiar information structure of number sets has on

number learning; and the third integrated these factors, to

examine predicted learning outcomes. All of the simulations

employed the same reinforcement learning rule [23] and

parameter values. Learning was simulated using the Rescorla-

Wagner model [23], a widely used learning rule that has been

applied to numerous learning effects in animals and humans, and

which benefits from much neurobiological support [27]. While it

cannot account for all the phenomena observed in associative

discrimination learning, the model provides an accessible formal-

ization of the basic principles of error-driven learning, and yet is

sufficiently detailed to allow a straightforward testing of the

analysis we present here.

Learning Model
The Rescorla-Wagner model simulates changes in the associa-

tive strengths between individual cues and an outcome as the result

of discrete learning trials. If the presence of a cue or outcome X at

time t is defined as present(X, t), and its absence as absent(X, t),

then the predictive value V of a cue Ci to outcome O after a

learning event at time t+1 can be specified as:

V
tz1
i ~V

t
i zDV

t
i ð1Þ

and changes (D) to the predictive value of V t
i are defined as:

DV
t
i ~

0 if ABSENT (Ci , t)

aib1(l{
P
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aib2(0{
P

PRESENT (Cj , t)
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8

>

>

<

>

>
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Learning is thus determined by a discrepancy function in which l

is the total value of a predicted event O (the maximum amount of

associative strength that the event can support) and Vj is the

predictive value for O given the cues Cj present at time t.

When cues present on a trial are positively supported – i.e.,

where a predicted outcome occurs – the Rescorla-Wagner

learning rule will produce a negatively accelerated learning curve

(the result of events becoming better predicted, which reduces the

discrepancy between what is expected and what is observed) and

asymptotic learning over repeated trials (as events become fully

predicted). When cues present on a trial produce error – i.e.,

when a predicted outcome fails to occur – l (the value of the

expected outcome) takes a value of zero because it didn’t occur. In

these cases, the discrepancy function will produce a negative value,

resulting in a reduction in the associative strength between the

erroneous cues and the absent outcome. Because error reduces the

predictive value of cues, and because the total amount of value a

given outcome can support is finite, this process causes cues to

compete with one another for relevance in learning, leading to

patterns of learning that usually differ greatly from those that

would arise if learned values simply reflected correlations between

cues and outcomes [19].

The rate at which learning takes place in the model (D) is

determined by two factors: the overall learning rate b (where

0#b#1), and the individual saliency of cues, ai (where 0#a#1).

Because we were interested in how learning affects the relative

value of cues, ai was set to 1, eliminating its influence on our

simulations, while l=100% and bj=0.2. Thus the only free

parameter was the learning rate, which we held constant in each

implementation reported below.

Simulation 1: Sequencing Effects in Number Learning
Simulation 1 modeled the learning of the association of sets of 2,

4 and 6 objects – with color, shape and size dimensions – with the

labels ‘‘two,’’ ‘‘four’’ and ‘‘six.’’ Two simulations were implement-

ed, one in which the sets and object features served as cues to the

number labels (Feature-to-Label, FL), and one in which the

number labels served as cues to the sets of objects and their

features (Label-to-Feature, LF). Figure 4 illustrates why learning in

Figure 4. Simulation 1: The impact of temporal sequ nce on number learning. Panel A depicts a simulation of number learning in which
object Features predict Labels (FL-learning), while Panel B depicts a simulation in which Labels predict Features (LF-learning). The models learned to
associate sets of 2, 4 and 6 objects to the labels ‘‘two,’’ ‘‘four’’ and ‘‘six.’’ In addition to number, each object set had size, shape and color cues that
competed as cues with set-size as predictors of number words. These graphs depict the value of mappings between the object features, set-sizes and
the label ‘‘six’’ learned in each simulation. In FL-learning, uninformative cues are completely devalued as a result of cue competition, leading to
enhanced discrimination.
doi:10.1371/journal.pone.0022501.g004

ð2Þ
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which object Features predict Labels (FL-learning) should produce

far better learning of number words than when Labels predict

Features (LF-learning). As can be seen, FL-learning result in

considerably greater discrimination of the appropriate cue-label

mapping (e.g., set-size 6 to ‘‘six’’) than LF-learning, where

competing activations continued to cause interference.

