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A B S T R A C T   

Emergency response fleets often have to simultaneously perform two types of tasks: (1) urgent tasks requiring 
immediate action, and (2) non-urgent preventive maintenance tasks that can be scheduled upfront. In Huizing 
et al. (2020), Huizing et al. proposed the Median Routing Problem (MRP) to optimally schedule agents to a given 
set of non-urgent tasks, such that the response time for urgent tasks remains minimal. They proposed both an 
exact MILP-solution and a fast, scalable and accurate heuristic. However, when implementing the MRP-solution 
in a real-life pilot with a Dutch railway provider, we found that the model needed to be extended by including 
additional practical objectives and constraints. Therefore, in this paper, we extend the MRP to the so-called 
Enriched Median Routing Problem (E-MRP), making the model much better aligned with considerations from 
practice. Accordingly, we extend the MRP-based solutions to the E-MRP. This allows us to compare the per-
formance of our proposed E-MRP solutions to performance obtained in the current operational practice of our 
partnering railway infrastructure company. We conclude that the E-MRP solution leads to a strong reduction in 
emergency response times compared to current practice by smartly scheduling the same volumes of non-urgent 
tasks.   

1. Introduction 

In many emergency response organizations, there are many useful 
things agents could do when there is no active emergency. For instance, 
in the railway industry, railway emergency responders have different 
routine inspections they need to perform in order to prevent incidents 
from even happening. If planned well, the agents can do these tasks (e.g., 
with given frequencies, locations, and time windows) while remaining 
well-spread over the network so that when emergencies do occur, they 
can respond quickly. This way, proper coordination of non-emergency 
tasks (over time and space) over multiple agents can help to reduce 
emergency response times and at the same time increase the efficiency of 
non-urgent tasks. To enable this coordination, Huizing, Schäfer, van der 
Mei, and Bhulai (2020) proposed the Median Routing Problem (MRP) 
and a fast, scalable yet accurate heuristic for optimally planning non- 
urgent tasks, or “jobs”, while staying responsive to incidents requiring 
immediate action. Throughout, this heuristic is called the mediate-divide- 
sequence-agree (MDSA) method. 

The MRP model and proposed solution methods provide new 
fundamental insight into how to balance the trade-off between urgent 

and non-urgent tasks properly. However, the application of the results in 
a real-life pilot setting taught us that the model assumptions were too 
limiting to be of real use in practice, and that many more limitations that 
occur in practice should be taken into consideration. For example, in 
terms of objectives, low emergency response times may be the most 
important goal, but the distance traveled outside of emergencies is 
another relevant goal. Also, in terms of constraints, the details of what 
makes a planning feasible can be numerous: some agents may not be 
authorized to perform certain tasks; some tasks may have specific time 
windows; some agents may have to stay close to the base station at all 
times; some jobs may need several agents to perform; some agents may 
have scheduled appointments within their shifts, during which they are 
unable to perform jobs or respond to emergencies. These are just some of 
many examples of limitations encountered in practice that are not 
covered by the MRP-model. 

Motivated by this, the contribution of this paper is fourfold. First, on 
the basis of extensive feedback from our pilot study, we enrich the MRP- 
model with the inclusion of fifteen extensions to cover the additional 
objectives and constraints that practical applications may require. Sec-
ond, we adapt the solution methodology to provide a solution for the E- 
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MRP, demonstrating the flexibility of the methodology. Third, based on 
extensive discussions with planners of our partnering railway provider, 
we propose a Current Practice (CP) model that accurately describes the 
way in which planners currently schedule tasks (today, they do so 
without any support from MRP). Fourth, we perform extensive simula-
tion experiments to compare the performance of planning in the CP- 
model with the performance of E-MRP model in order to assess the 
gain that can be obtained by using E-MRP. We do so by taking real-life 
case study data from our partnering railway provider, modeling how 
they would currently plan with the given data, and comparing that with 
the improved planning from our heuristic. The results show that the E- 
MRP solution strongly improves the responsiveness of the current sys-
tem, even with an increased number of non-urgent tasks. This leads to 
the conclusion that our the E-MRP model provides a powerful means to 
balance urgent and non-urgent tasks, and is applicable in practice. 

The remainder of this paper is structured as follows. In Section 2, we 
review the related literature, including generalizations in related prob-
lems. In Section 3, we describe the E-MRP model and solution algorithm. 
In Section 4, we describe the CP-model that describes the way non- 
urgent task planning is done in current operational practice. In Section 
5, we elaborate on the simulation environment in which we make 
comparisons. In Section 6, we discuss the numerical results of our 
comparison. In Section 7, we present our conclusions and recommen-
dations. For reference, the MRP is outlined in Appendix A. 

2. Related literature 

Our research builds directly on the work by Huizing et al. on the MRP 
(Huizing et al., 2020) and the proposed MDSA-heuristic for solving the 
MRP. This problem has similarities to both the p-Median Problem and 
the Distance-Constrained Vehicle Routing Problem. 

In the Multi-Period Median Routing Problem, formulated by Kraster 
(2020), the jobs have to be divided over multiple shifts. They proposed 
doing so with a constructive Median Heuristic. In this heuristic, a 
compatibility between any two jobs is determined by scheduling one, 
computing which positions give good coverage when that job is being 
performed, then seeing if the second job is near one of those reactive 
positions. 

The p-Median Problem is well-studied. In it, we must choose p rep-
resentatives or ‘medians’ from a finite set of nodes, such that the sum-
med distance of each unpicked node to its nearest median is minimal. 
Early research into the p-Median Problem includes the work of ReVelle 
and Swain (1970). More recently, Daskin and Maass have reviewed the 
known algorithms and results (Daskin & Maass, 2015). While NP-hard, 
the p-Medians can be approximated within a constant factor by at least 
the following three methods. Firstly, Charikar, Guha, Tardos, and 
Shmoys (2002) achieve a factor of 6 2

3 by means of LP-rounding. Sec-
ondly, Jain and Vazirani (2001) achieve a factor 6+ε by applying 
Lagrangean relaxation on the number of medians, and applying a 
primal-dual 3-approximation algorithm on the resulting Uncapacitated 
Facility Location Problem. Thirdly, Arya et al. achieve a factor 3+2/k by 
local search with k simultaneous swaps. 

The classical p-Median Problem has been generalized in a number of 
ways. In the Multi-Capacitated Location Problem by el El Amrani, 
Benadada, and Gendron (2016), we must choose to which ‘degree’ each 
facility is opened. Rather than being allowed p medians, the lower de-
grees take up less of a common facility budget, but they also have less 
capacity with which to serve clients. They propose a ‘Greatest Customer 
Demand First’ heuristic boosted with an initial Branch-and-Cut solution. 
In the Directional p-Median Problem by Jackson, Rouskas, and Stall-
mann (2007), the points lie in a k-dimensional space, and medians can 
only cover other nodes if they are in the positive direction of the first l 
dimensions. They propose a polynomial-time algorithm for the 1-dimen-
sional case, which they use as a subroutine in their heuristic for higher 
dimensions. In the p-Median Problem with Distance Selection by Benati 

and García (2014), the nodes also lie in k-dimensional space, but we 
select which q dimensions we care about, as well as the p corresponding 
medians. This is motivated by clustering on statistical data, where the 
interesting features are the ones that allow for meaningful clustering. 
This non-linear problem is linearized in different ways, and the radius 
formulation performs best. In the Hamiltonian p-Median Problem, we 
divide the nodes in p directed cycles, rather than p stars pointing at a 
median. Bektaş, Gouveia, and Santos (2019) solve this problem at 
competitive speed by combining subtour elimination constraints from 
the traveling salesman problem with path elimination constraints from 
location-routing problems and the concept of an ‘acting depot’. In the Bi- 
Criteria p-Median p-Dispersion Problem, we not only minimize the 
summed distances of nodes to their medians, but we also maximize the 
smallest distance between any two medians. Colmenar, Hoff, Martí, and 
Duarte (2018) propose a Scatter Search matheuristic to find solutions on 
or near the Pareto front of these two objectives. 

Even more thoroughly studied than the p-Median Problem, is the 
Vehicle Routing Problem (VRP). Recent overviews include those of 
Eksioglu, Vural, and Reisman (2009), Toth and Vigo (2014) and Joubert 
(2007). A particularly relevant variant is the Dynamic Vehicle Routing 
Problem, where some clients are revealed mid-operation. This problem 
is often tackled with either Multiple Scenario Approaches (Pillac, 
Guéret, & Medaglia, 2012), a priori routes (van Ee & Sitters, 2014; 
Zhang, Ohlmann, & Thomas, 2014) rolling horizon approaches (Jaillet, 
Bard, Huang, & Dror, 2002; Palma-Behnke et al., 2013), or roll-out 
policies (Goodson, Ohlmann, & Thomas, 2013). 

