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The enriched space–time finite element method (EST) for
simultaneous solution of fluid–structure interaction

A. Zilian1,∗,† and A. Legay2

1Institut für Statik, Technische Universität Braunschweig, Beethovenstraße 51, 38106 Braunschweig, Germany
2Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers, 2 Rue Conté,
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SUMMARY

The paper introduces a weighted residual-based approach for the numerical investigation of the interaction
of fluid flow and thin flexible structures. The presented method enables one to treat strongly coupled
systems involving large structural motion and deformation of multiple-flow-immersed solid objects.

The fluid flow is described by the incompressible Navier–Stokes equations. The current configuration 
of the thin structure of linear elastic material with non-linear kinematics is mapped to the flow using 
the zero iso-contour of an updated level set function. The formulation of fluid, structure and coupling 
conditions uniformly uses velocities as unknowns. The integration of the weak form is performed on a 
space–time finite element discretization of the domain. Interfacial constraints of the multi-field problem 
are ensured by distributed Lagrange multipliers. The proposed formulation and discretization techniques 
lead to a monolithic algebraic system, well suited for strongly coupled fluid–structure systems. Embedding 
a thin structure into a flow results in non-smooth fields for the fluid. Based on the concept of the extended 
finite element method, the space–time approximations of fluid pressure and velocity are properly enriched 
to capture weakly and strongly discontinuous solutions. This leads to the present enriched space–time 
(EST) method. Numerical examples of fluid–structure interaction show the eligibility of the developed 
numerical approach in order to describe the behavior of such coupled systems. The test cases demonstrate 
the application of the proposed technique to problems where mesh moving strategies often fail.

KEY WORDS: fluid–structure interaction; enriched space–time finite elements; EST method; level set
method
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1. INTRODUCTION

The evaluation of fluid–structure interaction effects and the investigation of governing physical

phenomena associated with coupled systems are always challenges in problems arising in the field of

aero- and hydro-elasticity, life-sciences or bio-engineering. An important field of boundary-coupled

interaction problems involves single or multiple thin and very flexible structures, e.g. membranes

and plates. Thin structures situated in a surrounding fluid flow or encapsulating a fluid may influence

drastically the pattern of the flow and the characteristics of the physical quantities describing the

fluid. The flow field may diversify depending on the presence and characteristics of boundary

conditions, shear layers or vortex shedding effects. Embedding such a Lagrangian structure of

small thickness into an Eulerian fluid field results in discontinuous state variables of the flow. For a

velocity–pressure formulation of the Navier-Stokes equations and no-slip interfacial conditions, this

produces a strongly discontinuous pressure solution and a weakly (gradient) discontinuous velocity

solution along the moving fluid–structure interface. In the case of interfacial slip conditions, the

tangential component of the velocity may exhibit a strong discontinuity. Especially for engineering

tasks in fluid–structure interaction, it seems to be reasonable to apply simplified models as a first

approximation to complex physical processes. As an alternative to time-consuming resolution of

all involved length and time scales at moving boundaries, it can be beneficial to treat existent

non-smooth solution characteristics, e.g. discontinuities, by taking them explicitly into account in

an advanced numerical strategy.

The arbitrary Lagrange–Euler (ALE) method [1–5] is classically applied to treat flow with

immersed objects by using the advantages of an Eulerian description of the fluid domain and

a Lagrangian description of the solid domain. Combined with a finite element discretization of

both domains, a conservative coupling can be achieved by the compatibility of the two meshes

(geometry) and approximation (physics) at the common fluid–structure interface. This condition

may introduce severe complications, e.g. fluid mesh distortions (see Figure 1), if mesh-moving

strategies are applied. Moreover, an ALE-based approach tends to be limited when multiple

immersed structures are subjected to rotation or large relative displacements.

In order to avoid these restrictions and to consider physical effects at complex interfaces, several

numerical methodologies have been developed. A moving and evolving interface of arbitrary shape

can be represented by an implicit method using a fixed background grid. This has the advantage

of avoiding the need for mesh-moving or re-meshing procedures. Figure 2 shows explicit and

implicit methods of incorporating a thin structure into the fluid domain. Implicit descriptions are

used in the immersed boundary method (IBM) by Peskin and McQueen [6] for investigation of

fibers in viscous flow, in the fictitious domain method (FDM) developed by Bertrand et al. [7] and

Glowinski et al. [8] for moving rigid bodies in a fluid and in the immersed finite element method

(IFEM) introduced by Zhang et al. [9] for the simulation of elastic solids in fluids. Within these

methods, the conservative and computationally stable coupling of solid and fluid can be realized

by higher-order schemes, increasing the numerical effort.

The computational approach to fluid–structure interaction proposed by this contribution focuses

on flow-immersed moving thin flexible structures and is based on an implicit interface descrip-

tion. The numerical scheme employs the extended finite element method (XFEM) presented by

Belytschko et al. [10] as well as a space–time discretization.

The XFEM combines a level set representation of interfaces [11] and the partition of unity

method (PUM) [12]. It enables the representation of special and a priori known solution properties

within an enriched finite element approximation. It has been applied successfully by Chessa and
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Figure 1. Distorted ALE meshes due to structural motion.

Figure 2. Interface description: explicit (left) and implicit (right) on a fixed background grid.

Belytschko [13] to flow problems consisting of two immiscible fluids besides many applications

in the field of structural mechanics with material interfaces [14] and crack propagation [15]. It has

been applied by Legay et al. to a compressible fluid bounded by a flexible structure [16] and has

been extended to thin immersed structures with prescribed motion in an incompressible and viscous

flow [17] using a fractional time stepping scheme. Further, the extended finite element concept

has been applied by Kölke et al. in conjunction with an enriched space–time (EST) finite element

discretization [18] of two-liquid flow problems including surface tension, where discontinuous

pressure solutions at evolving and level set-captured interfaces are represented by an extended

approximation in space–time. This approach has been discussed by Chessa and Belytschko [19, 20]

to arbitrary discontinuities based on space–time finite elements and was realized for spatially

one-dimensional shock-dominated problems.

The space–time finite element method for solving the incompressible Navier–Stokes equa-

tions on moving meshes has been introduced by Tezduyar et al. [21]. For applications in elas-

todynamics and analyses of wave propagation problems, Hughes and Hulbert [22] introduced

time-discontinuous, stabilized space–time (SST) finite elements. Tezduyar et al. developed the

deforming-spatial-domain/stabilized space–time (DSD/SST) finite element formulation [23] for

fluid–structure interaction problems. The space–time finite element discretization of a velocity-

based monolithic model for strongly coupled fluid–structure interaction problems has been shown

to be eligible for a number of different applications by Hübner et al. [24, 25] including free-surface

and two-fluid flows [26–28].