Simulation 2: Information Structure and Subitization
In Simulation 1, all set-sizes and numbers were experienced

with equal frequency. However, it is unlikely that this is the case in

real life. To get an estimate of the distribution of different set-sizes

children might actually be expected to encounter and learn from,

we examined the spoken distribution of number words in two

languages – English and Spanish – taking frequency of mention as

an index of the relevance that sets of various sizes have in

children’s lives. Both languages revealed the same distributional

pattern, with the rank frequency of number words decreasing by

quantity, following an inverse power function: ‘‘one’’ was the most

frequent number word, followed by ‘‘two,’’ ‘‘three,’’ and so on

(Table 1). This suggests that the larger the set, the less frequently it

is experienced (Figure 5).

At the same time, the discrimination problem a learner faces

increases steadily with set-size: while the cue to set-size one is

present in every set, the cues to two are only in every set greater

than one, the cues to three are only in every set greater than two,

and so on. This means that the confusability of sets – and the

number of cues competing for value in each set – increases with

set-size, which in turn increases the amount of error (i.e., training

trials) that are required for the appropriate set-size cue to be

successfully discriminated. However, given that the extra compet-

itors to larger sets will themselves be ever larger and less frequent,

larger sets will generate less and less of the error that makes

discrimination learning possible. Because confusability – and error

– are unequally distributed in number sets, this leads to an

intriguing situation with regards learning: as set-size increases, the

problem of discrimination gets steadily harder, requiring increasing amounts of

information to facilitate learning, just as the information available to the learner

is shrinking.

To examine how the distribution of error among different sets

might interact with the environmental relevance of different set-

sizes, Simulation 2 modeled how the features of sets of 1–7 objects

were associated with the labels ‘‘one’’ to ‘‘seven’’ when sets were

trained in proportion to their spoken frequency in English. The

simulation made two assumptions: first, that learners can

discriminate objects from one another, and second, that they

can contextually discriminate objects that are part of larger sets

from objects that are not part of a larger set (i.e., they can use

context to discriminate a person standing alone from the same

person standing with someone else). These elementary assump-

tions were reflected in the cue structure available for learning.

As Figure 6 illustrates, while learning to discriminate sets 1, 2

and then 3 and 4 was relatively straightforward, discriminating sets

5 and 6 required markedly more training, and discrimination of

set-size 7 remained poor, even after hundreds of training trials.

The pattern of learning this produces appears to conform neither

to the incremental nature of number sets, nor to Weber’s law,

which states that fixed levels of discrimination should occur

between proportional set-sizes (i.e., 1:2 and 5:10 should be equally

discriminable). Given that the input to this simulation comprised

straightforward assumptions about the representation of sets and

the environment in which they are learned, this result is striking.

In recent years, there has been much debate in the number

literature over whether the differences in the way that smaller and

larger sets are processed – and, in particular, in the way that

people’s ability to identify number sets without counting is limited

to smaller numerosities – is evidence for a specific, capacity-limited

system for representing small sets [56], or whether the represen-

tation of smaller and larger sets is continuous [57]. This simulation

reveals how, once the environment and the representational

requirements of sets are taken into consideration, a continuous

system for learning, representing and discriminating set-sizes can

give rise to effective discontinuities in processing (Figure 6A). This

finding suggests one way in which these opposing perspectives

might be formally reconciled, by showing how discrimination

learning tunes the system for representing small sets, and how its

capacity-limits result naturally out of a mixture of the learning

environment and the increasingly complex task of discriminating

and representing ever-larger number sets.

Simulation 3: Improving Set-Size Discrimination
Simulation 3 extended Simulation 1 by adding representations

of size and shape to the sets of objects, as competing cues. Like

Simulation 2, however, this simulation examined the effect that

FL-training would have on a model previously trained on a more

‘natural’ distribution of sets: i.e., that observed in English and

Spanish. The simulation was trained for 110 trials on the usual

distribution with which numerical terms are related to sets in

spoken English (i.e., the frequency with which number words are

used to describe sets of nouns, see Table 1), and then for 18 trials

on a repeated pattern of sets of 2, 4 and 6 objects, to replicate the

FL-training blocks of the three-year olds in our experiment.