Many variants of the basic VRP have been studied. VRP-REP lists 50 
(VRP-REP, 2021). In the VRP with Time Windows (Solomon, 1984), 
certain clients can only be visited within contiguous time windows. In 
Orienteering Problems (Tsiligirides, 1984), we have bounded time to 
collects rewards from visited clients, instead of minimizing the distance 
to visit all of them. In the Pollution Routing Problem (Bektaş & Laporte, 
2011), we may choose to drive more slowly to save fuel, as long as we 
abide by the time windows. In Distance-Constrained VRPs (Laporte, 
1992), routes cannot exceed a certain length. In Green VRPs (Erdougan 
& Miller-Hooks, 2012), alternative fuel vehicles must visit a specialized 
refueling station periodically. In the Carrier-Vehicle Travelling 
Salesman Problem (Garone, Naldi, Casavola, & Frazzoli, 2010), clients 
are visited by a vehicle that must stay close to a mobile, but slow, carrier. 
In Two-Echelon VRPs (Crainic, Perboli, Mancini, & Tadei, 2010), goods 
are first brought to satellite stations, and from there to nearby destina-
tions. In Dial-a-Ride Problems (Psaraftis, 1980) and VRPs with Pickup 
and Delivery (Savelsbergh & Sol, 1995), goods or persons must be 
collected from a pickup node and brought to a delivery node. In 
Consistent VRPs (Groër, Golden, & Wasil, 2009), it is important that a 
client who is visited in multiple time periods is visited as much as 
possible by the same vehicle and around the same time. In Periodic VRPs 
(Gaudioso & Paletta, 1992), some clients must be visited multiple times, 
but certain combinations of visiting days are not allowed. In Location- 
Routing Problems (Drexl & Schneider, 2015), we must simultaneously 
decide where to open depots and how to route over all clients from those 
depots. Perhaps most importantly, in the Technician Routing and 
Scheduling Problem (Pillac, Gueret, & Medaglia, 2013), the clients must 
be serviced by a technician with the right skills, tools and spare parts 
within the right time window. Pillac et al. described a successful meta-
heuristic for this problem, combining a Regret-based constructive heu-
ristic, an Adaptive Large Neighbourhood Search and post-processing by 
a set-covering-based binary program. 

Other problems that combine planned jobs with emergency response 
are the following. Ichoua, Gendreau, and Potvin (2000) minimize both 
traveled distance and lateness to jobs that appear dynamically, using 
Tabu Search. Bertsimas and Van Ryzin (1993) propose policies with 
bounded costs for a dynamic Travelling Repairman Problem, where 
agents may move freely over the plane to service requests that appear. 
van den Berg and Van Essen (2019) studied from which hospitals to 
temporarily expend ambulances for planned transportation, such that 
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the detriment to emergency response times is minimal. Independently, 
Kergosien, Gendreau, Ruiz, and Soriano (2014) have studied this as well. 
Kiechle, Doerner, Gendreau, and Hartl (2009) take a more integrated 
approach, where the emergency ambulance fleet and the planned 
transport fleet are the same. They investigate whether it is better for 
response time if vehicles wait at the location of the job they just finished, 
or the location of the job they are about to start. When looking to ‘cover’ 
an area by patrolling it, rather than standing by for emergencies, the 
unmanned vehicle literature proposes several methods for coordination 
(Agarwal, Hiot, Joo, & Nghia, 2007; Doitsidis et al., 2012; Shu, Wang, 
Lin, Liu, & Zhou, 2013; Wang & Hussein, 2007). 

In maintenance-routing literature, we typically decide when to 
perform maintenance where and how to route between those mainte-
nance activities. Most literature focuses on how to execute a trans-
portation plan with vehicles that have to frequently ‘pit stop’ at a 
maintenance location (Başdere & Bilge, 2014; Gopalan & Talluri, 1998; 
Maróti & Kroon, 2005; Haouari, Shao, & Sherali, 2012; Penicka, 
Strupchanska, & Bjørner, 2003; Sarac, Batta, & Rump, 2006; Talluri, 
1998), sometimes including crew scheduling (Cohn & Barnhart, 2003). 
In contrast, López-Santana, Akhavan-Tabatabaei, Dieulle, Labadie, and 
Medaglia (2016) determine when and how often to perform mainte-
nance, balancing known repair costs against stochastic breakdown costs, 
and route repairmen over these jobs. They do so by iterating between 
continuous non-linear optimization and mixed-integer linear program-
ming. Fontecha et al. (2019) made this method more scalable by using a 
matheuristic instead of iterating. In the field of offshore wind farms, 
Irawan, Ouelhadj, Jones, Stålhane, and Sperstad (2017) study a 
maintenance-routing problem similar to a VRP with Pick-up and De-
livery, and use a Dantzig-Wolfe decomposition, which is typical for the 
latter. 

3. Enriched median routing problem 

We will now describe the central problem of this paper. In Section 
3.1, we describe the E-MRP and its notation. In Section 3.2, we give a 
formulation of the Mixed Integer Linear Program (MILP) for the E-MRP, 
and in Section 3.3 we propose a fast and scalable heuristic for the E- 
MRP. 

3.1. Problem description 

The E-MRP is an extended version of MRP, with additional con-
straints and objectives. As in MRP, we are given a network and a set of 
agents, non-urgent tasks (or “jobs”) and discrete time steps. Per time 
step, agents may hop to an adjacent node or stay where they are. The 
goal is to decide for each job who will perform it when, and for each 
agent where they should be throughout the discrete-time horizon. A 
more complete description of MRP, including a Mixed Integer Linear 
Programming description, is given in Appendix A. We expand on MRP 
with the following extensive list of features:  

1. The planned travel time is added to the objective function;  
2. The makespan is added to the objective function;  
3. Penalties for assigning certain jobs to certain agents are added to 

the objective function;  
4. The start and end locations of agents are variable;  
5. Agents start and end at heterogeneous times;  
6. Some jobs may not be started at certain times;  
7. Jobs can require more than one agent;  
8. Jobs can require some or all of its agents to have certain 

qualifications;  
9. Some agents are not available for emergency response during a 

part of their shift;  
10. Some agents are not available for processing jobs during a part of 

their shift;  
11. Agents have personal sub-networks they cannot leave;  

12. There are mandatory appointments for certain agents to be at a 
place at a certain time;  

13. Jobs may end at a different location than where they start;  
14. Aside from preferences, some assignments of jobs to agents are 

given as hard constraints;  
15. Emergency probabilities and response times are time-dependent. 

For the complete definition of E-MRP, denote A as the set of agents, J 
the set of jobs, V the nodes of the network, V(v) the nodes adjacent or 

Table 1 
Notation for the Enriched Median Routing Problem.  

Set  Description 

A  The set of agents 
J  The set of jobs 
V  The set of nodes 
T  The set of time steps, T = {0,1,…,T}
H  The set of shifts in the planning horizon 
A(h) The agents in shift h ∈ H,A(h) ⊆ A 
T(h) The time steps belonging to shift h ∈ H,T(h) ⊆ T 
T(a) The time steps in which agent a ∈ A is active 
VP(t) At time t ∈ T, the nodes where incidents may occur 

(VP(t) ⊆ V) 
V(u) The nodes within one hop distance of u ∈ V, including u 
B  The set of authorizations agents can have 
X! Appointments (a, v, t) that agent a must be at node v at time 

t    

Parameter Domain Description 

C!
uvt 

Q⩾0 The emergency response time at time t ∈ T from u ∈ V to 
v ∈ VP(t)

C→
uv Q⩾0 The non-emergency travel time from u ∈ V to v ∈ V(u)

Pvt (0,1] Probability that the next emergency is at node v ∈ VP, time 
t ∈ T 

Y✓
at {0,1} Whether agent a ∈ A is available for emergencies at time 

t ∈ T 
Z✓

at {0,1} Whether agent a ∈ A is available for non-urgent jobs at time 
t ∈ T 

V▹
at {0,1} Whether agent a ∈ A can start their shift at node v ∈ V 

V□
at {0,1} Whether agent a ∈ A can end their shift at node v ∈ V 

Vn
a {0,1} The current default start and end location of agent a ∈ A 

X✓
av {0,1} Whether agent a ∈ A is allowed to visit node v ∈ V 

B✓
ab {0,1} Whether agent a ∈ A has authorization b ∈ B 

L▹
j V The start location of job j ∈ J 

L□
j 

V The end location of job j ∈ J 

Rjt {0,1} Whether job j ∈ J may be started at time step t ∈ T 
Qj Z⩾0 The number of time steps job j ∈ J takes 
C×

j Q⩾0 The penalty for not planning job j ∈ J 
Mjb Z⩾0 How many agents with authorization b ∈ B are needed for 

job j ∈ J 
Naj Q⩾0 The penalty incurred when assigning job j ∈ J to agent a ∈

A 
Z!

aj {0,1} Whether it is mandatory that agent a ∈ A is assigned to job 
j ∈ J 

ϕresponse Q⩾0 The weight of the response time objective 
ϕdistance Q⩾0 The weight of the distance objective 
ϕpreference Q⩾0 The weight of the assignment preference objective 
ϕmakespan Q⩾0 The weight of the makespan objective 
ϕignoring Q⩾0 The weight of the job ignoring penalty objective    

Variable Domain Description 

xavt {0,1} Whether agent a ∈ A is at v ∈ V at time t ∈ T 
fat Q⩾0 The distance traveled by agent a ∈ A between times t ∈ T 

and t + 1 
yuvt {0,1} Whether a potential emergency at v ∈ VP, time t ∈ T will be 

responded to from u ∈ V 
zajt {0,1} Whether agent a ∈ A starts job j ∈ J at time t ∈ T 
z′

aj {0,1} Whether agent a ∈ A performs job j ∈ J 

z′′jt {0,1} Whether job j ∈ J is started at time t ∈ T 

z′′′

j {0,1} Whether job j ∈ J is done at all 

z [0,T] The latest completion time among jobs  
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equal to v ∈ V, and T the set of discrete time steps. Agents may have 
heterogeneous working hours, denote T(a) ⊆ T the working hours of 
agent a ∈ A. There is a set of job authorizations B an agent can have, and 
we denote B✓

ab = 1 if agent a ∈ A has authorization b ∈ B, and 0 other-
wise ***Table 1. 