The major conceptual advantage of the space–time finite element method is the straightforward

applicability of the enriched finite element technology (XFEM) to describe the evolution of non-

smooth solutions within the space–time domain more accurately. Many applications of XFEM focus

on stationary problems of structural analysis or combine spatial enrichment with semi-discrete

time stepping methods for dynamical problems. Therefore, for instationary problems the whole

potential of XFEM is achieved by enriching a finite element approximation in both space and

time. The combination of level set method, local partition of unity enrichment and a space–time
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finite element discretization thus offers an elegant way of describing evolving non-smooth solution

features [29, 30] arising from embedding thin structures in a flow field.

The governing equations of fluid- and elastodynamics and interface conditions are introduced

in Section 2. Section 3 gives the weighted residual form of the coupled equations. In Section 4

the EST finite element method is proposed. Algorithmic details are given in Section 5. Section 6

introduces numerical test cases of strongly coupled fluid–structure interaction.

2. STRONG FORM GOVERNING EQUATIONS

2.1. Coupled fluid–structure system

The coupled system consists of a thin flexible structure immersed in a fluid as shown in Figure 3.

In comparison with the spatial dimensions of the fluid body, the thickness of the solid is assumed

to be very small. In this paper the case of an embedded structure that divides the flow domain into

two separate parts is considered. A free end of the structure would introduce flow singularities at

the tip that requires a treatment by eligible enrichment functions. While this is generally possible,

this case is not considered for simplicity and taken out of the focus of this paper.

The behavior of the fluid body within the time interval I =]ta, tb] and occupying the space–

time domain Q=�× I is described in the current configuration Qt using an Eulerian description.

A Lagrangian description and the reference configuration L0=�0× I are used for the structure. The

fluid domain is bounded by the outer boundary Pt =�t × I and the evolving interface Rt =�t × I .

Although the discretization of the fluid–structure interaction problem with the EST method

is demonstrated for spatially two-dimensional problems, the approach is applicable to three-

dimensional space problems as well. While within the derivation of the governing equations only

one immersed structure is considered, the method is extendable to multiple immersed structures.

For simplicity, the methodology and applications are restricted to problems where no contact

between structures is expected.

2.2. Fluid

In this paper the flow is modeled as incompressible, viscous and isothermal. The incompressible

Navier–Stokes equations are

�v,t +�v ·∇v−∇ ·T−�b= 0 in Qt (1)

∇ ·v= 0 in Qt (2)

where v is the fluid velocity, b is the external volume force and � is the fluid density. The Cauchy

stress tensor T of the Newtonian fluid is given by the following relation:

T=−pI+2�D in Qt (3)

where p is the hydrostatic pressure, � is the kinematic viscosity and D is the strain rate tensor

defined by

D= 1
2
(∇v+(∇v)T) in Qt (4)
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Figure 3. Configuration of the coupled problem of flow and immersed thin-walled structure at t ∈ I .

Dirichlet boundary conditions are defined on P
g
t in terms of imposed velocity v̄:

v− v̄=0 on P
g
t (5)

where as Neumann boundary conditions are defined on Ph
t in terms of the imposed boundary

traction t̄:

Tn− t̄=0 on Ph
t (6)

The outward normal vector n to the fluid boundary is defined in the current configuration. Further-

more, Equation (1) requires the definition of an initial velocity field ṽ within �(t= ta):

v(t= ta)− ṽ=0 on �(t= ta) (7)

with respect to the incompressibility constraint formulated in Equation (2).

2.3. Thin-walled structure

The structure is assumed to have a constant and very small thickness h. The resulting simplified

plate-like structure is able to show bending behavior and membrane properties, where the cross

sections remain plane and rotate about a defined neutral local axis, but do not remain orthogonal

to the deformed axis (Timoshenko model). Out-of-plane strains are supposed to be zero referring

to the (X,Y ) plane. Additionally, out-of-plane stresses are set to zero to the (X, Z) plane. Figure 4

shows the structural model in its reference configuration �0 and its current configuration �t , as

well as the main local axis to which the sectional kinematics, strain and stress measures are related.

The definition of motion and kinematics follows Felippa [31].

The one-dimensional structure with local coordinates (X,Y ) is described in a total Lagrangian

setting by the balance of momentum:

�Gẇ−(Fs),X −(Hs)−�Gb=0 in L0 (8)

where

w=[vX vY �]T (9)
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Figure 4. Two-dimensional model of a thin-walled plane structure surrounded by a fluid.

is a vector consisting of local velocities along (X,Y ) and angular velocity. External loads are

collected in vector b=[bX bY b�]T and � is the density of the solid. The resulting internal forces

are collected in the vector:

s=[N Q M]T (10)

where N , Q and M are the normal force, shear force and moment, respectively. The geometry of

the section is described by the diagonal matrix:

G=

⎡

⎢

⎢

⎣

h 0 0

0 h 0

0 0 h3/12

⎤

⎥

⎥

⎦

(11)

The deformation gradient F is given by

F=

⎡

⎢

⎣

1+uX,X −sin� �,X cos�

uY,X cos� �,X sin�

0 0 cos�+uX,X cos�+uY,X sin�

⎤

⎥

⎦
(12)

and matrix H is defined as

H=

⎡

⎢

⎣

0 0 0

0 0 0

0 cos�+uX,X cos�+uY,X sin� �,X (sin�+uX,X sin�−uY,X cos�)

⎤

⎥

⎦
(13)
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involving derivatives of the local displacements uX and uY as well as the rotation � of the cross

section. Since the elasticity matrix

C=G

⎡

⎢

⎢

⎢

⎢

⎢

⎣

E

1−�2
0 0

0
E

2(1+�)
0

0 0 E

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(14)

with Young’s modulus E and the Poisson ratio � is time invariant for linear elastic material, the

constitutive relation can be given in rate formulation:

C−1ṡ− ė=0 in L0 (15)

The vector of local non-linear strain measures e=[e1 e2 e3]
T for a thin structure is defined by

e1 = uX,X + 1
2
(u2X,X +u2Y,X ) (16a)

e2 = −(1+uX,X )sin�+uY,X cos� (16b)

e3 = �,X (cos�+uX,X cos�+uY,X sin�) (16c)

where e1 is the axial strain, e2 is the shear strain and e3 is the curvature. The rate of the introduced

strain measures is summarized in the components of the local strain rate vector ė:

ė1 = vX,X +uX,XvX,X +uY,XvY,X (17a)

ė2 = −vX,X sin�+vY,X cos�−�(cos�+uX,X cos�+uY,X sin�) (17b)