Figure 7 shows how six FL-training blocks of even sets (2, 4, 6)

actually improved discrimination of untrained, odd sets (5, 7).

As part of Simulation 3, we also ran five further simulations in

which the last 18 trials were trained on the usual distribution of

numerical terms in spoken English, and an average of the

associative strengths learned between the cues and labels in these

trials was taken for the purposes of comparing learning under

‘normal conditions’ with the training simulation (broken lines,

Figure 7).

For further discussion of these results, please consult the

Postscript. R-files containing a re-implementation of the simula-

Table 1. The frequency of number words in English and
Spanish.

CORPUS DEL

ESPAÑOL

Tokens Per

Million Words COCA

Tokens Per

Million Words

Uno 1079* One 856

Dos 928.17 two 707

Tres 468.93 Three 368

Cuatro 248.99 Four 224

Cinco 234.11 five 204

Seis 155.44 Six 156

Siete 85.75 Seven 87

*estimate.
The table shows the spoken frequency counts of numbers 1–7 as they occur
prenominally (e.g., ‘‘six hats’’). The counts are taken from the 385 million word
Corpus of Contemporary English (COCA) [53] and the 100 million word Corpus
Del Español (CORDES) [54], respectively. (Note: The English-Spanish comparison
is slightly complicated because ‘‘uno’’ is gendered in Spanish: it takes the form
‘‘una’’ with some nouns, and ‘‘una’’ is not used exclusively as a number word.
The figure for ‘‘uno’’ presented here is a weighted estimate: number-word+noun

sequences : tokens of each number word in the corpus.).
doi:10.1371/journal.pone.0022501.t001.
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tion, along with a Rescorla-Wagner (ndl) learning package, are

available at http://cran.r-project.org/web/packages/ndl/.

Materials and Methods

We have described how a child might learn number words. The

question is, do children learn in this way? Can manipulating the

typical information structure of words in English – by teaching

numbers in postnominal contexts – improve children’s under-

standing of number?

Ethics Statement
The experiments reported here were done in accordance with

the Declaration of Helsinki. Additionally, they followed the ethical

Figure 5. The distribution of number words follows an inverse power function in both English and Spanish. Panel A shows the relative
frequency with which the numbers 1–7 are used to describe sets of nouns in spoken English and Spanish (r = .999) [53,54]. To ensure that the striking
similarity in set mentions we found in the distribution of each language was not influenced by our weighted estimate of ‘‘uno,’’ we also examined the
relationship between the frequency of number-word+noun sequences in English and the raw frequency counts for Spanish number words. Panel B is
a graph of the relative frequency with which the numbers 1–7 are used to describe sets in spoken English [53] plotted against the relative frequency
of the numbers 1–7 in the 100 million word Corpus Del Español [54]. Again, the same pattern and correlation (r = .999) was observed. These findings
suggest that the distributions of number words in English and Spanish conform well to Benford’s law, which holds that lists of numbers from real-life
sources of data will inevitably show an inverse power distribution [55]. We should note, however, that the probability distribution of numbers is
somewhat more complex than this captures: because the decimal system – base ten – is employed for most everyday purposes, multiples of 10, 100,
1000, etc., tend to be used much more frequently than Benford’s law would predict, and similar, albeit smaller, peaks in usage frequency can be
observed for multiples of five.
doi:10.1371/journal.pone.0022501.g005

Figure 6. Simulation 2: Subitization is a product both of the learning environment and the representational requirements of
discriminating larger sets. Panel A shows learning to discriminate between set-sizes 1–7 after training on sets 1–20 according to their spoken
frequency in English and Spanish [53,54]. As can be seen, sets 1–4 are discriminated straightforwardly, 5 and 6 require markedly more training, and 7
is discriminated only very slowly. For comparison, Panel B shows learning to discriminate between set-sizes 1–7 after training in which the sets 1–8
were presented with equal frequency.
doi:10.1371/journal.pone.0022501.g006
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requirements of the Stanford University institutional review board

and complied with ethics guidelines set forth by the IRB

recommendations. This study was specifically approved under

IRB Protocol ‘‘The Acquisition, Representation, and Processing of

Conceptual and Linguistic Knowledge’’ (ID: 14178, Number: 349,

Group 2, 2008–2011). The parents of the participants were

informed that participant data would be treated anonymously and

that participants could terminate the experiment at any time

without providing any reason. We received written informed

consent from all parents before beginning the experiment.