We denote V▹
av = 1 if node v ∈ V is an allowed start location for agent 

a ∈ A, and 0 otherwise. Likewise, V□
av indicates whether a can end their 

shift at v. The start time and end time of a ∈ A are the earliest and latest 
time steps respectively in T(a). In each time step, each active agent a ∈ A 
may stay where they are or move to an adjacent node. However, they 
have personal sub-networks in which they must stay, and X✓

av equals 1 if 
a is allowed to visit v and 0 otherwise. 

Each job must be performed. Once a job j ∈ J is started, the agents 
assigned to it must stay at the location of the job for the entire duration 
Qj. They must also be available for processing jobs throughout, and we 
indicate whether or not an agent a ∈ A is available for job processing at 
time t ∈ T by setting Z✓

at equal to 1 or 0. Unlike in MRP, the start location 
L▹

j ∈ V may be different from the end location L□
j ∈ V, as some jobs may 

consist of thoroughly inspecting an ‘edge’ of the network. For ease of 
notation, we assume that jobs do not share locations, as we can easily 
introduce virtual locations. Some jobs have time constraints, meaning j 
can only be started at time t ∈ T if Rjt equals 1 rather than 0. Note that 
these ‘time windows’ are not contiguous per se: it may make sense for 
certain jobs to be done during the morning peak hour or the afternoon 
peak hour, but not somewhere in between. 

The most impacting difference between MRP and E-MRP, is that a job 
may require several agents. In fact, j ∈ J may require that Mjb agent with 
authorization b ∈ B are assigned to it. We allow an agent with multiple 
authorizations to count towards the requirement Mjb of each of those 
authorizations: for instance, if a job requires two agents with basic 
training (Mj,basic = 2) and one agent with mechanical training 
(Mj,mechanic = 1), the job can be fulfilled by two agents, if they both had 
basic training and at least one of them had mechanical training. 

The decision variables are the following. We must decide for each 
agent a ∈ A and each time step t ∈ T(a) where in the network they are, 
by setting xavt = 1 if a is at node v ∈ V at time t and 0 otherwise. We must 
also set z′

aj to 1 or 0 to indicate whether agent a ∈ A is assigned to job 
j ∈ J, and z′′jt to 1 or 0 to indicate whether j is initiated at time t ∈ T. 
Given the values of these variables, the remaining variables have values 
that are easy to determine. We set zajt = 1 if z′

aj = z′′jt = 1 and 0 other-
wise. If agent a ∈ A decides to move between time steps t ∈ T and t + 1, 
we denote the traveled distance by fat⩾0. If this movement is from u ∈ V 
to v ∈ V, we set fat equal to the travel distance C→

uv. Furthermore, we keep 
track of the ‘makespan’ z: if job j ∈ J is initiated at time t ∈ T and needs 
Qj time steps to process, then the completion time is t +Qj, and z is equal 
to the latest completion time among the jobs. Finally, at every time step 
t ∈ T there are nodes v ∈ VP(t) ⊆ V at which an emergency can occur, 
and we indicate whether this emergency will be responded to from node 
u ∈ V by setting yuvt to 1 or 0. 

One of the core objectives of our problem is minimizing emergency 
response time. Before we introduce the objective function of E-MRP 
formally, we make two remarks about how response time is defined. If 
an emergency occurs at node v in the time interval (t − 1, t] and the 
responding agent is at node u at time t, we denote the response time as 
C!

uvt . 
We remark first that C!

uvt can be completely unrelated to the graph 
distance between u and v. That is, when an emergency occurs, agents are 
free to ignore the graph structure and move over the fastest physical 
route to the emergency location, possibly even with higher speed due to 
being an emergency vehicle. While it may seem counter-intuitive that 
the graph distances do not always correspond exactly to the distances 
possible in the physical world, this is a result of discretizing time and 
space: for instance, two adjacent nodes can be only a few minutes apart 

in the physical world, but the graph distance would be rounded up to 
‘one time-step’. 

As a second remark on response time, in both MRP and E-MRP, we 
only minimize the response time to the next emergency. When an 
emergency does occur, and the responding agents are dispatched, we 
assume the planner will create a new planning for the remainder of the 
time horizon, using the remaining agents, jobs and time-steps as input. 
While it may be somewhat myopic to prepare only one emergency 
ahead, it is computationally much more expensive to look multiple 
emergencies ahead, as this would likely require stochastic program-
ming. Although this could improve the response time to emergencies 
beyond the first, we conjecture that the gain will be marginal, especially 
in use cases where emergencies occur infrequently. For use cases with 
frequent emergencies, one can hope that the response organization 
accordingly has many responders in its fleet, which would again limit 
the impact of planning only one emergency ahead. 

To briefly conclude: for the emergency response time, we use the 
distance matrix C!

uvt that is unrelated to the graph, and we optimize the 
expected response time to only the next emergency because the planner 
can create a new planning after each emergency. 

In E-MRP, we wish to minimize a sum of four objectives, weighted 
with normalizing factors ϕresponse,ϕdistance,ϕpreference and ϕmakespan, respec-
tively. Firstly, we want to minimize the expected response time to 
emergencies in the network. At each time step t ∈ T, we know of each 
danger-node v ∈ VP(t) the probability Pv,t of the next emergency 
occurring there. Once we have decided the positions xavt of the agents 
throughout time, we know from which nodes u ∈ V emergency coverage 
can be given to (v, t). We only count agents who are available for 
response at that time, as Y✓

at ∈ {0,1} indicates whether agent a ∈ A is 
available for emergency response at time t. It is always optimal to choose 
the nearest remaining u for coverage of v ∈ V. So we know the proba-
bility Pvt for the next emergency to be at (v, t), and we know the corre-
sponding response time C!

uvt, meaning the expected response time to the 
next emergency equals 

∑
t∈T,v∈VP(t),u∈VPvtC!

uvtyuvt . 
Secondly, we want to minimize the total time agents spend traveling, 

aside from emergency response. Movement requires fuel, and preventive 
jobs often cannot be performed while moving. This objective simply 
equals 

∑
a∈A,t∈T(a)fat . 

Thirdly, planners may have their own preferences of assigning spe-
cific jobs to specific agents for reasons beyond this model. It may be, for 
instance, that an agent will soon have an exam for a certain type of job, 
and should practice that job as much as possible. We therefore define a 
‘penalty’ Nja⩾0 of assigning agent a ∈ A to job j ∈ J to discourage un-
wanted assignments. This final cost component is equal to 

∑
a∈A,j∈JNjaz′

aj. 
Finally, we want to minimize the makespan z. If jobs are scheduled 

near the end of the shift, then any emergency will make it likely that the 
planned jobs can no longer be performed that day. Additionally, mini-
mizing the makespan implicitly means that the workload is divided as 
‘fairly’ over agents as possible. 

3.2. Mixed integer linear program formulation 

We present a mixed integer linear program (MILP) formulation for 
the E-MRP. Technically, the MILP describes a problem more general 
than E-MRP: planning is done over several shifts, and allow jobs j ∈ J to 
be ignored against a penalty C×

j . We present this more general MILP, 
because it allows us to describe most of the subroutines in this article as a 
small variation of this MILP. 