ė3 = vX,X�,X cos�+vY,X�,X sin�

+�,X (cos�+uX,X cos�+uY,X sin�)−��,X (sin�+uX,X sin�−uY,X cos�) (17c)

using the local structural velocities vX , vY and the rotational velocity �. Structural displacements

are collected in the vector

d=[uX uY �]T (18)

and are computed by time integration as follows:

d(t)=

∫ t

ta

w(�)d� (19)

The complete structural boundary is divided into the outer sectional boundary P̌0=�̌0× I and

the boundary P̄0=�̄0× I that coincides with the interface to the surrounding fluid domain. On

the Neumann part P̌h
0 of the sectional boundary, external forces

s− s̄=0 on P̌h
0 (20)
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can be imposed. Prescribed generalized boundary tractions t̄=[t̄X t̄Y t̄�]T are defined by

G−1s− t̄=0 on P̄h
0 (21)

Equation (8) requires the definition of an initial velocity field w within �(t= ta)

w(t= ta)−w̃=0 on �(t= ta) (22)

The highly non-linear strain measures result from considering non-linear kinematics and allow

large deformations and rotations of the thin-walled structure model.

2.4. Coupling conditions

Flow domain and structural domain are coupled along the common space–time boundary R repre-

senting the fluid–structure interface. At the interface no-slip conditions are applied, requesting

continuity of fluid and structural velocities

vF−vS =0 on Rt (23)

and therefore ensure geometrical conservation. The vector vS contains the velocities [vS
1 vS

2 ]T of

the thin structure in the global coordinate system, obtained by a transformation of the local velocity

values [vX vY ]T. Further, fluid and solid interfacial tractions have to be of the same magnitude

and in opposite direction

tF+
d�0

d�t

tS =0 on Rt (24)

in order to fulfill momentum balance at the interface. The referential solid traction tS is projected to

the current frame. The coupling conditions in Equations (23) and (24) represent no-slip conditions

at the interface. Slip interface conditions or frictional effects can be considered by formulating the

interfacial balance equations in normal and tangential directions.

3. WEAK FORM AND SPACE–TIME FINITE ELEMENT DISCRETIZATION

The weighted residual method is applied to the strong form equations (Sections 2.2–2.4). The

resulting weak form of the whole coupled system and the space–time domain are then discretized

using the space–time finite element method [32] and a time-discontinuous Galerkin method for

integration in time. The basic idea of a space–time discretization is to include the temporal axis

in the finite element discretization. For numerical efficiency, the space–time domain Q is divided

into a sequence of N time slabs Qn =�
n×[tn, tn+1], as shown in Figure 5, which are solved

successively.

At time instant tn , the energy of the discretized system at the end of the previous time slab t−n
has to be equal to the energy at the beginning of the next time step t+n . For time-discontinuous

approximations of field unknowns, this leads to additional jump terms in the weak form. Moreover,

spatial discretizations from t−n and t+n do not need to be conforming. For first-order ordinary

differential equations, the resulting time integration scheme is A-stable and third-order accurate

for linear temporal interpolation.
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Figure 5. Discretization of the continuous space–time domain using space–time finite elements.

3.1. Weak form of fluid

The weighted residual formulation of the strong forms (1)–(6) for the incompressible viscous fluid

in a space–time slab Qn
t using the Galerkin method reads as

∫

Qn
t

�v·�(v,t +v ·∇v)dQt +

∫

Qn
t

D(�v) :2�DdQt −

∫

Qn
t

∇ ·(�v)pdQt

−

∫

Qn
t

�v·�bdQt (25a)

+

∫

Qn
t

�p∇ ·vdQt (25b)

+

∫

�
n
t

�v(t+n ) ·�(v(t+n )−v(t−n ))d�t (25c)

+
∑

e

∫

Q
n,e
t

(��v,t +�v ·∇(�v)−∇ ·T(�v,�p) ·�
1

�
(�v,t +�v ·∇v−∇ ·T−�b))dQt (25d)

−

∫

P
n,h
t

�v· t̄dPt =0 ∀�v,�p (25e)

Line (25a) represents the weak form of conservation of momentum (1), fulfilling the constitutive

relation (3) for the Newtonian fluid and the kinematics (4) exactly. The incompressibility constraint

(2) is weighted with the pressure in line (25b). Line (25c) ensures the consistent transfer of

kinetic energy from the previous time slab end at t−n to the current time slab at t+n . The weighted

residual form is stabilized by a Galerkin/least-squares term [33] of the momentum balance in line

(25d). The Galerkin/least-squares stabilization suppresses numerical oscillations in solutions to

hyperbolic differential equations by the introduction of additional numerical diffusion and allows

the application of equal-order approximations of velocities and pressure for the incompressible

flow field. The stabilization parameter � is determined for each element e using the definition given

by Tezduyar et al. [21]. Neumann boundary conditions can be imposed in a weak sense by (25e),

while (5) is treated a priori as an essential boundary condition.
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3.2. Weak form of thin-walled structure

The weighted residual formulation of the geometrically non-linear, linear elastic thin-walled struc-

ture on slab Ln
0 =�0×[tn, tn+1] using the Galerkin method

∫

Ln
0

�w·�GẇdX+

∫

Ln
0

ė(�w,d)·sdX−

∫

Ln
0

�w ·�GbdX (26a)

+
∑

e

∫

Ln
0

�s·(C−1ṡ− ė(w,d))dX (26b)

+

∫

Ln
0

�w(t+n ) ·�G(w(t+n )−w(t−n ))dX (26c)

+

∫

Ln
0

�s(t+n ) ·C−1(s(t+n )−s(t−n ))dX (26d)

−[�w · s̄]
P̌
n,h
0

−

∫

P̄
n,h
0

�w · t̄dX =0 ∀�w,�s (26e)

applies the local quantities for kinematics and forces introduced in Section 2.3 and describes the

elastodynamics of the thin solid in terms of local velocities (vX ,vY ) and rotational velocity �. Line

(26a) gives the integral form of momentum balance after partial integration utilizing the nonlinear

strain rate ė. Local displacements (uX ,uY ) and the angle of rotation � are obtained using Equation

(19). The linear elastic material is considered in integral form by line (26b) on element level

leading to a mixed formulation. The local forces in s are condensable on the element resulting

in a mixed hybrid method, see Section 3.4.2. Kinetic energy is transferred weakly between time

slabs with the jump term in line (26c), and internal mechanical energy is conserved in integral

form between time slabs by (26d). Sectional natural boundary conditions can be imposed weakly

with the first term in line (26e), while boundary tractions (from the surrounding fluid) along the

axis are considered by the second term.