Participants
Participants were 56 typically developing, monolingual English

learners from 30 to 40 months old (M=35.7 months) recruited

from the Stanford area. 30 participants were female and 26 were

male. Testing was conducted by experimenters who were blind to

the hypotheses tested.

Procedure
The experiment comprised four stages: familiarization, Test-A

(pre-test), training, and Test-B (post-test), with familiarization and

testing following a three-alternative forced-choice procedure. All

stages were identical for participants, except training, in which

there were two conditions. Half of participants were randomly

assigned to one training condition, and half to the other. There

were 13 males and 15 females in each group, and age was matched

between groups (FL-trained children, M=35.8 months; LF-

trained children M=35.5 months).

Familiarization. In the familiarization exercise, children

were shown slides with three images of common objects (e.g., a

dog, a tree, and a banana), and were asked to identify a particular

object by pointing to it (‘‘Can you show me the doggy?’’). This

exercise continued for ten slides, or until the child reliably pointed

to the particular object that was requested every time, repeating

slides if necessary. All participants reliably passed this stage of

testing.

Pre-test. Test-A then evaluated the child’s ability to identify

object sets on the basis of numerosity. The pre-test consisted of 12

slides, which each had a familiar object (heart, square, cloud,

circle, sun or star) appearing in three different set-sizes (Figure 8).

Each slide had sets of either 2, 4 and 6 objects, or sets of 3, 5, and 7

objects. Children were asked to identify one set per slide. Half the

time, the child would be asked to identify a particular set with a

prenominally phrased question (such as ‘‘Look! Can you show me

four hearts?’’); the other half, with a postnominally phrased

question (such as ‘‘Look! Hearts. Can you show me four?’’).

Children were given identical positive feedback after each trial

regardless of accuracy. Over the span of the test, each set-size was

requested twice, and the position of the correct answer was

counterbalanced across trials. This established a baseline of

competence for the numbers 2 through 7.

The results of the pre-test revealed that children’s performance

was above chance, suggesting that they had some experience

matching number words to set sizes (chance in 3-choice

procedure = 33.3%; FL-condition M=47% correct; LF-condition

M=48% correct). However, their grasp of numerical concepts

appeared less than expert (pre-test consistency, FL-condition

M=30%; LF condition M=28%), indicating that their under-

standing of set sizes was still developing. (Notably, there was no

significant difference in pre-test scores between children in the two

training conditions.).

Training. In training, children were randomly assigned to

one of two conditions. Across both conditions, children learned

about the numbers 2, 4 and 6, with six familiar items (hats, bears,

fish, cars, balls, and boats), in succession from small to large (e.g., 2

hats, 4 hats, 6 hats; then 2 balls, 4 balls, 6 balls; Figure 9). Notably,

these items differed both in type and arrangement of presentation

from those used in testing. On every training trial, each child

would both see a slide (containing a depiction of one of the plural

sets) and hear the appropriate label for that set-size and item.

Because there were six different items, each child received six

exemplars for each of the set-sizes, for a total of 18 training trials.

The sets and labels employed in training were identical across

conditions, with the critical distinction that the order of

presentation was reversed. In the Feature-to-Label (FL) condition,

a picture of the item set was shown first, and then the label was

provided after the picture was shown (‘‘What can you see? Balls.

There are two’’). By contrast, in the Label-to-Feature (LF)

condition, the experimenter stated the number while the children

looked at a blank slide (‘‘What can you see? There are two balls’’),

and then immediately flipped to a picture depicting the item set as

it was named. Thus, in the FL condition, children saw the item set

and then heard the number label (presented postnominally), while

in the LF condition, children heard the number label (presented

prenominally), and then saw the item set. Because training

involved the explicit presentation of slides – to which the children’s

attention would naturally be drawn – the sequencing of the

presentation of slides and labels was intended to replicate the effect

that word order would have on the way in which information

became available to children in more naturalistic contexts [21].