Let H be the set of shifts. Denote T(h) ⊆ T the time steps in shift 
h ∈ H. Let A(h) ⊆ A be the set of agents working shift h. For each 
a ∈ A(h), denote t▹

ah ∈ T(h) and t□
ah ∈ T(h) the start and end time of agent 

a in shift h. Denote J→(u, v) := {j ∈ J : L▹ = u, L□ = v} the jobs that start 
at u but end at v. Let the binary decision variable z′′′

j indicate whether you 
decide to do the job j ∈ J. Then we present the following MILP. We fix 
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xavt = 1 for every (a, v, t) ∈ X!, xavt = 0 for every t ∈ T if X✓
av = 0, and 

z′

aj = 1 if Z!
aj = 1. 

min ϕresponse⋅

(
∑

t∈T ,v∈VP(t),u∈V

PvtC!
uvtyuvt

)

+ ϕdistance⋅

(
∑

a∈A,t∈T(a)

fat

)

+ ϕpreference⋅

(
∑

a∈A,j∈J
Njaz′

aj

)

+ ϕmakespan⋅z + ϕignoring⋅

(
∑

j∈J
C×

j

(

1 − z′′′

j

))

subject to 

∑

v∈V
V▹

av xavt▹ah
= 1

(

∀h ∈ H

)(

∀a ∈ A

(

h

))

(1)  

∑

v∈V
V□

av xavt□ah
= 1

(

∀h ∈ H

)(

∀a ∈ A

(

h

))

(2)  

∑

v∈V
xavt = 1

(

∀a ∈ A

)(

∀t ∈ T

(

a

))

(3)   

∑

a∈A

∑

t∈T
B✓

abz′

aj⩾Mjbz′′′

j

(

∀j ∈ J

)(

∀b ∈ B

)

(5)  

zajt⩽z′′jt
(
∀a ∈ A

)(
∀j ∈ J

)(
∀t ∈ T

)
(6)  

zajt⩽z′

aj

(
∀a ∈ A

)(
∀j ∈ J

)(
∀t ∈ T

)
(7)  

zajt⩾z′

aj + z′′jt − 1
(
∀a ∈ A

)(
∀j ∈ J

)(
∀t ∈ T

)
(8)  

∑

t∈T
z′′jt = z′′′

j

(

∀j ∈ J

)

(9)  

∑t+Qj − 1

τ=t
Z✓

atxaL▹
j τ⩾Qjzajt

(

∀a ∈ A

)(

∀j ∈ J

)(

∀t ∈ T

)

(10)  

Z✓
a(t+Qj)

xaL□
j (t+Qj)⩾zajt

(
∀a ∈ A

)(
∀j ∈ J

)(
∀t ∈ T

)
(11)  

z⩾
(

t+Qj

)
z′′jt

(
∀j ∈ J

)(
∀t ∈ T

)
(12)  

∑

u∈V
yuvt = 1

(

∀t ∈ T

)(

∀v ∈ VP

(

t

))

(13)  

yuvt⩽
∑

a∈A:t∈T(a)

Y✓
atxaut

(

∀u ∈ V

)(

∀t ∈ T

)(

∀v ∈ VP

(

t

))

| (14)  

C→
uv

(
xaut +xav(t+1) − 1

)
⩽fat

(
∀a∈A

)(
∀t∈T

(
a
)
⧹T
)(
∀u∈V

)(
∀v∈V

(
u
))

(15)  

xavt, zajt, z
′

aj, z
′′
jt, z′′′

j ∈
{

0, 1
}
, yuvt, z, fat⩾0.

The objective function consists of the four components described in 
Section 3.1, with the added job ignoring penalties 

∑
j∈JC

×
j (1 − z′′′

j ). 
Constraints (1) and (2) indicate that agents must start and end each of 

their shifts at locations that are allowed for them. Constraints (3) state 
that an agent can be in only one place at a time. Constraints (4) state that 
agents can only move to adjacent nodes. An exception is made when 
performing jobs that end in different places than they start: if an agent 
initiates a job j ∈ J ∈ J→(u, v) at time t ∈ T, then we allow that agent to 
‘teleport’ from u to v at time t + Qj. Constraints (5) encode that each job 
needs a certain number of agents for each authorization. Constraints ()() 
()(6)–(8) set the relation that (zajt = 1)⇔ (z′

aj = z′′jt = 1). Constraints 
(9) state that if you decide to do a job j ∈ J, it must get exactly one 
starting time. Constraints (10) ensures that agents who start a job stay at 
its location for the duration, except in its final step, when constraints 
(11) put them at the job end location. Constraints (12) make z behave as 
the makespan, or the latest completion time among jobs. Constraints 
(13) state that at every time t ∈ T, the danger-nodes VP(t) need emer-
gency coverage. Constraints (14) state, however, that coverage can only 
be given from nodes with at least one agent on them who is available for 
emergency response. Finally, constraints (15) encode that if agent a ∈ A 
starts moving at time t ∈ T from node u ∈ V to node v ∈ V(u), then the 
distance fat should equal C→

uv. 

Fig. 1. The first issue with MDSA: the most e?cient route may be infeasible, due to the many side constraints of E-MRP.  

xavt⩽
∑

u∈Vv

⎛

⎝xau(t− 1) +
∑

j∈ J→(u,v)

zaj(t− Qj)

⎞

⎠

⎛

⎝∀a ∈ A

⎞

⎠

⎛

⎝∀v ∈ V

⎞

⎠

⎛

⎝∀t ∈ T

⎛

⎝a

⎞

⎠⧹

⎧
⎨

⎩
0

⎫
⎬

⎭

⎞

⎠ (4)   
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We obtain a MILP for E-RMP by observing only one shift, and 
demanding z′′′

j = 1 for all j ∈ J. We remark that constraints (1)–(5), (9), 
(13) and (14) were already present in some form in MRP, as well as the 
response time objective. See also Appendix A. The parameters, variables 
and indices added to those constraints, together with the new con-
straints and objectives, constitute the difference between MRP and E- 
MRP. 

3.3. An MDSA-inspired heuristic 

While it is possible to solve an instance of E-MRP by plugging the 
MILP into a MILP solver, the required computation times are much too 
long and unpredictable for this specific application. Whenever an 
emergency occurs, planners need to have a new planning within mi-
nutes, and they cannot afford to wait hours or days for the optimal one. 
Therefore, a fast heuristic is needed that provides good solutions within 
a few minutes. In Huizing et al. (2020), MDSA was found to be the most 
effective heuristic for MRP. Roughly, MDSA consists of four steps, which 
are outlined below for later reference. 

Step 1: MEDIATE 
In this step, the ideal positions for emergency response are deter-

mined by solving a p-Median Problem. These medians are matched to 
agents, such that the distance between the median and the agent’s start 
and end location are minimal in total. Agents are temporarily solely 
responsible for emergency response in the region belonging to their 
median. 

Step 2: DIVIDE 
In this step, jobs are assigned as much as possible to the nearest 

median and its agent. 
Step 3: SEQUENCE 
In this step, each agent decides in what order to visit the jobs 

assigned to them. Discrete routes over the network are then drawn with 
optimal response times to the region of that agent. 

Step 4: AGREE 
In this step, it is evaluated if the current routes justify the initial 

division of emergency nodes over agents, and a small re-optimization is 
performed. 

Adapting MDSA to E-MRP is non-trivial, due to the many new fea-
tures. To be more specific, the two main hurdles to be taken are the 
following: (1) it is no longer given that any agent can do any task at any 
time, and (2) because some tasks may require multiple agents, agents are 
no longer free to independently sequence their jobs. 

An example of the first hurdle is given in Fig. 1. If we simply compute 
the fastest route between all jobs assigned to an agent, we can no longer 
guarantee that this is feasible. For instance, it may be that some jobs j are 
quite restrictive in their allowed starting times Rjt. It no longer suffices to 
encode with decision variables if one job is followed by another; we 
must also decide the starting time t and check whether Rjt = 1. 

Similarly, appointments X! must also be fit into the schedule, giving us 
another reason that we must explicitly track arrival times. These are 
only two of the many additional features to account for in dividing and 
sequencing the jobs. The second hurdle, illustrated in Fig. 2, causes an 
even deeper issue in the methodology. In MDSA, we first divide jobs over 
agents, then allow them to independently decide in what order to visit 
these jobs. However, because we now have jobs that require multiple 
agents, we need to ensure that agents arrive at such jobs at the same 
time. This makes it very difficult to decouple the routing decisions per 
agent, especially in conjunction with the routing challenges in the first 
hurdle. In conclusion, the arrival of each agent at each key location must 
be synchronized much more closely, and MDSA as is falls down. A new 
algorithm is needed. 

Fortunately, by understanding what made MDSA successful, we can 
craft a heuristic in the same spirit. To be more specific, for MDSA the 
quality of the solutions was concluded to be mainly due to the 
MEDIATE-step (outlined above). Because it is NP-complete to produce a 
feasible solution for MRP, MILP solvers were required as subroutines, 
but they terminated very quickly due to the problem being split and 
heavily compressed. 

For E-MRP, we propose the heuristic described in Algorithm 1. We 
again start with determining good medians. Because finding a feasible 
solution is NP-complete, we need a MILP solver as a subroutine, but we 
can greatly speed this up by compressing the underlying network. We 
again split the decisions over several steps: the MILP mainly finds a 
feasible job schedule with reasonable distance to the medians, but we 
only explicitly optimize emergency response times and traveled dis-
tances in later steps. 