3.3. Coupling conditions

The coupling model expressed by the interfacial conditions can be introduced using various

methods. Penalty methods add the constraints to the set of discrete equations and weight them by

a factor 	, providing a certain amount of accuracy while avoiding additional degrees of freedom.

However, the heuristic factor considerably increases the condition number of the algebraic system.

Alternatively, Nitsche’s method or an approach based on Lagrange multipliers could be used.

The weighted residual formulation of the coupling conditions (23) and (24) utilizes interfacial

tractions as additional Lagrange multipliers in order to fulfill geometrical continuity and conserva-

tion of momentum between fluid and structure. The structural velocities vS are used to formulate

Dirichlet boundary conditions for the fluid, while interface tractions tF of the fluid act as a surface

load in the form of a Neumann condition onto the deformed local axis of the thin solid

+

∫

Rn
t

�tF ·(vF−vS)dR−

∫

Rn
t

�vF ·tF dR+

∫

Rn
t

�vS ·tF dR (27)
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Figure 6. Bi-linear isoparametric approximation of geometry and physics for fluid and structure.

where tF are additional unknowns to the coupled system. The integral form of the coupling

conditions is defined in the current configuration Rn
t of the fluid–structure interface within the nth

time slab. The construction of an eligible approximation for the Lagrange multiplier is discussed

in Section 4.3.

3.4. Space–time finite element types for flow and thin structure

The above deduced modeling of fluid and immersed thin solid body for two space dimensions leads

to a three-dimensional model of the flow and a two-dimensional structural model in space–time.

The approximation of geometry and physics of finite elements for fluid and structure, shown

in Figure 6, is chosen linear and spans a bi-linear space–time approximation space. It is formed

by standard ansatz functions Nk on the support of discrete nodes k∈N of the set of nodes N in

space–time slab Qn . Independent degrees of freedom are used at discrete time levels tn of adjacent

time slabs.

3.4.1. Fluid element. The six-node space–time fluid element approximates the spatial domain by

a 3-node triangle that is extruded in time direction to obtain the prismatic shape of the space–time

element. The same bi-linear shape functions are used for standard approximation of both velocity

and pressure. Each node k, with k=1 . . .6, has two velocity unknowns (vk1,v
k
2) and one pressure

unknown pk .

3.4.2. Structural element. The four-node space–time thin-solid element is a typical rectangular

finite element, where the space dimension is discretized by linear polynomials as well as the

time dimension. Since the structural finite element formulation describes the solid in the reference

configuration, deformations of the space–time element do not have to be considered. The same shape

functions are used for both velocity and angular velocity since a Timoshenko beam assumption is

made. Each node has two velocity unknowns (vk1 , vk2) and one angular velocity �k . The normal

force is approximated by piecewise linear(space)/linear(time) shape functions and is condensed

11



statically on element level. To prevent shear locking, constant(space)/linear(time) functions are

used for the condensed shear force and the bending moment within the element of the mixed-hybrid

formulation.

4. EST FINITE ELEMENT APPROXIMATION OF THE FLOW

4.1. Localization of moving thin structures in the space–time domain by level sets

Taking advantage of an a priori knowledge on the behavior and characteristics of the solution to

the problem under consideration facilitates the proper enrichment of a space–time approximation

with finite elements. If the special solution is of local character, implicit methods of describing

interfaces and boundaries, e.g. one or multiple level set functions, can be applied to localize the

necessary enrichment. For evolving local characteristics, the level set method introduced by Osher

and Sethian has been shown to be an eligible approach for various physical problems.

Figure 7 shows an instant of a surface of discontinuity within the space–time domain and its

representation by the zero level set of a space–time defined level set function 
(x, t). For application

to a fluid–immersed thin solid, the fluid–structure interface is identical to the space–time surface

of the evolving discontinuous Eulerian flow field.

4.2. Local enrichment of the approximation in the fluid domain

The space–time formulation of the model equations for fluid and structure allows one to track

strongly and weakly discontinuous solutions at evolving interfaces (represented by the zero level

set) by using the partition of unity concept. Applying the XFEM [10] and their adaption to space–

time finite elements [18, 34], the velocity approximation of the fluid domain is locally enriched by

an enrichment function � j (x, t) that realizes a jump-type enrichment:

vF(x, t)=
∑

k∈N

NF
k (x, t) vk

∑

j∈M

NF
j (x, t)� j (x, t) w

j (28)

and introduces additional unknowns w j at the set of enriched nodes M. The continuity of the

formally fully decoupled velocity field at the fluid–structure interface required by Equation (23)

is ensured in integral form by the stabilized distributed Lagrange multiplier approach as described

in Section 4.3. The combination of an enrichment for strong velocity discontinuities and Lagrange

Rt

x1

t

x2

Rtx1

t

x2

Figure 7. Evolving non-smooth solutions in the space–time domain.
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Figure 8. Enriched space–time ansatz functions: example of zero level set and enrichment functions.

multipliers for continuity avoids here the introduction of blending elements [35]. Similar to the

velocity field, the approximation of the fluid pressure is locally extended by the enrichment function

� j , enabling strong discontinuities:

pF(x, t)=
∑

k∈N

NF
k (x, t) pk+

∑

j∈M

NF
j (x, t)� j (x, t) q

j (29)

and introducing additional unknowns q j at the set of enriched nodes M. The enrichment function

� j incorporates the placement of the enrichment within the space–time finite element by using

the level set function 
(x, t):

� j (x, t)=
1
2
(1−sign 
(x, t) ·sign 
(x j , t j )) (30)

where (x j , t j ) are the coordinates of node j in the space–time domain. This enrichment function

ensures the Kronecker-� property of the approximation.

Figure 8 exemplarily gives the first steps of constructing the enriching ansatz functions for the

prismatic space–time finite element. Here, the nodal values 
̂=(−0.3,0.4,0.8,−0.5,0.2,0.6) of

the interpolated level set function describe (by the associated iso-contour) the location of both: the

fluid–structure interface and the discontinuous flow solution within the element. Here, two different

types of nodal enrichment functions � j can be obtained from Equation (30). A representation

of the used bi-linear space–time ansatz functions is shown in the upper row of Figure 9. The

intensity identifies the specific value of the ansatz function and ranges between zero and unity.

The bi-linear basis is applied for constructing additional discontinuous shape functions with the

help of the nodal enrichment function � j . The six additional enriching shape functions are shown

in the bottom row of Figure 9.

