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Ensembl is a software project to automatically annotate large eukaryotic genomes and release them freely into the
public domain. The project currently automatically annotates 10 complete genomes. This makes very large demands
on compute resources, due to the vast number of sequence comparisons that need to be executed. To circumvent the
financial outlay often associated with classical supercomputing environments, farms of multiple, lower-cost machines
have now become the norm and have been deployed successfully with this project. The architecture and design of
farms containing hundreds of compute nodes is complex and nontrivial to implement. This study will define and
explain some of the essential elements to consider when designing such systems. Server architecture and network
infrastructure are discussed with a particular emphasis on solutions that worked and those that did not (often with
fairly spectacular consequences). The aim of the study is to give the reader, who may be implementing a large-scale
biocompute project, an insight into some of the pitfalls that may be waiting ahead.

In the beginning, flat files were the mainstay of bioinformatics.
Most data could be easily represented as a sequence of ASCII
characters. The number of known proteins was small, and ge-
nomes were a mere thought for the future. Sequence analysis
became much more difficult during and after the advent of rapid
DNA sequencing (Sanger and Coulson 1975).

The problem became harder still as researchers delved into
the world of sequence comparison (Needleman and Wunsch
1970; Smith and Waterman 1981; Pearson and Lipman 1988;
Altschul et al. 1990). It was rapidly discovered that techniques
such as dynamic programming would be essential to solve any
all-by-all sequence comparison problem. Flat files and single CPU
servers were just not going to be enough for the task of whole-
genome comparison and annotation.

Ensembl began as a project to automatically annotate ver-
tebrate genomes. This initially involves running many com-
monly used bioinformatics tools such as gene-prediction algo-
rithms, sequence database searches, and genomic feature-finding
programs. Ensembl takes the output features from these tools and
combines them to produce genome-wide data sets such as pro-
tein-coding genes, genome–genome alignments, synteny maps,
and protein family clusters. Details of how this is done are de-
scribed elsewhere in this issue.

For a genome of the size of human, the number of CPU
hours needed to produce this annotation can run into many
thousands. Obviously, this is not useful to complete on a single
CPU, but the problem can be divided up into many smaller tasks
that can be distributed over multiple CPUs. For large numbers of
CPUs, this reduces the time taken drastically.

Initially consisting of the human genome, the project has
subsequently grown to encompass mouse, rat, zebrafish, and
fugu, to name but four. Accordingly, the compute requirement
for the project expanded. Starting with one 466-MHz Alpha
DS10, and 200 GB of storage, to what is now a sizable enterprise
class-computing infrastructure, comprising >1200 CPUS and >20
TB of online storage (Fig. 1). On the basis of these figures, ge-
nome analysis requirements exceed expectations of CPU compu-
tational scaling (Moore 1965).

METHODS

Design

The Problem
As stated, Ensembl needs to compute sequence similarities and
execute pattern discovery algorithms to produce gene structures.
The data is also denormalized by EnsMart to allow rapid search
and queries to take place. The construction of the EnsMart data-
base is a sizable task that requires access to all current Ensembl
databases. The current sequence databases that are required for
an Ensembl gene build are >50 GB in size, with a final build
database size that is >200 GB.

Servers and architecture design for this project include com-
modity hardware with small memory configurations, and small
disk units, up to large SMP servers with fast RAID storage to hold
the core databases.

Fortunately, the algorithms that are executed fall mainly
into the class of problems that, in computer science, are termed
as ‘embarrassingly parallel’ (Fox et al. 1994). Classical parallel
processes need to communicate and update information between
threads or instances of the parallel process. An embarrassingly
parallel application does not require interprocess communica-
tion. As such, each thread or section of the problem is indepen-
dent and can be executed without reference to any of the other
processes. If this were not the case, farm architectures would not
be applicable for this task.

Hardware and CPUs
The heart of sequence comparison is an inherently integer-based
problem. CPUs with good integer performance and sufficient
level-two caches perform exceptionally well with dynamic pro-
gramming tasks. Certain sequence comparison tasks, such as
BLAST (Altschul et al. 1990) also demand considerable input/
output (I/O) subsystems. They read large files and write consid-
erable output. For these types of algorithms, localized storage is
essential to bind the data files as tightly as possible to the core CPU.

To circumvent the problem of data localization, all data files
(e.g., binary database indices and raw sequence files) are distrib-
uted to each remote node’s local storage device. Because they are
local to the machine, no NFS requests need to be made, as the
remote farm node disk already contains the binary and data files.

However, there are even issues with this approach, as single
disk speed and overall disk performance often becomes the lim-
iting factor when reading large data sets. Fortunately, many op-
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erating systems allow one to construct either software and/or
hardware RAID volumes, which enable multiple disks to be
bonded together to aggregate the I/O and improve performance.

When the server disk I/O subsystem becomes rate limiting,
further steps must be taken. For example, IDE disk drives in cer-
tain blade servers have a maximum throughput of 20 MB/sec. To
further increase I/O performance, multiple fiber-host bus adapt-
ers (HBAs) can be used. Attaching multiple HBAs to a server en-
ables rapid file access for both read and write. This type of con-
nection is better suited to file servers and head nodes than for
remote client machines, due to the increased cost. Head nodes in
this case would be the ES40/45 clusters as shown below (Distrib-
uted Resource Management). However, blade vendors now en-
able fiber-attached storage direct to the farm node, which gives
even further flexibility.