Algorithm 1. High-level overview of the MDSA-inspired algorithm for 
E-MRP.   

1: Obtain |A| medians optimal with respect to 
∑

t∈TPvtC!
uvt 

2: Obtain a simplified subset V′

⊆ V containing all medians and the start and end 
locations of agents and jobs 

3: Run the MILP, but with nodes V′ , and Pvt > 0 only for the medians, and |H| = 1, and 
z′′′

= 1, and ϕdistance = 0, and an appropriate time-out. 
4: Fixing z from the previous step, as well as X!, determine where in V any agent a ∈ A 

can be at any time t ∈ T 
5: Sort A on how many start locations they can still choose from, then greedily choose 

start locations minimizing response time and travel time to the first goal 
6: For t ∈ T, for each active agent, greedily decide their next hop based on response 

time and travel time  

Below we elaborate on the steps in Algorithm 1.  

1. Node weights and response times are now time-varying, but for 
simplicity, we sum these over time. This is equivalent to taking 
average weights and response times. This allows us to solve one p- 
Median problem for the entire time horizon, which is much less 
computationally intensive than solving one for each time step. The 
underlying assumption is that, though some time steps will have 
more emergencies and higher travel times, each node will retain 
more or less the same fraction of the emergency weight, and the 
increase in response times behaves like a constant multiplication. 
This is justifiable when emergency probabilities and response times 
increase mainly due to the morning and afternoon rush hours, and 
these multiplication factors are uniform over the network. Note that 
if Pvt and C!

uvt are static enough, then in practice, we can maintain a 
preprocessed list of medians for the typical numbers of agents in a 
shift.  

2. It is computationally costly to input many nodes into the MILP. 
Therefore, we find the smallest subgraph that preserves the graph 
distances between the points of interest, including the medians, 
using the technique in Huizing, Schäfer, van der Mei, and Bhulai, 
(2022). If the start and end locations of the agents and jobs are static 
enough, this step can also be preprocessed.  

3. We run the MILP from Section 3.2 for a limited time. Because we use 
it for an instance of E-MRP, we enforce that every job must be 

Fig. 2. The second issue with MDSA: if agents draw their own routes, they may 
arrive at cooperative jobs at completely different times. Due to time limits, we 
cannot always wait until everyone is present. If T = 13, then these two routes 
are feasible in isolation, but infeasible when evaluated jointly. 
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scheduled, and we only observe one shift. We knowingly delay 
optimizing the traveled distance to a later step, trusting that a good 
makespan will imply an agent’s jobs being close together. This also 
allows us to skip constraint (15), which is by far the most costly to 
build.  

4. In later steps, we will greedily choose cost-improving hops. However, 
we need to make sure that we do not make choices that turn out to be 
infeasible. Therefore, we perform this step to compute which nodes 
can be visited at which times when abiding by the job schedule z 
from the previous step and X!. For each agent, we determine from z 
and X! their fixed locations at those times. Then, because this set of 
fixed locations is small and the network adjacency is constant over 
time, we can make the following computation. For each location of 
interest for an agent a ∈ A, we use breadth-first search to determine 
how many hops away it is from each node v ∈ V, remembering that 
a ∈ A can only visit nodes u ∈ V with X✓

au = 1. Then if a has a fixed 
location (u1, t1) and next has to be at (u2,t2), we know for each v ∈ V 
that a ∈ A can be there at times t1 + hops(u1, v)⩽τ⩽t2 − hops(v, u2), 
which may be an empty set of τ. The result of this step is, for each 
agent a ∈ A and each time step t ∈ T, a list of nodes Vz(a, t) ⊆ V 
which that agent can visit at that time.  

5. While agents can have multiple start locations to choose from, this 
selection may be further limited by fixing the job schedule z. We sort 
A in increasing order of how many start locations they can still 
choose according to Vz. We initiate the set U of chosen start locations 
empty. Then, for each agent a ∈ A in the sorted A, and for each 
allowed start location u, we determine the summed response cost for 

U ∪ {u} as (C!)
′

u =
∑

t∈T,v∈VP(t)Pvtminu′
∈U∪{u}C

!
u′ vt . If a visits any jobs or 

appointments, and l is the starting location of the first such visit, we 
set (C→)

′

u = C→
ul ; otherwise, (C→)

′

u = 0. We then pick the start loca-

tion u with minimal ϕresponse(C!)
′

u + ϕdistance(C→)
′

u, set the location of a 
at their start time to u, add u to U, and move on to the next agent.  

6. For each time step t ∈ T⧹{T}, and each agent active at that time step 
and the next, we obtain their current location v and look at all nodes 

in Vz(a,t + 1). Let U be the (possibly empty) set of locations for which 
it is decided that some response available agent will be there at t + 1. 

Then for each u ∈ Vz(a, t + 1), we again determine (C!)
′

u =
∑

t∈T,v∈VP(t)Pvtminu′
∈U∪{u}C

!
u′ vt, and we set (C→)

′

u = C→
vu. We let the 

location of a at time t+1 be u := argminu∈Vz(a,t+1)(ϕresponse(C!)
′

u +

ϕdistance(C→)
′

u). 

In summary, Algorithm 1 yields a schedule for the jobs, and a 
movement instruction for the agents. By construction, this algorithm 
will find a feasible solution if it exists, unless the time-out on step 3 is too 
narrow. 

4. Current practice model 

To assess the performance improvement of our E-MRP solution with 
the performance obtained with the current way of planning, it is 
important to understand how the planning is done in current practice. 
By making an accurate quantitative model of the current practice, we 
can computationally investigate the influence that certain decisions 
have on different metrics. This allows us to investigate a large number of 
potential scenarios. Furthermore, a model allows us to compare the 
performance in these scenarios, without having to track how well our 
proposed solution is abided by in practice. To this end, we have set up 
extensive interviews with task planners from our partnering railway 
provider. This has led to a common understanding of the informal steps 
taken in the current way of planning, which is mainly done manually 
(without any support from MRP). Throughout, this model will be 
referred to as the Current Practice (CP) model, and is described below. In 
the next section, this CP-model will be used as a benchmark to compare 
the performance of the E-MRP model proposed in this paper for a real-
istic use case scenario obtained from our partnering railway provider. 

We have observed ten shifts in a single week. A shift consists of 
several agents, and a shift leader responsible for their coordination. 
Some agents, including the shift leader, have a role in a shift that 

Fig. 3. A schematic representation of the current practice. Two agents, living at the green house-shaped nodes, determine which jobs are within a given radius of 
their home base. They disregard jobs outside of that radius. One job in their intersection has to be done by at least two people: a planner decides these two should do 
it, at time t = 11. Apart from that, agents are free to divide jobs over their shifts. The left agent divides eight jobs over his four shifts (solid orange lines), the right 
agent divides five jobs over his three shifts (purple dotted lines). They are unaware that the same job (just below the cooperative job) is visited by both of them at 
some point, which is superfluous. The left agent could have instead visited a job that now no one does. 
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requires them to stay at the base of operations. Almost every shift has a 
designated truck driver, who cannot stray too far from the garage of the 
heavy emergency-response truck, which is also at the base station. 

In current way of working, agents in our case study make their 
planning in a rather decentralized manner. Some of the preventive jobs 
require some paperwork and planning, or collaboration, and these are 
typically planned and assigned by the shift leader. After that, however, 
the shift leader asks the agents to propose for themselves which jobs they 
will do, based on their own expertise and preferences. Agents have often 
accumulated local knowledge in the area around their home, and prefer 
to stay in that area. They will typically divide the tasks close to their 
home over their shifts that week. Once they have performed a sufficient 
amount of work, they are allowed to await emergencies from their home 
base. See also Fig. 3. 

As long as this means someone is active in the ‘northern part of the 
region’, as well as in the ‘middle part’ and ‘southern part’, the expected 
emergency response time is low enough for the shift leader to be content. 
Working hours have been designed around that logic, and typically, each 
shift contains an agent living in the north, the middle and the south. For 
the ten shifts in our case study, the active agents indeed have home bases 
in these three areas, and the decentral plans of the agents were not 
interfered with. 

In this way of working, agents may know roughly in what corners of 
the networks their coworkers are, but they do not know where exactly or 
what they are doing. Some agents in the late shift may choose to perform 
a periodic patrol on a piece of the railway, not knowing that a coworker 
has already patrolled there the same morning. Moreover, agents in the 
same shift may encounter each other patrolling the same piece of the 
railway, and continue their patrol together. Two agents staying together 
is clearly suboptimal with respect to emergency response times. Mean-
while, if some other part of the railway has been neglected for weeks on 
end, this is untracked and unknown. 

The current practice has some practical benefits: it requires very little 
communication, which makes it robust in the face of emergencies. 
Furthermore, experience with a given piece of the railway is undoubt-
edly beneficial to inspecting it effectively. However, now that the 
communication infrastructure and the size of the organization are 
growing, we believe our model and heuristic can help coordinate 
schedules and decrease response times. We will support this claim in the 
remainder of this article. 

