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REVIEW

The enigma of optical momentum in a medium
BY STEPHEN M. BARNETT1,* AND RODNEY LOUDON2

1Department of Physics, SUPA, University of Strathclyde,
Glasgow G4 0NG, UK

2School of Computer Science and Electronic Engineering, University of Essex,
Colchester CO4 3SQ, UK

It is 100 years since Minkowski and Abraham first gave rival expressions for the
momentum of light in a material medium. At the single-photon level, these correspond,
respectively, either to multiplying or dividing the free-space value (h̄k) by the refractive
index (n). The debate that this work started has continued till the present day,
punctuated by the occasional publication of ‘decisive’ experimental demonstrations
supporting one or other of these values. We review the compelling arguments made
in support of the Minkowski and Abraham forms and are led to the conclusion that
both momenta are correct. We explain why two distinct momenta are needed to describe
light in a medium and why each appears as the natural, and experimentally observed,
momentum in appropriate situations.

Keywords: Abraham–Minkowski dilemma; photon momentum; Poynting vector;
quantum optics

1. Introduction: the Abraham–Minkowski dilemma

It has long been appreciated that light has mechanical properties. Indeed,
Maxwell (1891) presented a simple calculation of the pressure exerted by sunlight
at the surface of the Earth. It was Poynting (1884) who determined that it
is the cross-product of the electric and magnetic fields that determines the
flux of electromagnetic energy. For light propagation in vacuum, there is no
difficulty in also identifying this cross-product with the density of electromagnetic
momentum. Within a medium, however, we have a choice to make between
the electric and displacement fields (E and D) and the magnetic field and the
magnetic induction (H and B). Poynting’s theorem tells us that the flux of
energy is E × H, but there are two entirely reasonable and rival forms for the
corresponding density of momentum. These are the Minkowski (1908) momentum
density, gMin = D × B and the Abraham (1909, 1910) momentum density, gAbr =
E × H/c2. The problem of determining which momentum is ‘correct’ is the famous
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Abraham–Minkowski dilemma. This is not the place to review the large literature
devoted to this problem; instead, we recommend to the interested reader the
review by Brevik (1979) and the more recent one of Pfeifer et al. (2007).

It is not necessary to quantize the electromagnetic field in order to appreciate
the problem, but it is helpful to understand it in terms of the properties of a
single photon of angular frequency ω. We can do this by means of a simple scaling
argument. The total electromagnetic energy within our volume is simply that of
the photon (h̄ω): ∫

dV
1
2
(D · E + B · H) = h̄ω. (1.1)

This energy is (on average) shared equally between the electric and magnetic
parts so that ∫

dV
1
2
D · E = h̄ω

2
=

∫
dV

1
2
B · H. (1.2)

If we consider, for simplicity, a linear isotropic and homogeneous medium with
relative permittivity ε and permeability μ, then we are led to∫

dV gMin = h̄kn (1.3)

and ∫
dV gAbr = h̄k

n
, (1.4)

where k is the wavevector in vacuum (with magnitude ω/c) and n = √
εμ is

the refractive index of the medium. At its simplest, therefore, Minkowski would
assert that the momentum of a photon in a medium is its value in vacuum
multiplied by the refractive index, while Abraham would have us believe that
it is the vacuum value divided by the refractive index. In dispersive media, the
situation is a bit more complicated in that we need to discriminate between phase
and group indices (Garrison & Chiao 2004; Loudon et al. 2005; Milonni & Boyd
2005; Bradshaw et al. in press), but, in the interests of simplicity, we shall leave
this feature until §6.