Figure 7. Simulation 3: Number learning can be facilitated by
appropriate training. In this simulation, training reflected the usual
distribution of set sizes as suggested by English spoken frequency [53]
for 110 trials, after which training either continued to reflect this
distribution (the dashed lines represent the average of 5 such
simulations) or else simulated exposure to six groups of 2, 4 or 6
objects learned FL (solid lines). The model trained on 2, 4 and 6 showed
a marked improvement in its discrimination of 5 (solid green) and 7
(solid orange) despite not being trained on those items. This change
was a result of the increase in the amount of error generated by 4 and
6, which in turn acted to increase the discriminability of 5 and 7. See
postscript.
doi:10.1371/journal.pone.0022501.g007
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The only difference between the two conditions was temporal

ordering in the presentation of the slides and verbal sequences.

Post-test. After training, children participated in Test-B,

which was identical to Test-A. Given the inconsistent nature of

children’s number word usage and comprehension, this design

allowed a measure both of the probability that children would

match number word and set-size correctly on a given test, and also

the probability that they would match number word and set-size

correctly and consistently on consecutive tests. This allowed us to

gauge differences in both the consistency and overall accuracy of

children’s number word knowledge after training.

Results

Children’s performance in these tests overwhelmingly supported

our predictions about how the structure of information in training

would affect children’s ability to appropriately match set-sizes to

their corresponding numerical labels. While there were no

significant differences between the groups on pre-test performance

(FL-condition M=47% correct; LF-condition M=48% correct),

the FL-trained children showed a marked post-test improvement

(M=56%, stdev = 21), whereas the LF-trained children (M=46%,

stdev = 21) did not (Figure 10A).

For analysis, the pre- and post-test measures were transformed

into z-scores. A 2 (item-type: trained or untrained)62 (test-type:

pre- versus post-test) repeated measures ANOVA of children’s

performance (with training-type – FL or LF – as a between

subjects measure) confirmed the effect of training, revealing a

main effect of test-type, F(1,54) = 10.744, p = 0.01), and significant

interactions between the test-type and training-type

(F(1,54) = 4.554, p,0.05) and item-type and training-type

(F(1,54) = 6.288, p,0.025), supporting the idea that the FL-

training was responsible for this improvement. There was also

marginally significant effect of item-type, F(1,54) = 3.839, p,0.06,

which reflected the children’s overall better performance on the

even numbers – 2, 4 & 6 – than the odd numbers – 3, 5 & 7 – in

both the pre- and post-tests. Given that 2 of the 3 smallest sets

tested were even, and 2 of the 3 largest sets were odd, this is

consistent with the simulations, which suggest that larger set-sizes

are harder to learn.

Planned tests revealed both that the FL-children’s overall

improvement in performance was significant (pre-test M=47%;

post-test M=56%; stdev = 21; paired t(27) = 3.885, p,0.001), and

that this was true both on tests of the trained even numbers (pre-

test M=55%; post-test M=65%; stdev = 27; t(27) = 2.446,

p,0.025) and the untrained odd numbers (pre-test M=39%;

post-test M=47%; stdev = 24; t(27) = 3.073, p,0.01); see

Figure 11. LF-trained children’s performance showed no change

on either the trained (even) or untrained (odd) number tests (all

tests p..3). Overall, the average individual gain in performance

between the pre-test and the post test (i.e., each child’s post-test

score/pre-test-score) for the FL-trained children was 30%, which

was significantly greater than the change for the LF-trained

children, which was just 4% (stdev = 45; unpaired t(54) = 2.242,

p,0.05); see Figure 10B.

The different effects of training were further underlined by

analyses of the consistency of the children’s responses: First, the

rate at which the LF-trained children provided consistent

responses to tests of the same set-label mapping in the post-test

(M=27%) was unchanged from the pre-test (M=28%), whereas

the FL-trained children’s post-test consistency again improved

significantly (pre-test consistency M=30%, post-test M=38%;

stdev = .28; t(27) = 1.499, p,0.05); Second, FL-trained children’s

average performance improved across all of the items (pre-test

M=47%; post-test M=56%; stdev = 16; t(6) = 2.825, p,0.05),

whereas the LF-trained children’s average improved only for 3

and 6, and actually decreased slightly for 2, 4, 5 and 7 (this effect

was not significant, p..4).