We obtain all sets and parameters from the case study data, with one 
exception. For each agent a ∈ A, from among the variable starting and 
ending locations, only Vn

a is allowed, the one nearest to their home. If an 
agent works from the base station or as a truck driver, the base station is 
taken as the start location. Because the agents must select a subset of jobs 
to perform, we provide a job ‘importance’ C×

j that was also approved by 
the employee of the organization. We simulate the current practice as 
follows, with H the ten shifts in the observed week. 

Let MILP(A′

, J′

,V′

,H′

, F) denote that we call the MILP from Section 
3.2 with agent subset A′ , job subset J′ , node subset V′ , shift subset H′ , and 
a collection F of fixed values for certain variables and parameters. Then 
Algorithm 2 describes the way plans are made in the CP-model. 

Algorithm 2. Mathematical interpretation of the current practice.   
1: Collect a simplified node set V′ , either precomputed or from Huizing et al. (2022). 
2: Encode in collection F2, for all shifts h ∈ H and agents a ∈ A(h) and time-steps 

t ∈ T(h), that xa,Vn
a ,t▹

ah
= 1, xa,Vn

a ,t
□
ah
= 1 and that xavt = 0 if node v is not accessible for 

agent a because of their role in the shift h. Also encode for each agent a ∈ A and each 
job j ∈ J that z′

aj = 0 if j is too far away, that is, C→
Vn

a ,L
▹
j
> 60 or C→

Vn
a ,L

□
j
> 60. 

3: Compile centralized jobs J′ : jobs that are only done once, and jobs j that must be 
assigned at least two agents, meaning ¬∃a ∈ A : (B✓

ab⩾Mjb ∀b ∈ B). 
4: The planner plans J′ . That is, encode in a new collection F that z′′′

= 1, and ϕresponse 

= 0 and ϕignoring = 0. Then call MILP({a},J′

,V′

,H,F ∪ F2). Encode in collection F4 the 
following: z′

aj = 1 if j ∈ J′ is assigned to a ∈ A and 0 otherwise, and z′′jt = 1 if multi- 

agent job j ∈ J′ is scheduled at time-step t ∈ T. 

(continued on next column)  

(continued ) 

5: Each agent a ∈ A divides jobs over their shifts. That is, encode in a new collection F 
that ϕresponse = ϕpreference = 0. Then call MILP({a},J(a),V′

,H,F ∪ F2 ∪ F4). For each 
shift h ∈ H and each agent a ∈ A(h), denote J(a, h) the jobs agent a ∈ A schedules in 
shift h ∈ H. 

6: Agents minimise their makespan in each shift. That is, for each h ∈ H and a ∈ A(h), 
encode in a new collection F that z′′′

j = 1 for all j ∈ J(a,h), and ϕresponse = ϕpreference =

ϕdistance = ϕignoring = 0. Then call MILP({a},J(a,h),V′

,{h},F ∪ F2 ∪ F4). Encode in 
collection F6 that z′′jt = 1 if start-time t was chosen for job j. 

7: Agents minimise their distance, abiding by this makespan. That is, for each h ∈ H 
and a ∈ A(h), compute the C→-shortest tour from Vn

a across J(a,h), while not 
violating F2 ∪ F4 ∪ F6. If this tour is shorter than T(h), let the agents spend the 
remainder of their shift at Vn

a .  

In words, Algorithm 2 does the following.  

• We compile the jobs J′

⊆ J that the shift leader decides on. These are 
the jobs that require multiple agents, and the jobs that cannot be 
done by agents without the shift leader providing some paperwork. 
We simulate these jobs being planned over the week, by solving a 
variation of the MILP from Section 3.2. That is, we fix z′

aj to 0 if job 
j ∈ J is not within one hour of the home of agent a ∈ A, measured in 
C→. We set the start and end locations of the agents as discussed by 
fixing xavt = 1 if v ∈ V is the default start and end location of a for 
that shift, and t ∈ T is a shift start or end time for a that shift. If a is a 
driver or has to stay at the base station, we forbid the other locations 
by setting xavt = 0. We demand all jobs J′ are assigned, so we set z′′′

j =

1 for all j ∈ J′ , as J′ is quite small in this case study. We set ϕresponse =

ϕignoring = 0. As we care mainly about setting start times for those few 
jobs in J′ , it suffices to use a simplified node set V′ . J′ is small enough 
that we believe a high-quality schedule can be found even when 
setting a time-out on the MILP. The result is a decision of whom the 
jobs in J′ are assigned to, and in the case of multi-agent jobs, at what 
time they will be performed.  

• Each agent a ∈ A assembles the jobs J(a) ⊆ J within one hour of their 
start location, and divides these over the week using the MILP. Some 
values of xavt and z′

aj are fixed by the same rules as in the previous 
step. In addition, the previous step assigned the jobs J′ to specific 
people, and we further fix z′

aj accordingly. If those jobs were in J′

because they required several people, we also enforce z′′jt = 1 for the 
chosen start time t of job j ∈ J′ , to ensure that everyone shows up at 
the same time. 

However, after having those variables fixed, we allow a to decide 
which jobs to do when. We use the agent set {a}, the simplified nodes 
V′

⊆ V, and the nearby jobs J(a) ⊆ J. We do not constrain z′′′

j , and we 
set ϕresponse = ϕpreference = 0. We run the MILP with a time-out. The 
result is a decision, for each agent, what jobs they will do in each of 
their shifts.  

• Each agent a ∈ A then determines, for each of their shifts h ∈ H, how 
to do the jobs J(a, h) they chose for that shift as quickly as possible. 
We first minimize the makespan. This is done with the MILP, with 
agents {a}, jobs J(a, h), simplified nodes V′ , and shifts {h}. We fix 
z′′′

j = 1, and set ϕresponse and ϕdistance and ϕpreference and ϕignoring to 0. 
After running this MILP to optimality, we use an adaptation of 
Dijkstra’s algorithm to find the quickest route with respect to C→. 
This route starts at the start location, visits the jobs at the times 
scheduled by the MILP, and goes back to the start location as quickly 
as possible. The result is a complete solution: for each shift, we know 
where the agents are at each time step and what jobs they start 
performing, albeit that some jobs may be performed multiple times. 

We emphasize that the CP-model described above describes the 
informal steps taken by planners in our partnering railways company in 
today’s practice. Simulation experiments show that the response times 
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predicted by the CP-model closely match those observed actually 
observed in current practice. As we will see in Section 6, the CP-model 
predicts an expected response time of 41.1 min. In a recent sample 
from the partnering company, an average response time of 43.9 min was 
measured over 45 incidents, with a standard deviation of 17.31 min. If 
our hypothesis is that these incidents were sampled from a distribution 
with mean 41.1, then the measured 43.9 corresponds to a p-value of 
0.285, which implies that the hypothesis can not be rejected. 

From this, we conclude that the CP-model gives a good description of 
the current way of working. In the remainder of this paper, we will use 
this CP-model to answer what-if questions about the performance under 
different, both realistic and hypothetical, planning situations. 

5. Performance metrics, planning scenarios and use case 
description 

In this section, we benchmark the performance of the proposed so-
lution to the E-MRP model with the performance of the CP-model. For 
this, we have performed extensive simulations for a range of realistic 
planning scenarios. In Section 5.1, we will discuss the performance 
metrics we wish to improve on. In Section 5.2, we will describe the 
planning scenarios we have simulated to investigate the potential im-
provements. In Section 5.3, we describe the real-life use case that use for 
our experiments. The remaining details of our simulation experiment are 
given in Section 5.5. 

5.1. Performance metrics 

In our experiments, we consider the following seven relevant per-
formance metrics:  

• Expected response time: given the positions xavt of a solution, we 
know the positions U(t) := {u ∈ V :

∑
a∈AY✓

atxaut} from which emer-
gency response can be given. The expected response time then equals 
∑

t∈T,v∈VP(t)minu∈U(t)PvtC!
uvt .  

• Percentage of incidents with response time less than 15 min: 
Again given U(t), we define this metric as 

∑

t∈T ,v∈VP(t)

Pvt⋅1

(

∃u ∈ U

(

t

)

: C!
uvt⩽15

)

• Percentage of incidents with response time less than 30 min: 
Same, but with 30 min.  

• Percentage of incidents with response time less than 45 min: 
Same, but with 45 min.  

• Percentage of incidents with response time less than 60 min: 
Same, but with 60 min.  

• Weighted unique jobs: While we have defined the value C×
j of doing 

job j ∈ J, this does not account for the fact that a set of decentralized 
agents may unknowingly do a job multiple times in the same week, 
which is considered ‘useless’. We thus define this metric as 
∑

j∈JC
×
j ⋅1(j is scheduled at least once).  

• Planned traveling: Given the positions xavt, this is simply the sum of 
C→

uv for every movement from u ∈ V at time t ∈ T⧹{T} to node v ∈ V 
at time t + 1. 