(a) Argument in favour of Abraham

Perhaps the most direct way to calculate the momentum of a photon in a
medium is to use the Newtonian idea that the centre of mass (or more precisely
the centre of mass-energy) of an isolated system undergoes uniform motion
(Einstein 1906). We follow the analysis of Balazs (1953) and apply this idea
to a single photon and a block of transparent material initially at rest. We let
the photon travel in the z-direction and are then interested in this component of
the electromagnetic momentum. The photon has energy h̄ω and propagates with
speed c. If the block has mass M then the total energy is

E = Mc2 + h̄ω. (1.5)
When the photon enters the medium, its speed slows to c/n and, as a result, it
takes the time T = nL/c to travel through the medium, where L is the thickness
of the block. It follows that, on leaving the block, the photon has travelled a
distance (n − 1)L less than it would have done had it been travelling in vacuum.
This deviation from uniform motion can only be made up if the block itself was
Phil. Trans. R. Soc. A (2010)

http://rsta.royalsocietypublishing.org/


Review. Enigma of optical momentum 929

 on May 20, 2013rsta.royalsocietypublishing.orgDownloaded from 
displaced in the direction of propagation of the photon by an amount �z , while
the photon was in the medium. The centre of mass-energy moves uniformly if
(Frisch 1965)

�zMc2 = (n − 1)Lh̄ω ⇒ �z = (n − 1)L
h̄ω

Mc2
. (1.6)

We see clearly that this displacement depends simply on the thickness of the
medium, the ratio of the photon and medium energies, and the refractive index.

In order to move the distance �z while the photon is in the medium, the block
must have acquired from the photon the momentum

pblock = 1
M

�z
L(n/c)

=
(

1 − 1
n

)
h̄ω

c
. (1.7)

Global conservation of momentum then dictates that the total momentum is
h̄ω/c and hence that

pphoton = h̄ω

cn
, (1.8)

which is the value obtained by Abraham’s prescription.
We have used only the conservation of momentum and the uniform motion of

the centre of mass-energy in deriving our result, and it is difficult to see how any
component of our derivation could seriously be open to question.

(b) Argument in favour of Minkowski

The first thing to be said in support of the Minkowski momentum is that it is
‘natural’ in that the wavevector in a medium is greater than that in vacuum by
the refractive index and hence the Minkowski single-photon momentum (1.3) is
simply h̄ multiplied by the wavevector in the medium. There are also, however,
at least two simple physical arguments in support of the Minkowski momentum.

The first, due to Padgett (2008), is based on single-slit diffraction. A plane
wave propagating in the z-direction towards a single slit in the x–y plane will
undergo diffraction and produce a characteristic interference pattern in the far
field. We can determine the width of the central peak of this pattern by a simple
application of the Heisenberg uncertainty principle. If the slit has width �x then
the uncertainty principle requires that the field after the slit has a spread of
momenta in the x-direction of �px ≈ h̄/�x . It then follows that the angular spread
of the central interference peak will be

θ ≈ �px

pz
≈ h̄

�x
c

h̄ω
= c

ω�x
. (1.9)

If we repeat the experiment in a medium of refractive index n, then we find that
the angular width of the peak is reduced by n. The momentum width �px is
imposed by the width of the slit, so this reduction can only arise because the
momentum in the z-direction is increased by n,

pphoton = h̄ωn
c

, (1.10)

which is the Minkowski momentum. A similar result can be obtained with
reference to double-slit diffraction (Brevik 1981).
Phil. Trans. R. Soc. A (2010)
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Our second argument (Bradshaw et al. in press) is a variant of an idea due to
Fermi (1932). Consider an atom of mass m with a transition at angular frequency
ω0. Let the atom be in a medium with refractive index n and moving with
velocity v away from a source of light with angular frequency ω. The atom can
absorb a photon from the beam if the Doppler-shifted frequency matches the
transition frequency, so that

ω0 ≈ ω
(
1 − nv

c

)
. (1.11)

Let v′ denote the velocity of the atom after it has absorbed the photon. The
conservation of energy and of momentum then require that

1
2
mv′2 + h̄ω0 = 1

2
mv2 + h̄ω (1.12)

and
mv′ = mv + pphoton. (1.13)

Solving these for the photon momentum gives

pphoton = h̄ωn
c

2v

v + v′ ≈ h̄ωn
c

, (1.14)

where we have made use of the fact that the absorption makes only a small change
to the velocity of the atom. Simple conservation laws have led us to conclude that
the photon momentum is that given by Minkowski.