Discussion

The results of this experiment reveal that children as young as 2

K have begun to acquire an understanding of number words, and

that this understanding can be given a significant boost when the

Figure 8. Examples of the arrays used in the pre- and post tests. Testing followed a three-choice procedure, putting chance performance at
33.3%.
doi:10.1371/journal.pone.0022501.g008

Figure 9. Examples of the items used in training. Sets of 2, 4 and 6 bears are shown. The training items were designed to maximize the
predictive value of set-size as a cue by manipulating the error produced by competitor cues such as size, color and shape.
doi:10.1371/journal.pone.0022501.g009
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information structure in training supports competitive discrimina-

tion learning. FL-trained children, who saw the sets of objects

before hearing labels presented postnominally, were significantly

better both in terms of the accuracy and consistency of their

responses, both as compared to baseline measures established in

the pre-test, and in terms of their overall performance gains over

LF-trained children. The performance of our FL-subjects was

particularly remarkable, given that longitudinal studies of 2 and 3-

year-olds have demonstrated that improvements of this magnitude

usually take place over a time course of months [1], and not, as in

our experiment, over the span of half an hour.

While the LF-training paradigm we employed here took

particular care to control the information available to children,

there is little reason to believe that a ‘‘more natural’’ prenominal

presentation – in which the items were available to the children as

the sets were verbally enumerated – would have helped the LF-

trained children. There are at least three reasons to think this:

First, identical patterns of learning were observed in children given

postnominal (FL) and prenominal (LF) training on color words

while the objects were on display during the period they were

described [21]. Second, the failure of the LF-trained children to

benefit from their training is consistent with the findings of other

studies that have employed more ‘‘natural’’ prenominal training,

and in which children have similarly failed to benefit from training

[18]. (Notably, previous training experiments with number words

have all used prenominal instruction, likely because prenominal

phrasing is highly preferred in English). Third, when older

children and adults are presented with a similar task structure and

asked to match known information – i.e. when learning isn’t an

issue – they perform far better mapping from Labels-to-Features

than Features-to-Labels, because labels themselves are far less

complex than the things that they actually label, and make fewer

demands on memory [58]. This suggests that there is a trade-off

between communicative efficiency and learnability: once numbers

have been successfully mastered, prenominal usage may have

processing advantages [59], but until they are, prenominal usage

can actually impede learning.

These findings underline the theoretical importance of infor-

mation structure to considerations of human development, and

suggest practical ways in which a better understanding of

information structure can assist educators and parents who wish

to speed or enhance the learning process. Consistently using

postnominal phrasing in child-directed speech, and introducing

object sets (visually) before labeling them, may dramatically

shorten the time-course of number word acquisition. Since a

growing body of research suggests that understanding counting is

predicated on a basic understanding of number [1], [2], [12], [14]

and that mastery of this kind of numerical aptitude at a young age

dictates later learning outcomes [60]–[63] interventions that utilize

helpful information structures may have a long lasting impact on

children’s mathematical aptitude and advancement. Additionally,

other results indicate that manipulating the structure of informa-

tion in the way we have outlined here can improve performance

Figure 10. A comparison of performance between the FL- and LF-trained children. Panel A shows performance in the identical pre-and
post-training tests in the two groups of children, while Panel B depicts the average individual change in performance between the pre-and post-tests
for each group. Error bars are SEM.
doi:10.1371/journal.pone.0022501.g010

Figure 11. Performance in the trained (even) and untrained
(odd) pre- and post training-tests in the FL-trained children.
Error bars are SEM. Because the untrained numbers were always tested
together – separately from the trained numbers – the improvement on
these items cannot be a result of the children’s improved performance
on the trained items.
doi:10.1371/journal.pone.0022501.g011
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across a range of perceptual domains and tasks, including visual

and auditory category learning [21], [38], [64], and contextual

rule learning [40].

Given the importance of numeracy to modern society, and the

difficulty many children experience in grasping numerical

concepts, improving our understanding of how numbers are

learned, and devising formal methods for improving this process,

can benefit both individuals and societies. The success of our

training study shows that these methods need not be complex, and

illustrates how formal analyses of information and learning can

make principled predictions about how a specific intervention can

rapidly (and beneficially) accelerate learning, revealing the benefits

that formal analyses of learning can bring to education [19], [21],

[40].