We do not take computation time into account as a metric, because 
computation time is only meaningful in a small subset of the scenarios 
we compare. In our experiments, however, our Algorithm 1-based solver 
needs only 19.8 s per shift, even on modest hardware and without a 
time-out on Step 3. Computation times, thus, are not a restricting issue in 
our application. 

5.2. Planning scenarios 

In practice, there are many choices to be made with respect to the 
restrictions in the planning. To gain insight into the implications of these 
options, we define a number of planning scenarios, for which the per-
formance for our use case study is evaluated.  

1. Current practice (“own jobs, own route”): agents pick their own 
jobs, schedules and routes, as described in Section 4.  

2. Jobless current practice (“no jobs, own route”): in the later parts 
of shifts, agents are often already at home in the current practice. To 
see what kind of emergency response this incurs, we ran the same 
analysis as in Section 4, but with an empty set of jobs. The resulting 
solutions amount to agents starting at their start location, and stay-
ing there until the end of their shift.  

3. New practice (“planned jobs, solver route”): as part of the case 
study, jobs were picked by an experienced planner from our industry 
partner, who had access to the solver running the heuristic from this 
article. The planner picked jobs for all shifts in the case study, and 
did so without interference from the researchers. These jobs were 
picked and divided over the shifts so that jobs are not done multiple 
times, but agents still have jobs somewhat near one of their start 
locations. In this planning scenario, the job schedules and routes are 
determined by running the heuristic in Section 3.3.  

4. Current jobs with heuristic (“own jobs, solver route”): when 
comparing the current practice with the new practice, the quality of 
the new solutions depends in part on how well the planner chose the 
jobs. To filter out this effect, in this scenario, we ran the solver with 
the same set of jobs as in the current practice. The aim of this sce-
nario is to show that, even without changing which jobs are done, the 
solver can still find job schedules and positions which perform better. 
We compute this scenario by deciding jobs for shifts as in Section 4, 
but then running the solver for each shift with the jobs thus chosen.  

5. Lower bound response time (“best response”): to give more 
context to the results, we computed a lower bound on the expected 

Fig. 4. The studied section of railway network in the North-Eastern part of the 
Netherlands. Green edges have low incident rate, while orange and red ones 
have high incident rates (based on historical incident data). 
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response time that can be achieved in this case study setting. We did 
so by running the MILP from Section 3.2 for each shift, but with J =

∅, and ϕdistance = 0.  
6. Upper bound weighted unique jobs (“best jobs”): Likewise, to 

upper bound the weighted unique jobs metric, we ran the MILP with 
ϕresponse = ϕdistance = ϕpreference = ϕmakespan = 0.  

7. Adjusted jobs with solver (“manual jobs, solver route”): as it 
turned out, the planner selected significantly fewer jobs for the case 
study than the simulated agents could handle. This was because at 
the time, this new technology and way of working were unfamiliar, 
and not all available agents were taken into account. To correct for 
this, we manually picked a larger set of jobs to input into the 
heuristic. 

5.3. Use case description 

In this section, we describe the realistic use case, obtained from our 
industry partners, which we have used for our simulation experiments. 
In this case study, we observe a portion of the railway network. We have 
summarized this as a graph with 294 nodes, which we can simplify to a 
graph of 126 nodes using the node aggregation technique described in 
Huizing et al. (2022). The nodes represent either railway stations, the 
‘midway points’ of railway sections between the stations, cargo stations 
or a depot office. Fig. 4 gives a visualization of the studied network 
section in the North-Eastern part of the Netherlands. A fleet of agents 
live in or near this network, and for privacy reasons, their default start 
and end locations are rounded to the nearest railway node. When using 
variable start locations, agents have on average 4.11 different locations 
to choose from. We have a collection of 45 regular tasks on this network: 

most of them consist of patrolling from one major station to another, but 
some are facility inspections that should happen exactly once per week. 
The jobs have different lengths, priorities and locations, and need either 
one or two agents. The facility inspections require a special training, and 
may only be performed during daylight hours. 

We examine a working week of ten shifts: a morning shift and a late 
shift, from Monday to Friday. After discretization, the number of time- 
steps in a shift is either 14 or 12. The number of agents active in a 
shift lies somewhere between 4 and 10, averaging exactly at 7. Among 
these, there is always a ‘manager’ who stays at the depot and is only 
available for emergency response, and there is often a ‘truck driver’ who 
must stay within half an hour of the depot but can perform nearby ac-
tivities. By design, each shift has at least one agent with a default 
location in the ‘northern’ part of the region, and an agent in the 
‘southern’ part. 

5.4. Concerning emergency simulation 

In the case study organization, the number of emergencies is 
reasonably low: the organization reported 407 impacting emergencies in 
2021 (ProRail BV, 2022), amounting to roughly one impacting emer-
gency per day in the entire country. The studied portion of the railway 
network amounts to roughly one fourth of the country, meaning it is rare 
in our use case that more than one impacting emergency occurs in any 
given shift. However, when emergencies do occur, they are typically 
very major infrastructural undertakings and it is hard to predict how 
many agents and how much time are needed to resolve them. We trust 
the planner to decide which agents are still kept available and which 
jobs are still considered relevant and to use this to create a new plan for 

Table 2 
Computational results of the seven scenarios. By ‘Best C!’, we mean the ‘Best response’ scenario. By ‘Best C×’, we mean the ‘best jobs’ scenario. Most results of that 
scenario have been omitted, because only the weighted unique jobs matter there, and the other results are prone to lead to misinterpretation.   

Own jobs No jobs Planned jobs Own jobs  Best C× Manual jobs  
Own route Own route Solver route Solver route Best C! Solver route 

Expected response (m) 41.1 41.8 35.9 32.7 30.4 – 35.3 
Under 15 min (%) 6.7 3.4 9.6 10.6 12.8 – 9.3 
Under 30 min (%) 30.5 29.0 42.1 46.6 53.1 – 41.4 
Under 45 min (%) 60.3 61.8 72.0 78.2 85.9 – 73.7 
Under 60 min (%) 83.6 82.6 90.4 94.9 97.2 – 93.1 
Weighted unique jobs 71 0 45 71 0 102 93 
Planned travelling (m) 3580.8 0.0 3284.7 5457.7 2459.6 – 3697.0  

Fig. 5. Weighted unique jobs versus expected response time in the computed scenarios. On the horizontal axis, high is good; on the vertical axis, low is good.  
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the remainder of the shift. 
Therefore, to save on further complexity, we have left the actual 

simulation of emergencies out of scope for this study. Under the 
assumption that only one emergency occurs in any given shift, any 
emergencies that we would simulate would have response time that 

should converge to the expected response time that we do measure. We 
thus focus on how this expected response time can be improved, in 
combination with the other E-MRP objective components. 

5.5. Implementation details 

The case study organization has access to a solver running this 
heuristic on a dedicated server. However, for this article, all experiments 
were conducted on a single ThinkPad L470, with an Intel Core i5-7200U 
CPU processor, 2.50 GHz, 8 GB RAM. 

6. Results 

In this section, we present the results of our simulation experiments 
for our case study, and for the scenarios and KPIs listed above. Table 2 
and Figs. 5 and 6 give an overview of the results. Table 3 gives the 
relative improvements of the KPIs compared to the CP-model. 

Overall, the results show significant improvements compared to 
current practice. To elaborate, if we compare the CP (“Own jobs, Own 
route”) with the E-MRP solution (“Planned jobs, Solver route”), our 

Fig. 6. Planned travel time versus expected response time in the computed scenarios. On both axes, low is good.  

Table 3 
Improvements with respect to the current ‘Own jobs, Own route’ scenario. Only 
the three scenarios that include jobs, and in which we care about response time, 
are taken into account.   

Planned 
jobs 

Own jobs Manual 
jobs  

Solver route Solver 
route 

Solver 
route 

Improvement expected response time 
(%) 

12.7 20.5 14.2 

Reduction incidents later than 60 (%) 41.1 68.7 58.1 
Improvement weighted unique jobs 

(%) 
− 36.6 0 31.0 

Improvement planned travelling (%) 8.3 − 52.4 − 3.3  

Fig. 7. For one of the ten shifts, a visual comparison of the solutions in the current practice and the new practice. The grey circles are the 126 nodes of the simplified 
network. For each agent, a colored pentagon shows where they start, and the lines in the same color illustrate their movement over the network. In the new practice, 
agents are more equally spread over the network. 
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simulations indicate an improvement of 12.7% in average emergency 
response times. This number is significant, since taking averages over 
many response times usually tends to flatten out performance gains. 
Interestingly, looking at a 60-min response-time target, we observe that 
the fraction of late arrivals is reduced by as much as 41.1%. We even see 
a small reduction in the planned traveling time; however, this is likely 
due to the planned jobs being significantly fewer than the jobs agent 
picked for themselves. 