These arguments in support of the Minkowski momentum are of a different
character from that made in support of the Abraham form, but they are no less
convincing for that. Both forms are well supported, therefore, and hence we have
a dilemma.

2. Experimental evidence

As theory has presented us with a dilemma, it is reasonable to seek an answer in
experiments, and this idea has been pursued on a number of occasions (Jones &
Richards 1954; Ashkin & Dziedzic 1973; Walker et al. 1975; Jones & Leslie 1978).
The work of Jones, Richards and Leslie confirmed that the force exerted on a
mirror submerged in a medium was consistent with each photon in that medium
having the Minkowski momentum. The experiment of Ashkin and Dziedzic
showed that the action of light on the surface of a liquid was also consistent with
the Minkowski momentum, although this interpretation is far from unambiguous
(Gordon 1973). The experiments of Walker et al. provide evidence that is no
less convincing in favour of the Abraham form. These early experiments and the
conclusions derived from them are discussed at greater length in Brevik (1979)
and Pfeifer et al. (2007).

The confusing experimental situation has continued, with further experiments
seeming to support either the Minkowski or the Abraham momentum. Gibson
et al. (1980) exploited the photon drag effect to measure the momentum transfer
from far-infrared radiation to free charge carriers in germanium and silicon. In
each case the observations were consistent with the Minkowski form of the optical
momentum. Campbell et al. (2005) measured the recoil momentum of atoms in a
Phil. Trans. R. Soc. A (2010)
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dilute ultra-cold gas, effectively performing the experiment outlined in §1b above.
They also found a recoil consistent with the Minkowski form. Most recently, She
et al. (2008) measured the displacement of an optical fibre due to light leaving.
Their results, although not uncontroversial (Mansuripur 2009), seem to support
the Abraham momentum.

There is an angular-momentum version of the Abraham–Minkowski dilemma,
with the Abraham angular momentum being that in free space divided by n2

and the Minkowski form being the same as that in free space. An angular version
of the argument, given above, in support of the Abraham momentum supports,
naturally enough, the Abraham angular momentum (Padgett et al. 2003). An
experiment of Kristensen & Woerdman (1994), however, measured the torque on
an object in a dielectric medium. The observations gave results in support of the
Minkowski angular momentum.

Experimental work has served to confirm that the force exerted by light on an
object within a medium is consistent with the Minkowski momentum for the light
in that medium. The evidence in support of the Abraham momentum is, perhaps,
less convincing, but tends to support the idea that the net effect on a medium due
to light passing through it is consistent with the Abraham momentum. Indeed,
it could not be otherwise! If the argument advanced in §1a in favour of the
Abraham momentum were to be incorrect, then that would bring into question
uniform motion of an isolated body as expressed in Newton’s first law of motion.
Similarly, a failure of the arguments advanced in §1b in favour of the Minkowski
momentum would require us to question the uncertainty principle, momentum
conservation and the Doppler effect.

It seems that there is at least some validity to both the Minkowski and
the Abraham momenta, and it is for theory to explain the origins of these two
momenta and to explain why one of them appears as the ‘correct’ momentum in
a specific situation.

3. Electromagnetic force

Our first task is to find a reliable way of determining the momentum
exchange between electromagnetic fields and a medium. Using energy and
momentum densities has proven to be an unreliable method for this, not least
because Minkowski and Abraham have given us different expressions for the
electromagnetic energy–momentum tensor. It is safer, therefore, to work with
the force exerted on the medium and then to use Newton’s second law of motion
to relate this to a rate of change of momentum (Loudon 2002, 2003).

The force exerted on a point dipole, with dipole moment d, is simply

F = (d · ∇)E + ḋ × B, (3.1)

which follows directly from the Lorentz force law. It follows that the force density
on a dielectric (non-magnetic) medium is (Gordon 1973)

f = (P · ∇)E + Ṗ × B, (3.2)

where P is the polarization of the medium. This is not the only possible
form for the force density (Mansuripur 2004), but it has been shown that
the total force exerted is the same for all acceptable choices of this density
Phil. Trans. R. Soc. A (2010)
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(Barnett & Loudon 2006). The force density has been used to calculate the forces
exerted on dielectric media in a variety of arrangements (Loudon & Barnett 2006)
but we concentrate here on the calculations relevant to photon drag experiments
(Loudon et al. 2005).