Postscript: The importance of being wrong
Historically, the computational and theoretical nature of formal

discriminative learning models has been subject to widespread

misunderstandings [19], [21], and it is likely that readers

unfamiliar with discrimination learning may be left wondering

why the children in the postnominal (FL) condition improved not

only on trained (even) numbers, but also on untrained (odd)

numbers, and why our simulation of learning (Figure 7) predicted

this improvement.

To explain why this is so, it is important to understand that in

discrimination learning, expectations that are wrong shape learning more

than expectations that are right. This counter-intuitive principle

underpins all formal models of learning, and it is perhaps most

easily grasped in relation to animal learning. Consider a classic

conditioning experiment in which a rat is subjected to a series of

tones followed by mild shocks, and rapidly learns to respond

fearfully to the tones. While intuitively, it might seem that learning

is caused by the positive relationship between the tones and the

shocks – which leads naturally to the idea that learning is a simple

matter of relating stimuli to punishments and rewards – this is not

the case. If tones that do not lead to expected shocks are added to

the tone-shock pairings, rats’ conditioned responses will weaken in

direct proportion to the increased background rate of tones

[65]. This makes good sense, because rats’ responses hinge on how

informative the tones are about the shocks, and if tones regularly

occur without leading to shocks, then they are no longer obviously

informative about shocks. Importantly, however, this requires that

we accept that the rats are learning about what is not happening: in

this instance, the rats’ learning is driven by the non-occurrence of

expected events, which result in neither punishment, nor reward.

Given that rats have no a priori knowledge about the

relationship between the tones and the shocks, it may seem

natural to wonder why it is that only the background rate of tones

matters here. The answer, of course, is that it isn’t only the

background rate that matters. In principle, everything in the rat’s

experience and environment matters in predicting the shock.

However, the rat’s previous experience with other aspects of its

environment – and what it has learned about their background

rates – will have mitigated their influence on subsequent learning.

For example, the degree to which the color of a rat’s enclosure is

learned as a cue to the shocks will be affected both by the rate at

which that color has been previously experienced in situations that

did not lead to shocks, and the rate at which that color is

subsequently experienced in situations that do not lead to shocks.

In all likelihood, the background rate of that feature will be

sufficiently high that the rat will effectively ignore it as a potentially

informative cue, even though it positively co-occurs with every

shock. What is critical to note here, is that learning about the tones

takes place within the greater context of the rat’s experience with

other aspects of its environment, and against an extensive

backdrop of possible cues and their associated background rates.

Thus, while learning theoretic models tend to focus on the tones

– because they serve as novel, and hence, informative cues – it is

important to keep in mind that this novelty is entirely relative. It

only makes sense to say that a cue is perceived as novel if we

assume that every other perceptual cue available is not as novel.

Or, within the context of the tone-shock paradigm, it only makes

sense to describe the tone as a novel perceptual cue if we assume

that its novelty is computed in relation to all the other cues

available to the rat [19]. In discrimination learning, knowledge of

a positively informative relationship (e.g., between tones and

shocks) results from the competitive elimination of less informative

relationships. Since the latter inevitably outnumbers the former, it

follows that error-information is as valuable – if not more valuable

– than information about successful predictions.

These ideas are essential to understanding our model of number

learning, which assumes that children, like other animals, are

sensitive to the value of information in their learning environment.

The model assumes that in addition to tracking how often words

and features are paired together (e.g., a cow is seen and ‘‘cow’’ is

heard), children attend to how often a potential pairing does not

occur (e.g., an object is seen and ‘‘cow’’ is not heard). Since

children never encounter an example of a given numerosity unless

a set of enumerated objects is also present, they are faced with the

problem of discriminating the relevant dimension (set-size) from

both the objects themselves and other properties of those objects.

This is a hard problem. However, assuming that learning tracks

how often pairings don’t occur (e.g., four objects are seen and

‘‘three’’ is not heard), children should be able to home in on which

dimension is the most informative about which number word,

simply by learning to ignore other features based on their

background rates.