The concept of head nodes is vital in this type of cluster
configuration. A head node is in essence a larger (often multi-

CPU) server, with a large amount of core
storage behind it. These servers run the
master batch daemons for queue manage-
ment, serve core NFS directories to the
farm, and also run the relational database
engines to supply the farm with data.

Databases
From the early days of the Ensembl project,
it was clear that relational databases (RDBs)
would be an essential requirement for the
ultimate success of the project. Ensembl
was founded on open source principles; as
such, all code must be freely distributable to
all. In light of this, MySQL was chosen as
the core database engine.

The RDB forms the core anchor point
for the design and construction of the sys-
tems architecture. In the beginning, there
was one core MySQL database, with 40
nodes working as slave compute devices.
There are now 16+ database instances with
>400 databases within them. Total storage
requirement today for MySQL alone ex-
ceeds 4 TB.

The gene-build process involves a
combination of multiple SQL select state-
ments along with writes access to specific
tables to store the results of a given analysis
task. The database architecture must be de-
signed such that each task is not rate limit-
ing.

Figure 2 shows an outline of how the
storage is used in an eight-node cluster.
Here, rapid I/O and good CPU performance
is vital. Accordingly, enterprise class servers
with fiber-channel storage devices and low-
latency interconnects were deployed. For
Ensembl, Compaq/HP ES40 and ES45 serv-
ers with memory-channel interconnect,
and HSG/HSV RAID storage arrays are de-
ployed. Up to eight-way speed up for SQL
select statements can be achieved by de-
ploying a read-only database as depicted in
Figure 2.

The SQL select statements are sent to
the cluster alias, which transparently bal-
ances the MySQL database activity across

eight machines holding read-only copies of the data.
This read-only replication is possible because the cluster has

both a shared file system and a cluster alias that can route net-
work traffic to any node in the cluster via a round-robin mecha-
nism. All nodes in the cluster are able to see the same storage, as
each separate MySQL instance is able to see the same data files.

One word of caution with this approach, because there is no
locking in the database, only read access is permitted. Actions
that involve changing or writing new data into the database can-
not use the alias and must, instead, be passed to a specific data-
base server. This read-only replication mechanism is also de-
ployed in the Ensembl Web site to improve throughput, where
the Web site requests are mainly read only.

Distributed Resource Management
Some kind of distributed resource manager (DRM), often called
batch-queuing system, is essential to enable optimal use of any

Figure 1 Ensembl Computing infrastructure.
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farm setup. To work with clusters without a low latency inter-
connect, work load must be able to be parallelized simply by
breaking the job down into simple units. However, to achieve
this level of parallelism, one requires vast numbers of individual
jobs. The queuing system is essential to handle these multiple
jobs. In the case of Ensembl, the number of jobs can approach
300,000 in total, with up to 30,000 executing concurrently.

There are many options as follows:

LSF; http://www.platform.com/products/LSF
PBS; http://www.openpbs.org
GridEngine; http://gridengine.sunsource.net
NQS; http://umbc7.umbc.edu/nqs/nqsmain.html,
and even UNIX at and batch commands, to name but a few.

The system deployed for Ensembl used LSF. This was due in part
to the requirement for a commercial strength, 24 � 7 support
contract; there was also in-house experience of the product;
therefore, it was a relatively quick system to deploy. Many ven-
dors offer this level of support and ease of configuration today.

The importance of distributed resource management should
never be overlooked when building such clusters. It is a technol-
ogy that is under constant research and development, and due
diligence must be used when deciding which to deploy. The
source code for the Ensembl pipeline has been modified to use a
variety of queuing systems.

Scaling Issues and Failure Modes
Table 1 outlines some of the significant areas in which large
farms will fail. These errors are often not significant and will not
be seen where system size is small; they only start to occur when
the node count is high. Fortunately, most of the key failure
modes do have practical work around that are simple to imple-
ment. For example, the e-mail output is easy to resolve by turn-
ing off the sendmail daemon. E-mail on a cluster is not required.
By reference to Table 1, each section that follows will explain in
further detail what the issue is and how it may be best resolved.

NFS
Deploying NFS in clusters effectively is nontrivial. To work well,
it involves making sure as much data is as close to the servers as
practically possible. Configuration data and small scripts are
good examples of items that can be shared successfully via NFS.
Data files are a different issue all together. Accordingly, client
servers need to be specified to have some form of local disk stor-
age, where both copies of the executables and the query data files
can be stored. This reduces NFS overhead dramatically, as the
queries all run with locally served data files.

NFS has been a difficult issue since the inception of the
cluster. Many hardware and software technologies were deployed
to improve this situation.

● Use trunking to bond multiple network interfaces to double
performance.

● Use multiple NFS servers, for example, one for binaries and one
for perl modules.

● Upgrade network infrastructure; initial servers were on 155MB
ATM, gigabit networking increased performance dramatically.
This provided the best increase in performance of all methods.