Photon drag occurs in semiconductors and the experiments of interest were
performed in silicon and germanium. At the long wavelengths used, these behave,
to a good approximation, as free carriers in a background dielectric. We can safely
assume that the carriers are responsible for the absorption and make a purely
imaginary contribution to the permittivity. The host material is responsible for
the real part. We shall assume that the medium is thick enough for our photon
to be absorbed.

We consider a single-photon pulse with a narrow band of frequencies centred
on ω. The momentum transfer to the medium is readily calculated from the force
density formed from equation (3.2) by quantizing the fields and integrating over
space and time. We omit the details of this calculation, which can be found in
Loudon et al. (2005), and concentrate instead on the results and their physical
significance.

The calculated momentum transfer to the free carriers is

pcarriers = h̄ωn
c

. (3.3)

This value agrees with that found in experiments (Gibson et al. 1980) and also
coincides with the Minkowski momentum. The calculated momentum transfer to
the host material is similarly

phost = h̄ω

c
n2 − 1

2n
. (3.4)

This momentum was not observable in the experiments. Adding these two gives
a value for the total momentum

ptotal = h̄ω

c
n2 + 1

2n
, (3.5)

which is the mean of the Minkowski and Abraham momenta. It is straightforward
to show that this value is precisely that required by global momentum
conservation. A photon incident on the medium, with momentum h̄ω/c, will
be reflected with probability (n − 1)2/(n + 1)2 and transmitted into the medium
with probability 4n/(n + 1)2. Momentum conservation then requires that

h̄ω

c
= −(n − 1)2

(n + 1)2

h̄ω

c
+ 4n

(n + 1)2
ptotal, (3.6)

the solution of which is equation (3.5).
We can also apply our method to study a weakly absorbing dielectric with

n ≈ 1. If the medium is of finite thickness then this situation coincides with that
proposed in §1a in support of the Abraham momentum. We can neglect reflections
Phil. Trans. R. Soc. A (2010)
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at the interfaces because n ≈ 1. Our analysis confirms that the momentum
transferred to the medium during propagation of a photon through it is

pmedium = h̄ω

c

(
1 − 1

n

)
, (3.7)

from which we can infer that the momentum of the photon in the medium is

pphoton = h̄ω

cn
, (3.8)

in agreement with the Abraham momentum. We note that equation (3.7) also
follows directly from equation (3.4) when n ≈ 1.

It is clear that the experimental observations to date are consistent with both
the Minkowski and Abraham momenta. The momentum transfer to a body (in our
case the charge carriers) within a medium is given by the Minkowski momentum.
The momentum of a photon travelling through a host dielectric, however, is given
by the Abraham momentum. These results have both arisen from applying the
same Lorentz force to a simple model dielectric, and confirms the validity of both
mechanical arguments proposed in §1a,b. It only remains to explain why there
are two momenta and why they appear where they do.

4. The two momenta

We are not often aware of it, but we define our momentum by means of two
properties. The first, which would have been familiar to Newton, is the inertial
property derived from Newton’s second law of motion. This kinetic momentum
is the product of the mass and velocity of a body. The second is most readily
appreciated with reference to quantum theory as that associated with de Broglie
waves. The canonical momentum for a quantum particle is Planck’s constant
divided by its de Broglie wavelength. More formally, the canonical momentum is
that derived from the Lagrangian, which is constructed to satisfy the canonical
commutation relation

[x , p] = ih̄. (4.1)

For many applications, these momenta are one and the same, but in
electromagnetism they are quite distinct. The difference can be traced to the
fact that the electric and magnetic fields depend on the frame of reference.