How does this play out in our training experiment? Given that

the pre-test scores of the children in our experiment were above

chance, we can safely assume that they had already done some

learning ‘in the wild’ about number words and the social contexts

in which they could expect to hear them. At the same time, while it

is clear that the children had some experience with numbers, and

had heard them in a variety of contexts, their pre-test scores

suggest they had not yet learned to fully discriminate the

appropriate cues (i.e., specific set-size) to number words, or to

discriminate various number words from one another (e.g.,

‘‘three,’’ ‘‘four’’ and ‘‘five’’ might seem more or less interchange-

able). In our model, this prior learning is represented by the first

110 trials in Simulation 3 (Figure 7).

In the training experiment, half of the children are then given

FL-training in which – for example – they are shown a set of

objects (say bears), and the experimenter asks, ‘‘What can you see?

Bears. There are four.’’ As a result, each child learns about the

relationship between the pictorial representation in front of her

(the bears) and the number word (four). But what, precisely, does

she learn about this relationship? When the experimenter says,

‘‘Bears – there are four’’ –

1. All of the features present (e.g., color, shape, set-size, etc) will

be reinforced as cues to ‘‘four.’’.

2. Given that the child is playing a number game, in which

number words have been generated from similar items, she will

be expecting to hear other numbers as well – such as ‘‘three’’

and ‘‘five’’ – based on prior experience. This will generate

error for all of the features that prompted those erroneous

expectations, which will in turn cause the features present to be

unlearned as cues to other number words. This means that not only
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will set-size four be unlearned as a cue to ‘‘three’’ and ‘‘five,’’

but so will all the consistently unreliable features, such as color,

shape, and so on.

Thus, while 3, 5 and 7 were not explicitly trained in the

experiment, the prediction errors generated on 2, 4 and 6 trials

will have helped children learn to discriminate the appropriate

cues to the odd numbers – and increase the informativity of their

representations of those numbers –even though there was no positive

reinforcement for 3, 5 and 7. For example, while the actual cue value

of set-size five cannot be affected by learning on a 4-trial (because

it is not present), other potential predictors of set-size five will be

present on that trial (e.g., color, shape, and so on), and their value

as cues to ‘‘five’’ will be affected by this. The non-occurrence of

‘‘five’’ will cause the value of cues that erroneously predicted

‘‘five’’ to decrease, which will cause a relative increase in the value

of set-size five as a predictor of ‘‘five.’’ As a result, the child will be

able to better discriminate the cues to ‘‘five’’ (i.e., she will have

learned about ‘‘five’’), even though – or, in fact, because – ‘‘five’’

was not heard in this context.

Perhaps counterintuitively, this also means that for a child who

has some experience of ‘‘four,’’ but has yet to fully discriminate the

mapping between set-size four and ‘‘four,’’ trials in which ‘‘four’’ is

presented will not be particularly informative about ‘‘four.’’ This is

because the cue value of set-size four will not change relative to the

other cues present on 4-trials, since they will all be similarly

reinforced as predictors of ‘‘four.’’ On the other hand, a 4-trial will

increase the background rate of all the cues that prompt

erroneous expectation of other number words. Thus, for example,

shape might be devalued relative to set-size five as a cue to ‘‘five,’’

and color might be devalued relative to set-size three in predicting

‘‘three’’ (and so on), and over time this process will help the child

improve her discrimination of a system of numbers.

Given our comments on the systematic nature of discrimination

learning, we hope it is clear that the real learning process in a child

is far more complicated than the simplified version in our model.

With that caveat in mind, however, the structure of our training

was designed to increase the background rate of the erroneous

cues relative to set-size, and thus – as a result of the error generated

by the irrelevant cues – help our subjects more strongly associate

the appropriate set-sizes with the appropriate labels. Because the

unlearning of erroneous cues is an important, active part of

discrimination learning, and because the structure of the task was

designed to generate error over 3, 5 and 7, the design of this

experiment provided a strong test of our learning hypothesis [66].

That the children did improve on 3, 5 and 7 provides support for

this hypothesis, and illustrates the potential benefits that the

application of discrimination learning models and analyses of

information structure can bring to our understanding of children’s

learning.
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