4.3. Distributed perturbed Lagrange multiplier technique

Interfacial constraints (no-slip interface conditions in this paper) are fulfilled in an integral sense

(Lagrange multiplier approach) by the weak formulation of the coupled problem as described in

Section 3.3. The construction of a proper Lagrange multiplier space along propagating immersed

interfaces with respect to the LBB condition and optimal convergence is not obvious. The imposition

of constraints for enriched approximations using XFEM has been discussed in [36, 37] and for

general non-mesh-matching interfaces in [38].
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Figure 9. Enriched space–time ansatz functions: bi-linear basis (top) and bi-linear enriched (bottom).

For level set-captured fluid–structure interfaces Rt that are moving and deforming in the space–

time domain, an alternative implicit Lagrange multiplier method has been developed. The space–

time-defined interface traction tF(x, t) in Equation (27) is represented with the help of a higher-

dimensional function zF(x, t) and localized by the zero level set 
(x, t)=0, so that

tF =zF�D(
) (31)

where �D is the Dirac delta function. The distributed Lagrangian multiplier zi is defined in the

vicinity Q
n,e
t of the interface Rt , only at nodes whose support is cut by the interface. This results

in the implicit formulation of the interfacial fluid tractions tF, enabling the method to handle

constrained motion of fluid-immersed objects in a computationally elegant way.

Since the thin-immersed structure is coupled to the surrounding fluid domain on its upper (+)

and lower (−) faces, the coupling conditions need to be ensured at R+
t and R−

t . The integral

form of the fluid–structure coupling conditions (27) is now reformulated by using the distributed

Lagrange multiplier z+ and z− to replace the interfacial tractions tF:

+

∫

R
n,+
t

�zF+ ·(vF+−vS)dR−

∫

R
n,+
t

�vF+ ·zF+ dR+

∫

R
n,+
t

�vS ·zF+ dR (32a)

+

∫

R
n,−
t

�zF− ·(vF−−vS)dR−

∫

R
n,−
t

�vF− ·zF− dR+

∫

R
n,−
t

�vS ·zF− dR (32b)

+
∑

e∈Z

∫

Q
n,e
t

�zF+ ·�zz
F++

∑

e∈Z

∫

Q
n,e
t

�zF− ·�zz
F− (32c)

where line (32c) introduces an additional stabilizing term to the Lagrange multiplier formulation,

equivalent to the perturbed Lagrange multiplier technique. This stabilization is needed since the

distributed Lagrange multiplier field z is defined to be equal to the interface tractions, but is
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Figure 10. Distributed Lagrange multiplier in prismatic element: (a) domain of integration for
isosurface (Rn

t ) and enriched elements (Q
n,e
t ∈Z); (b) exemplary distributed multiplier z; and

(c) exemplary interface tractions z along Rn
t .

undefined elsewhere in the domain. Uniqueness in the solution is obtained by evaluating the

perturbation within space–time finite elements Q
n,e
t of the set Z of elements cut by the fluid–

structure interface. The perturbation parameter �z is determined sufficiently small by using a

heuristic approach based on element size and properties of the fluid.

Figure 10 emphasizes the application of the distributed Lagrange multiplier approach. Numer-

ical integration of the terms in Equation (32) is performed over the domain of the space–time

element and the space–time interface, captured by a zero level set. The issue of a specialized

numerical quadrature technique is addressed in Section 5.3. For instance, nodal values ẑ for

the bi-linear space–time shape functions (see upper row if Figure 9) approximating the field

of the distributed Lagrange multiplier z within the element are chosen. With the help of the

distributed Lagrange multiplier field z(x, t), defined within the whole space–time finite element,

the value of the local Lagrange multiplier on the interface can be determined by interpolating

z(x, t) at the position of the interface/isosurface. The resulting exemplary distribution of interfa-

cial traction values is shown: the interface traction may vary in space and time on the evolving

interface.

4.4. General monolithic solution strategy

The weak form of the coupled system consisting of the fluid (Section 3.1) and the thin structure

(Section 3.2), combined with the space–time discretization of a specific time slab Qn , leads to the

system of non-linear algebraic equations:

Â(x̂)x̂= b̂(x̂) (33)

with the coefficient matrix Â, the vector of unknowns x̂ and the right-hand side b̂. The non-

linear equations are linearized applying a fix point Picard iteration scheme that results in the

system

Â(x̂m−1)x̂= b̂(x̂m−1) (34)
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to be solved within the mth iteration step of the actual time slab n. The components of the linearized

equations of the coupled fluid–structure system

⎡

⎢

⎢

⎢

⎢

⎣

M̂S Ŝ 0 0

−ŜT Ẑ F̂T 0

0 −F̂ M̂F −ĤT

0 0 Ĥ 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

v̂S

ẑ

v̂F

p̂

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

b̂S

0

b̂F

0

⎤

⎥

⎥

⎥

⎦

(35)

are the unknown vectors v̂S, v̂F, p̂ and ẑ representing structural velocities, fluid velocities, fluid

pressure and the distributed Lagrange multipliers, respectively. These vectors of discrete field vari-

ables may also contain additional unknowns resulting from the space–time enriched approximation

introduced in Section 4.1. External forces on solid and flow are considered by b̂S and b̂F.

In the computation of the linear structural mass matrix M̂S, sectional-driven inertia forces are

included, while inertia effects originating from rotational velocity of the thin solid section are

neglected. The mass matrix M̂F of the Navier–Stokes fluid is linearized in the convective term,

by using the velocity v̂m−1 within Equation (25a) for the mth iteration step of the utilized outer

Picard iteration scheme. The matrix Ĥ corresponds to the velocity–pressure term needed for the

incompressibility constraint of the fluid. The matrices Ŝ and F̂ are the discretized fluid–structure

coupling terms in Equations (32a) and (32b). The symmetric matrix Ẑ represents the stabilization

term (32c) of the distributed Lagrange multiplier approach introduced in Section 4.3. Sub-matrices

from the Galerkin/least-squares stabilization used for the convection dominated incompressible

fluid are not explicitly shown in (35), but considered in the computational scheme.

The overall solution strategy for N time slabs Qn of the coupled non-linear fluid–structure

problem is shown in Algorithm 1.

Algorithm 1. Computational scheme of the EST method.