The form of the canonical momentum depends, in fact, on the gauge
and the form of the matter–field coupling employed (Power 1964; Craig &
Thirunamachandran 1998). In the electric dipole form, most appropriate for our
systems, we find that for a single point dipole (Baxter et al. 1993; Leonhardt
2006; Hinds & Barnett 2009)

pkinetic = pcanonical + d × B. (4.2)

This difference arises from the Röntgen interaction, which is a manifestation
of the electric field derived from a magnetic field in a moving frame of reference
(in this case, that of the dipole). More generally, for an object with electric dipole
Phil. Trans. R. Soc. A (2010)
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moment d and magnetic dipole moment m, we find (Hinds & Barnett 2009)

pkinetic = pcanonical + d × B − m × E
c2

. (4.3)

If we add together the momenta of all the dipoles in our medium, then we find

pmedium
kinetic − pmedium

canonical =
∫

dV
(

P × B − M × E
c2

)

=
∫

dV
(

D × B − E × H
c2

)

=
∫

dV (gMin − gAbr). (4.4)

We note that the total momentum is the same, whether we are speaking of the
kinetic or the canonical momentum:

pmedium
canonical +

∫
dV gMin = pmedium

kinetic +
∫

dV gAbr, (4.5)

and, moreover, this total momentum is a conserved quantity.
Clearly, we can identify the Abraham momentum as the kinetic momentum

of the light in the medium, while the Minkowski momentum is its canonical
momentum.

5. A dilemma resolved: the two natural momenta

We have determined that the Abraham momentum is the kinetic momentum of
the light and that the Minkowski momentum is its canonical momentum. It only
remains to show how these identifications determine the conditions under which
either one of them is the natural momentum.

(a) The Abraham or kinetic momentum

The argument put forward in §1a depends on the displacement of a medium due
to the propagation of a photon through it. This displacement is a consequence of
a velocity imparted to the medium and hence a kinetic momentum. Global kinetic
momentum conservation leads us to the kinetic momentum of the photon, which
is, as we have seen, the Abraham momentum.

(b) The Minkowski or canonical momentum

We proposed, in §1b, three arguments in support of the Minkowski momentum:
that it is natural, that it was suggested by diffraction and that it is required by
momentum conservation for absorption by a moving atom. We address each of
these in turn.
Phil. Trans. R. Soc. A (2010)
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It will be recalled that de Broglie identified the wavelength of a quantum body
as h/p. This, in turn, led Schrödinger to express the momentum as

p = −ih̄∇. (5.1)

We recognize this as the canonical momentum and it is natural, therefore, that
the canonical momentum, and therefore the Minkowski momentum, should be
h/λ, where λ is the wavelength in the medium.

Padgett’s diffraction argument is based on the Heisenberg uncertainty principle
and hence on the canonical commutation relation (4.1). It is for this reason that
the canonical, or Minkowski, momentum is the one that appears. Equivalently,
we can simply note that diffraction depends on the wavelength of the light and
that this, as noted above, is inversely proportional to the Minkowski momentum.

In order to address the momentum of a body immersed in a dielectric host, we
first recall the role of the canonical momentum in generating translations. The
commutation relation (4.1) implies that

[f (x), pcanonical] = ih̄
∂

∂x
f (x), (5.2)

which means, in turn, that the canonical momentum is the generator of
translations. The mathematical statement of this is the unitary transformation

exp
(

ia
h̄

pcanonical

)
f (x) exp

(
− ia

h̄
pcanonical

)
= f (x + a), (5.3)

where a is a constant.
In the same way we find that the Minkowski momentum generates translations

of the electromagnetic field in that

exp
(

− i
h̄

a ·
∫

dV gMin

)
A(r) exp

(
i
h̄

a ·
∫

dV gMin

)
= A(r + a), (5.4)

where A is the vector potential in the Coulomb gauge and a is a constant vector.
For a body immersed in our medium it is precisely this translation, relative to
the medium, that is important. It is for this reason that it is the canonical or
Minkowski momentum that appears.