If we do not change the jobs of a shift, but only use a solver to 
redivide the jobs and to determine positions of the agents, we see an 
even stronger reduction in response time. However, this comes at the 
cost of 52.4% increased planned traveling outside of jobs and emer-
gencies. Movement is costly and irksome, and it is debatable whether a 
20.5% improvement in response time is worth a 52.4% increase in travel 
time. 

In the two scenarios where agents choose their own routes, we see 
expected response times of 41.1 and 41.8 min, respectively. In the three 
scenarios where the solver determines routes across non-empty sets of 
jobs, we see expected response times of 35.9, 32.7, and 35.3 min, 
respectively. This suggests that the improved response time is somewhat 
insensitive to the choice of jobs, but is mainly due to the routing being 
done by a solver. We expect this improvement in response time is mainly 
due to how ‘idle time’ is filled. If agents choose their own routes, the 
latter part of their shifts are spent near their homes, which are distrib-
uted somewhat arbitrarily. However, the solver often chooses waiting 
locations and start locations that are distributed more intelligently with 
the expected response times in mind. See also Fig. 7. 

The trade-off between improved the expected response time and the 
movement needed to attain it is perhaps high-lit most by comparing the 
“No jobs, Own route” and “Best C!” scenarios. In the former, we hit the 
lower bound of 0 min on planned movement. In the latter, we hit the 
lower bound of 30.4 min on the expected response time. In total, the 
latter requires 2459.6 min of planned traveling. Over the ten shifts, there 
are 62 shifts worked by agents, so a rough estimate amounts to an agent 
moving 39.7 min per shift to improve the expected response time to 
emergencies by 9.1 min, and to be ‘late’ only 2.8% of the times instead of 
17.4% of the times. 

Alternatively, we can investigate the trade-off by comparing the 
current situation with the scenario where the same jobs are chosen, but 
they are scheduled and routed by the solver. While doing the same jobs, 
agents have to move 30.3 min more on average over their shift to 
improve the expected response time by 8.4 min, and to be late only 5.1% 
of the times instead of 16.4% of the times. Our research is conducted 
under the notion that response time is much more important than 
planned traveling time. However, these numerical results could be 
valuable input for a management discussion concerning this trade-off. 

As a final remark, our simulations demonstrate that for our realistic 

use case, we can simultaneously improve the expected response times by 
14.2% and the number of weighted unique jobs by 31.0%. We observe 
this in our final scenario, where we manually correct for the small 
number of jobs chosen by the case study planner. While these im-
provements do come at the cost of more planned movements, this in-
crease is only 3.3%. In this scenario, the number of weighted unique jobs 
is 93, which is only 9% away from the upper bound of 102. The expected 
response time is 35.3 min, which is only 16% away from the lower 
bound of 30.4. The jobs in this planning scenario were chosen manually, 
and if this job selection were made methodical, these improvements 
would likely become even larger. 

7. Conclusion 

In this paper, we have generalized the MRP-methodology to incor-
porate additional objectives and constraints that are required in prac-
tice. To quantify the performance improvement that can be realized, we 
performed an extensive comparison study by simulations, comparing 
current practice to the results from our optimization heuristics. We 
observed that, between the current practice and the new way of working 
allowed by our heuristic, we could strongly reduce response times and 
late arrivals in a realistic setting provided by our partnering railway 
provider. Most importantly, if the jobs are chosen ambitiously enough, 
we see that we can significantly improve both the response time per-
formance and the (weighted) number of non-urgent tasks at the same 
time. We believe the reduction in response time is primarily due to 
agents being positioned in strategic locations during their idle time, 
rather than the endpoints of their job tours. This improvement can come 
at the expense of more planned movements outside of emergency 
response. However, in the most favorable scenario examined, this in-
crease in planned movement is only marginal. 

Finally, we address a number of topics for further investigation. Most 
importantly, we suspect that smartly assigning non-urgent jobs to agents 
intelligently is crucial to improve performance. In this research, tasks 
were mostly chosen by hand, which was seen as input to the model. But 
with an automated selection methodology, a system could smartly plan 
several shifts ahead independently. This requires further elaboration. 
Another promising direction is to include the incorporation of planned 
travel times in such a way that it does not require as many unfavorable 
constraints. Lastly, graph adjacency is currently independent of time, 
but this may not be realistic in cases with heavy traffic congestion. 
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Appendix A. Overview of the Median Routing Problem 

For reference, here we give an outline of the Median Routing Problem (MRP) introduced in Huizing et al. (2020). The goal of MRP is to have 
emergency responders perform non-urgent jobs in a network, but to spread them such that their expected emergency response time remains minimal. 
We provide a visual example in Fig. A.1. In MRP, we are given an unweighted, undirected graph with nodes V. We denote Vv the nodes within one ‘hop’ 
from v ∈ V, this being the neighbors of v and v itself. Each node has a non-negative weight Pv, and we denote VP the nodes with strictly positive weight. 
There is a distance matrix C!

uv from nodes u ∈ V to nodes v ∈ VP, and this distance can be unrelated to the graph. We also have a set of agents A, who 
will provide ‘coverage’ over the network. They can move throughout a discrete-time horizon T = {0,…,T}, and if an agent is at some v ∈ V at time 
t ∈ T⧹{T}, then they can be at any node in Vv at t + 1. Note that it is allowed, thus, that agents wait where they are for some time-steps. Each agent 
a ∈ A must start at a given start node S(a) at time t = 0, and end at a given end node E(a) at time t = T. At time t ∈ T, we can examine the current 
locations U(t) of the agents, and evaluate the ‘expected emergency response time’ at t as 

∑
v∈VP

Pvminu∈U(t)C!
uv. We seek feasible movement that 

minimises this response metric, summed over the entire discrete time horizon. However, aside from emergency coverage, there are jobs J that must be 
scheduled. Each job j ∈ J has a location Lj ∈ V, and a number of time-steps Qj required for processing the job. Once an agent starts a job j, they must 
stay at Lj for Qj time-steps in a row: jobs cannot be interrupted. 

We can write MRP as a MILP by introducing the following binary variables. We denote xavt = 1 if agent a ∈ A is at node v ∈ V at time t ∈ T, and 
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0 otherwise. We denote yuvt = 1 if emergencies at node v ∈ VP at time t ∈ T are responded to from node u ∈ V, and 0 otherwise. Note that we can only 
set yuvt = 1 if at least one agent is present at node u at time t. Finally, zajt = 1 if agent a ∈ A starts job j ∈ J at time t ∈ T and 0 otherwise. We can relax 
yuvt to be continuous, because MILP solvers will still choose integral yuvt given xavt. 

min
∑

t∈T

∑

v∈VP

Pv

∑

u∈V
C!

uvyuvt

s.t. xaSa0 = 1 (∀a ∈ A)
(A.1)  

xaEaT = 1 (∀a ∈ A) (A.2)  

∑

v∈V
xavt = 1

(

∀a ∈ A

)(

∀t ∈ T

)

(A.3)  

xav(t+1)⩽
∑

u∈Vv

xaut

(

∀a ∈ A

)(

∀v ∈ V

)(

t = 0,…, T − 1

)

(A.4)  

∑

u∈V
yuvt = 1

(

∀v ∈ VP

)(

∀t ∈ T

)

(A.5)  

yuvt⩽
∑

a∈A
xaut

(

∀u ∈ V

)(

∀v ∈ VP

)(

∀t ∈ T

)

(A.6)  

∑

a∈A

∑

t∈T
zajt = 1

(

∀j ∈ J

)

(A.7)  

∑t+Qj

τ=t
xaLjτ⩾

(

Qj + 1

)

zajt

(

∀a ∈ A

)(

∀j ∈ J

)(

∀t ∈ T

)

(A.8)  

xavt, zajt ∈
{

0, 1
}
, yuvt ∈

[
0, 1
]
.

Constraints (A.1) and (A.2) encode that the agents have fixed start and end locations. Constraints (A.3) state that an agent can only be in one place 
at a time. Constraints (A.4) enforce that agents move over the graph. Constraints (A.5) state that each emergency node needs coverage at each time, 
but constraints (A.6) state that coverage can only be given from a node that currently has agents on it. Constraints (A.7) are the hard constraints that all 
jobs are scheduled, and constraints (A.8) ensure that an agent who starts a job, stays for its duration. 

MRP generalises the p-Medians problem, thus is NP-hard. We can solve it by the given MILP, and among the heuristics studied in Huizing et al. 
(2020), MDSA was concluded to be the most effective in practice. 

Fig. A.1. An example of MRP. Grey circles are ‘normal nodes’. Red triangles are nodes with positive weight Pv, the bigger ones having more weight. Blue squares are 
jobs containing a node with duration Qj , and for this example, both agents start and end at the green pentagonal ‘depot’ node. The illustrated solution is optimal: on 
weighted average, each red triangle has an agent at a Manhattan distance of only 1.247. 
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Başdere, M., & Bilge, Ü. (2014). Operational aircraft maintenance routing problem with 
remaining time consideration. European Journal of Operational Research, 235, 
315–328. 
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