Data: finite element mesh of fluid and thin-walled structure, material properties

Input: initial conditions ṽ, boundary conditions v̄ and t̄ for fluid and structure

for n<N do solve time slab Qn:

if n=0 then vn−1= ṽ; use initial conditions

else v̂n−1= v̂n−1,m ; use converged last time slab solution

repeat perform Picard iteration step m for nonlinearities:

if m=0 then v̂n,m−1= v̂n−1,m ; use converged last time slab solution

(1) calculate actual structural displacements d̂n,m with Equation (19) → LS
t ;

(2) map LS
t to QF

t by constructing 
n,m with help of Equation (36) in Section 5.1;

(3) assign immersed structural elements to hosting fluid elements (see Section 5.2);

(4) determine the need for space-time fluid enrichment element-by-element;

(5) initialize system with additional degrees of freedom from enrichment;

(6) numerical integration of the weak form (see Section 5.3);

(7) apply boundary conditions v̄ and t̄;

(8) solve m-th linearized system of equations, Equation (34) → v̂n,m, p̂n,m, ẑn,m ;
until convergence of physical solution and level set function;

end
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5. ALGORITHMIC DETAILS

5.1. Construction of the structure’s level set function

The thin structure is embedded into the flow field by using a level set function as in [16]. According

to the current configuration of the structure, the level set function 
 is derived following


(x, t)=±min
x∈�

(‖x(t)−x�(t)‖2) (36)

where the scalar value 
 determines the smallest signed Euclidean distance from a fluid point to

the thin structure (line-shaped interface for two-dimensional problems).

Figure 11 shows a sketch of the fluid discretization and an embedded thin structure. The current

position of the structure is approximated by the level set function 
 and therefore mapped onto the

Eulerian fluid domain. As a result of evaluating (36), at each node of the fluid mesh the value of

the level set function represents the relative position to the Lagrangian structure, located at 
=0.

The space–time level set function 
(x, t) is interpolated using bi-linear space–time shape

functions NF
k within the prismatic fluid element. It is updated after each non-linear iteration step

m and time slab n, so that the current position of the Lagrangian structure related to the Eulerian

fluid is known at all times.

Mapping a geometrically complex thin structure to a coarse fluid mesh with the help of a level

set function may introduce an approximation error ε depending on the resolution of the fluid

discretization. For immersed thin structures of moderate curvature, a fluid meshing taking into

account the necessary length scales of dominating flow characteristics seems to be sufficient.

5.2. Connectivity update technique

The extended space–time finite element technique avoids repeated updates of the geometrical

meshes since the fluid discretization remains topologically fixed, and the structure is immersed

by an extension of the physical approximation based on level sets. Therefore, the computational

effort is shifted from mesh-update and remeshing cycles to the update of connectivity between the

degrees of freedom of the solid velocities, the locally enriched fluid velocities/pressure and the

distributed Lagrange multipliers representing interfacial coupling tractions.

Figure 12 shows gradual changes of connectivity (including enrichment degrees of freedom)

in the overall algebraic system of equations for the piston problem discussed in Section 6.1

approximated zero level-set

discretized thin-walled structure
tn tn+ 1

ε

Figure 11. Mapping the structural current configuration to the fluid frame.
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Figure 12. Connectivity changes during calculation of moving immersed structure.

after utilizing the reverse Cuthill–McKee reordering algorithm to the nodes of the geometrical

mesh. During the harmonic oscillation of the spring-supported piston with cycle period T and its

crossing of several space–time fluid elements, the degrees of freedom of structural velocity need

to be reconnected to the fluid velocities and interface tractions of the actual fluid element hosting

the immersed structure. The sparsity pattern of the coefficient matrix emphasizes the effect of

distributed Lagrange multipliers to enforce coupling conditions between the fluid and the evolving

immersed solid.

While more sophisticated methods are available (quadtree technique, etc.) for the two-

dimensional implementation of the presented approach, a brute force search algorithm is applied

to determine the current neighborhood and relative positions of structure and fluid elements within

each non-linear Picard iteration m of a time step n. After the search algorithm has been performed

globally, each space–time fluid element Q
n,m,e
t owns an updated list L

n,m,e

S
of structural elements

currently passing through. Fluid elements not touched by one or multiple structural elements

have an empty list of assigned immersed solid elements and do not initiate any enrichment of the

approximation. If a space–time fluid element is hosting a part of the structure, all elemental nodes

j are assigned to the set of enriched nodes M.

5.3. Numerical integration of the weak form with enrichment

The fluid weak form has to be integrated over the flow domain and therefore affects non-enriched,

fully and partially EST fluid elements. Each non-enriched space–time flow element is integrated

applying a standard Gaussian quadrature rule. If the element is enriched by Equations (28), (29),

the integrands of the weak form are discontinuous inside the element. To perform the integration

correctly, the quadrature algorithm has to be modified in these elements: in a first step the prismatic

space–time element is regularly subdivided into tetrahedra as shown in Figure 13. The second step

subdivides the resulting tetrahedra at the zero iso-contour of the linearly interpolated space–time

level set function 
(x, t) into the final set of sub-tetrahedra for numerical integration. Within each

elemental sub-tetrahedra, the integrand of the weak form is then smooth and a Gaussian quadrature

rule can be applied for integration.

The subdivision approach is also used for the numerical integration over the spatial domain

only (triangles with stripe pattern in Figure 13) and the fluid–structure interface is represented by


(x, t)=0. The interface surface is subdivided into a set of planar triangles that approximates the
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Figure 13. Subdivision of prismatic space–time finite element.

potentially curved zero iso-contour. Numerical quadrature over the interface is then performed for

all sub-triangles using Gaussian integration rules.

6. EXAMPLES

6.1. Motion of a piston

The piston problem consists of a fluid-filled channel with length b and width a and a matching

piston-like object modeled by a thin structure (Figure 14). The piston is supported by linear springs

of stiffness k and separates the fluid domain with density �f and viscosity �. The thickness h

of the structure, placed at c from the left inlet and of density �s, is very small with respect to

other spatial system dimensions. The structural displacements are measured in relation to c using

u1(t).

At the boundary of the channel, Dirichlet and Neumann conditions are defined. The vertical

velocity v̄2 at the walls of the channel is set to zero. At the left inlet the horizontal tractions t̄L1
and at the outlet t̄R1 =0 are prescribed. The system is initially at rest, so that for fluid and structure

it holds that v=0 that and u=0.

The physical behavior of the described system is investigated considering the setups R and F of

a rigid and flexible piston structure. See Table I for material parameters of fluid and structure. The

geometrical dimensions of the system are given by a=1cm, b=8cm, c=2cm and h=0.02cm.

The ratio �=mf/ms of the total fluid mass mf=�fab to the total structural mass ms=�sah is

�=103 and characterizes the piston problem as a fluid–structure system involving a light-weight

structural part.

The analytical solution to the time-dependent pressure field p(x1, t) within the channel is

p(x1, t)=

{

t̄L1 −�fv
A
1,t (t)x1, x1<XA(t)

t̄R1 +�fv
A
1,t (t)(b−x1), x1>XA(t)

(37)

which is strongly discontinuous at the location of the rigid piston

XA(t)=c+uA
1 (t) (38)
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Figure 14. Piston system: channel flow with immersed structure.