6. Dispersion: a final detail

One remaining issue is the forms of the two momenta in a dispersive medium,
in which there are two refractive indices: the phase index

np = ck
ω

(6.1)

and the group index

ng = c
(

dω

dk

)−1

. (6.2)
Phil. Trans. R. Soc. A (2010)
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It is straightforward to show that the single-photon Abraham momentum is
(Garrison & Chiao 2004; Loudon et al. 2005)

pAbr = h̄ω

cng
. (6.3)

The group index, of course, determines the speed at which the photon propagates
through the medium. Our argument in support of the Abraham momentum
relies on this speed, and so it is entirely reasonable that it is the group index
that appears. A careful calculation based on the Lorentz force law confirms this
(Loudon et al. 2005).

The wavevector has magnitude npω/c, and it is reasonable, therefore, to expect
that the canonical or Minkowski momentum should have the value

pMin = h̄ωnp

c
. (6.4)

This conclusion is also supported by a calculation based on the Lorentz force
(Loudon et al. 2005), which shows that this is the momentum transferred to a
body immersed in the medium. There is a problem, however, with this value for
the Minkowski momentum as

D × B = εμ
E × H

c2
= n2

p
E × H

c2
, (6.5)

and this suggests that if equation (6.3) is the Abraham momentum then the
Minkowski momentum should be h̄ωn2

p/(cng) (Garrison & Chiao 2004; Milonni &
Boyd 2005).

The resolution of this puzzle lies in the roles of the kinetic and canonical
momenta. We can meaningfully evaluate the kinetic or Abraham momentum
by taking the expectation value of gAbr. The role of the canonical momentum
is to generate translations, however, and its important property, therefore, is the
translation relation (5.3) or, equivalently, the commutation relation

[∫
dV gMin, Aj(r)

]
= ih̄∇Aj(r). (6.6)

Quantization of the field inside a medium produces polaritons and, importantly,
a dispersion curve with more than one frequency for each wavevector (Kittel
1987). Each of these branches contributes to this commutation relation by its
own value of np/ng. The total for each value of k, however, is (Huttner et al. 1991;
Huttner & Barnett 1992)

∑
i

np(ωi)
ng(ωi)

=
∑

i

vg(ωi)
vp(ωi)

=
∑

i

k
ωi

dωi

dk
= 1. (6.7)

The Minkowski momentum is the canonical momentum,
∫

dV D × B, but its
single-photon value is determined by the spatial shift of the field rather than
by its single-photon expectation value. The Abraham and Minkowski momenta
in a dispersive medium are, indeed, as given in equations (6.3) and (6.4).
Phil. Trans. R. Soc. A (2010)
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We have described the two rival momentum densities for the light in a medium
and presented, as simply as possible, the compelling physical arguments in favour
of each of them. Exisiting experimental evidence strongly supports the Minkowski
momentum as that transfered to a body within a host medium. There is also
experimental evidence, perhaps not quite so strong, in support of the Abraham
momentum as that part of the momentum not transferred to the medium during
the passage of the photon through it. Calculations based on the Lorentz force
reveal circumstances in which either momentum is the appropriate one and,
importantly, verify the validity of the simple arguments made in favour of both
the Abraham and Minkowski momenta.

The resolution of the Abraham–Minkowski dilemma lies in the realization
that electromagnetism recognizes two distinct momenta, the kinetic momentum
and the canonical momentum. The total momentum is conserved, whichever
momentum we use, and this leads us to identify, unambiguously, the Abraham
and Minkowski momenta, respectively, as the kinetic and canonical momenta for
the light.

Finally, we note that a number of momenta have been proposed as rivals to
those of Abraham and Minkowski (Brevik 1979), with the aim of thereby resolving
the conflict. We may hope that in demonstrating, clearly, the need for and natures
of both the Abraham and Minkowski momenta, we may also have removed the
need for these and further rival momenta.

We are grateful to Les Allen, Mohamed Babiker, Colin Baxter, Ed Hinds, John Jeffers, Peter
Milonni and Miles Padgett for many illuminating discussions. We especially thank Miles Padgett for
kindly reading the manuscript before submission and for making a number of helpful suggestions.
This work was supported by the Engineering and Physical Sciences Research Council, by the Royal
Society and by the Wolfson Foundation.
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