Table I. Material parameters for the rigid (R) and flexible (F) piston setup.

Setup �f (g/cm3) � (g/cms) �s (g/cm3) E (g/cms2) � k (g/s2)

R 1.25×10−1 10−2 5.0×10−2 — — 0.5

F 1.25×10−1 10−2 5.0×10−2 2.0×102 0.0 0.5

The pressure gradient depends on fluid density �f and current acceleration vA
1,t (t) of the piston. The

pressure gradient remains continuous at the position XA(t) of the piston. The incompressibility

constraint for the fluid leads to a spatially constant velocity field of magnitude vA
1 (t).

6.1.1. Prescribed motion of rigid piston structure. The state of the fluid part of the coupled system

is computed for given motion of a rigid piston (setup R). The prescribed constant acceleration of

the piston aA=vA
1,t (t)=0.08cm/s−2 results in a quadratic displacement and linearly increasing

velocity of the piston body within the time interval I =[0s,10s]. Tractions (and pressure) at the

inlet boundary are set to zero.

The channel domain is discretized by 4×32 EST fluid elements wherein the piston, described by

four space–time structure elements, is immersed. For the simulation of a rigid piston, the degrees of

freedom for angular velocity � of the structure are set to zero. For comparison of results obtained

with the EST method, the coupled problem is additionally solved using a monolithic approach [25]

to fluid–structure interaction based on space–time finite elements and a traditional mesh moving

scheme. The time step size �t=1.0s is kept constant.

As shown in Figure 15, the EST method captures the pressure field and its evolving discontinuity,

which is aligned to the location of the accelerated rigid piston. The numerical results obtained

by the EST method are spatially exact compared with the analytical solution given by Equations

(37)–(38). The strongly discontinuous pressure solution within single elements is captured by the

pressure enrichment. While the spatial solution for a specific time instant t can be reproduced

exactly, the displacement of the piston is approximated in time by linear shape functions of the

associated space–time structural element. Further, the level set function used for representation of

the flow-immersed structure is interpolated by linear functions in space and time. The space–time

solution to the discontinuous pressure field therefore converges with second order to the correct

solution with decreasing time step size �t .

Figure 16 compares numerical results with the pressure state within the flow region resulting

from a computation using the EST method and a mesh-moving approach for various time instants.
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Figure 15. Piston with prescribed motion: discontinuous pressure solution.
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Figure 16. Piston with prescribed motion: pressure obtained by (a) the EST method
and (b) a moving mesh approach.

Both methods are able to capture the non-smooth pressure solution within the flow domain. The

significant difference is in the much more elaborate grid setup for the computation using a moving

mesh compared with the pre-processing for the EST method, which requires only a discretization

of the structure and the fluid domain.

6.1.2. Vibration of rigid piston structure. For the situation of a spring-supported, undamped rigid

piston immersed in a fluid channel with tractions t̄L1 =2.0g/cm/s2 and t̄R1 =0.0g/cm/s2, the natural

frequency �0 and amplitude a0 of the harmonic vibration are given by

�0=

√

2k

mf+ms
and a0=

a(t̄L1 − tR1 )

2k
(39)
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Figure 17. Vibration of rigid piston: discontinuous pressure solution for one period T =2
/�0.

while the horizontal piston displacement, velocity and acceleration read

uA
1 (t) = a0(1−cos�0t) (40)

vA
1 (t) = a0�0 sin�0t (41)

vA
1,t (t) = a0�

2
0 cos�0t (42)

Owing to the non-zero fluid traction state t̄L at the left inlet of the channel, the piston undergoes

accelerated motion. This results in a piecewise linear pressure field along the main axis of the

channel. With increasing deflection of the piston from its initial position at c, the spring forces

pull back the piston and lead to its oscillation. Owing to the absence of dampers and fluid shear

stresses, the oscillation of the piston is not damped.

The channel domain is discretized uniformly by 8×64 enriched prismatic space–time fluid

elements. The rigid piston is described by four space–time elements for a thin-walled structure. The

constant time step size �t=0.1s in I =[0s . . .20s] is sufficient to resolve the harmonic oscillation

of the piston.

Figure 17 shows the numerical solution to the displacement and velocity of the piston in point

A and the pressure field along the main axis of the channel using the EST approach. The behavior

of the fully coupled system is well simulated by the EST approach: the spatial discontinuous

pressure solution is found exactly. An approximation error is introduced by the time integration

scheme since the used linear velocity within a time slab is not able to capture the analytic solution

exactly.

The results of the EST method and the mesh-moving approach are compared in Figure 18. As

for the prescribed motion of the rigid piston structure, the flow mesh used in the moving mesh

technique deforms considerably but remains valid during the calculation. Mesh deformation due to

piston motion introduces here to coarse and fine resolved regions within the flow domain. While

this may be sufficient for approximation of very smooth functions, local coarsening as a result of

22



t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s

t = 6 s

(a) (b)

Figure 18. Vibration of rigid piston: pressure obtained by (a) the EST method
and (b) a moving mesh approach.

mesh deformation can lead to a significant reduction in accuracy. The EST method based on a

fixed fluid mesh circumvents these difficulties. The fluid enrichment resolves the strong pressure

discontinuity within the flow field. The solution of the smooth pressure states within the fluid

sub-regions coincides with the mesh-moving solution.

6.1.3. Forced vibration of flexible piston structure. The previous example is modified using a flex-

ible piston structure (setup F) and is thereby extended to a spatially two-dimensional problem. The

light-weight thin piston is subject to the same fluid loading and shows large structural deformations

accompanied by the oscillatory motion observed for the rigid piston. The non-linear model for

kinematics of thin-walled structures results in an arc-shape deformed piston and non-zero structural

velocities in the vertical direction. Consequently, the fluid velocity is neither constant in horizontal

direction nor zero in vertical direction as in the previous example. For more viscous fluids (than

that considered here by setup F) this leads to a pressure state of two-dimensional character within

the flow domain including a strong discontinuity at the immersed structure. The behavior of the

coupled system consisting of Navier–Stokes fluid and an embedded deformable structure is not

predictable through a closed solution.

The discretization of the situation is realized by 8×64 fluid elements and eight structural

elements. Owing to the deforming structural part, the time step of �t=0.001s is chosen throughout

the entire time interval I =[0s . . .20s].

Numerical solutions to horizontal displacement and velocity of points A and B on the piston

are shown in Figure 19. Since total mass distribution is not modified and damping effects from

the viscous fluid are negligible, the frequency of oscillation is almost unchanged. If the piston

reaches its initial configuration during a cycle, inertia forces of the distributed-mass piston lead

to secondary oscillations of the thin-walled structure, see velocity plot for points A and B in

Figure 19. Both approaches, EST method and mesh-moving technique, give similar results to nodal

velocity and displacement.
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Figure 19. Vibration of flexible piston: EST/moving mesh solution to piston displacement and velocity.
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Figure 20. Vibration of flexible piston: pressure obtained by (a) the EST method
and (b) a moving mesh approach.

Figure 20 underlines the limitations of the moved mesh techniques for fluid–structure problems

with considerable large deformations and rigid body motions. The mesh distortions in the middle

of a piston oscillation with maximal displacements come very close to situations involving invalid

element geometries. In such a pathological case the mesh-moving technique in the coupled solution

procedure fails and requires advanced methods, e.g. local re-meshing of the fluid grid. The EST

method avoids these restrictions.

6.2. Immersed rotating structures

The presented EST method is able to describe coupled systems involving rotating structural parts.

The following example considers two differently shaped thin-walled structures of width h embedded
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Figure 21. Rotor system: channel flow with immersed flexible and rotating structure (shapes A and B).

in a flow channel of dimensions a=0.2cm and b=2.0cm as shown in Figure 21. In horizontal

direction each structure (�s=10.0g/cm3) is supported by a linear spring of stiffness k and is

coupled to the channel flow (�f=1.0g/cm3,�f=10−3 g/cm/s). The enclosed domain inside the

solid is filled with fluid (�=�f/2 and �=�f/2). Both structures are free to rotate around their

hinges (initial positions given by c=0.2cm and d=0.05cm) and are fixed in the vertical direction.

At the left boundary of the channel, the horizontal velocity v̄L1 =1.0cm/s is imposed while on the

right the fluid boundary tractions t̄R1 are zero (pR=0).

The curved shapes A and B are generated using the superformula by Gielis [39]:
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where r and � are polar coordinates, � and 	 are non-zero real numbers and �, �1, �2 and �3 are

real numbers. Table II lists specific values belonging to shapes A and B of the thin-walled structure

as well as material parameters of fluid and structural part (rigid and flexible configurations).

The maximum radius of the shapes is normalized to rmax=0.0475. The origin of each shape is

identical to the hinge point that is connected to the thin-walled structure by stiffeners as shown in

Figure 21. Each shape is composed of nP =120 nodes and linear thin-walled structure elements.

Each stiffener consists of one structural element without fluid-immersing properties and therefore

not in interaction with the enclosed fluid.

The narrow flow domain around the immersed shapes is regularly discretized by prismatic

space–time finite elements with equidistant nodes (�h=0.004cm). See Figure 22 for the used

mesh. The numerical analysis of the coupled system is performed using a time slab width of

�t=0.001s for the time interval T =[0.0s,4.0s].

In the beginning of the simulation, the inflow velocity is linearly increased from zero to the final

constant v̄L1 within the time interval Tv =[0.0s,0.5s]. As a consequence the flow field develops

(Re≈50) and the fluid accelerates the two spring supported structures. The time-dependent fluid

forces act on the structures enclosing the lighter fluid and the asymmetric flow situation causes

rotational motion of both objects additional to motion in the horizontal direction. Figure 23 shows

the solution to horizontal displacements and angle of rotation of the hinges for the rigid and flexible
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Table II. Material and shape parameters (sets A and B) for rigid (R) and
flexible (F) rotating structures.

Setup E (g/cms2) � k (g/s2) h (cm)

R — — 1.0 1×10−2

F 104 0.0 1.0 2×10−3

Shape � 	 � �1 �2 �3

A 1.0 1.0 3.0 0.1 1.8 1.8
B 1.0 1.0 4.0 0.8 4.0 4.0

Figure 22. Details of spatial discretization of flow domain and immersed rotor shapes A and B.
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Figure 23. Horizontal displacement and angle of rotation of immersed rotor shapes A (left) and B (right).

cases. The enriched solution fields of pressure and velocity are given in Figure 24 for selected

time instants of the configuration involving flexible structures.

Figure 25 compares relative displacement, rotation and deformation of the immersed structures

for the rigid and flexible setup under the same flow conditions. For the flexible configuration (F),

considerable deformations of both shapes are observable.
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Figure 24. Enriched pressure (top) and velocity (bottom) fields for setup F at times t=1.0, 2.0 and 3.0s.

t = 0.30s t = 0.75s t = 1.00s t = 1.50s t = 2.00s t = 3.00s t = 3.75s

Figure 25. Motion (setup R, upper rows) and deformation (setup F, lower
rows) of the immersed rotor shapes.

This fluid–structure interaction problem can be classified as instability-induced and movement-

induced structural excitations. Initial motion and deformation are caused by the developing fluid

instabilities (shear flow) in the typical Kármàn vortex street. Once the flexible structures are set in

motion, the fluid field changes and a strong coupling of fluid and structure is present. The behavior

of the whole system is highly non-linear due to the motion and deformations of the involved

structures in the viscous Navier–Stokes fluid. The formulation and numerical algorithm of the EST
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method presented in this paper are capable of handling this non-linear fluid–structure interaction

situation with large structural motion/rotation and deformation.

7. CONCLUSIONS

The present paper proposes an elegant way to treat a fluid–structure interaction problem in the

case of thin immersed structures. The Lagrangian structure meshes are arbitrarily embedded in the

Eulerian fluid. The time axis is also included in the mesh discretization for both fluid and structures

leading to a space–time discretization. The structures are tracked in the space–time domain by the

zero iso-contour of a level set function. The discontinuities in pressure and velocity fluid fields

are represented by enriching the fluid field approximations using the partition of unity enrichment

concept and the XFEM. The continuity of velocity through the fluid–structure interfaces is ensured

by a perturbed Lagrange multiplier technique.

The resulting proposed approach, the enriched space–time (EST) method, enables large displace-

ment of the embedded structures without any fluid mesh update. Potential contacts between

structures are not treated within the paper. Although the method has been developed for a fluid–

structure problem, it can be applied to any problem of time-evolving interfaces involving weak or

strong discontinuities. Furthermore, while the chosen enrichments are sign functions, any kind of

enrichment functions may be introduced.

The first application compares the numerical and the analytical solutions of a piston in a one-

dimensional flow. It proofs the accuracy of the method to represent a strong discontinuous pressure

field as well as the correct transfer of momentum and geometrical continuity between fluid and

structure. For a flexible piston structure, an alternative mesh-moving scheme reaches its limits due

to large mesh distortions while the EST method is still able to correctly represent the solution.

The second application presents two different structures immersed in a channel flow. The viscous

fluid causes horizontal and rotational motion of both objects that undergo considerable deformation.

The potential of the EST method is emphasized in this application where classical ALE methods

would fail.
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