● Use Jumbo frames on the gigabit net-
work so that the maximum transfer
unit is increased. In our experience,
this made little difference, as the host
CPU was rated at 2.8 GHz, and was
able to assemble the smaller 1500-
byte packets with little loss in perfor-
mance.

● Cluster NFS—use Tru64 cluster aliases
to balance the load over multiple
members in the cluster. This had the
same effect as using multiple servers.

The following describes a scenario
in which wuBLASTN is executed against
an 800-MB subsection of the human EST

Figure 3 Client code in wait state. Note, the CPU time is pitiful, the process state is in WAIT, as it is
waiting for I/O operations on the NFS server. This can be seen from the kernel messages file above,
which also shows the server (master) to be unresponsive.

Figure 2 Database layout on an 8-node cluster. To enable distribution
of computational load, remote devices can access the cluster alias to read
from the replicated database. If write access is required, individual nodes
must be specified. The cluster alias access is very efficient for large SQL
select statements where speed is required.
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database. There are only five short query ESTs used in the search;
this is not a large-scale comparison. The clients are DS10L servers,
with two bonded 100-Mbit Ethernet devices to provide 20 MB/
sec bandwidth to the server. Storage devices are simple IDE disk
devices. The NFS master is a 4 CPU AlphaServer ES45, with Gi-
gabit networking with fast Fibre Channel RAID storage. The re-
sults are shown in Table 2.

However, attempting to contact the master server during the
200-node access via NFS results in no response. We need to find
out why. Looking at the client side process
list shows poor CPU response, (see Fig. 3).
Looking at the process list on the master
shows heavy I/O from the kernel thread (see
Fig. 4).

Note, from Figure 4 one can see that the
second process in the list also now has no
user id associated with it, just a number. We
have essentially destroyed the YP server; we
cannot resolve user id data any longer. Albeit
that the server has a 1-GB/sec network inter-

face, it can no longer serve requests; the link is saturated. This
server may as well be off line, as it also serves users’ home direc-
tories; therefore, no one can login to this server. By now, tele-
phones in the systems’ support room will be ringing.

Other Issues
Table 1 also identifies a number of other issues that can kill
servers. Other than the user errors, such as Typo, BinLog, and
SwapKiller, system errors can be avoided by replicating services.
For example, NameService can be avoided by either replicating
NIS servers as a series of slaves or using local caching services
such as nscd. nscd will cache common name-service requests
such as hosts, group, and id requests. This stops the YP server
from becoming saturated. Again, this issue only presents itself in
big installs, where the number of users and servers are large.

The same database replication approach discussed above
(Databases) can also help to resolve RDBKiller issue. Multiple
nodes to serve the SQL-select statements reduce the bottlenecks
considerably.

Compute Farm and Data Access Architecture
Distribution of the analysis over the computers in a farm can
generate large amounts of network traffic. However, for the pro-
grams to perform optimally, we need to restrict the network traf-
fic associated with running jobs as much as possible. To do this,
a number of programs have been devised over time to push data
to remote nodes.

File distribution with rsync/rdist programs is slow when the
node count is high. It can take up to 2 d to distribute the entire
contents of the sequence databases. A total of 60 GB of data
pushed to 1200 nodes is in essence 72 TB of data that must move
down the wire. Without careful design, this is a huge data-
distribution problem.

We circumvent the data-distribution problem by applying
the same embarrassingly parallel techniques that we use for ex-
ecuting code. We split the farm into a series of head nodes, which
are each responsible to distribute data to a small number of chil-
dren. In this way, we obtain data parallelism, and reduce the time
to distribute the data to less than 1 d. The issues that increase the
time for data copying are annoying issues, such as full disks and
failed disks. The farm has >2256 disk drives that are >135 TB in

Table 1. Issues Where Farms Fail

Email Sending email from x,000 nodes at the same time
with the results of output, e.g., LSF’s default
behavior sends stdout and error via email. Often
results in a crashed mailserver.

NFS Remote file read access over the network from
multiple nodes.

NFSKiller As for nfs, but with multiple write access all at the
same time.

PreExec Writing a pre-execution wrapper to test a failure
condition prior to the job running, that then fails
to run, or exits with a non-zero exit status. e.g.,
coding error can cause this.

RubberJob Jobs bouncing in the queues due to some failure
state, e.g., missing nfs intercept point, coding
error. Often induced by a PreExec failure–as above.

Typo Often the biggest killer of farm servers, e.g.,
/daata/blast not /data/blast, jobs can become
Rubber, and proceed to bounce in and out of the
queuing system on to modes and then fail.

RawOut Writing raw blast/exonerate/other output without
any data reduction, e.g., MSPCrunch/grep, etc.

BigLog Excessive logging that may generate more than 1 GB
of stderr output data, this is often written back to
the NFS server.

JobSize Jobs that run for less than 1 sec. Also jobs that run
for 6 mo.

SwapKiller Jobs that end up allocating too much memory, or
jobs that grow and difficulty predicting usage
patterns, e.g., exonerate FSM generation.

MasterKiller Job submission, dispatch rate, and queue size are
sufficiently high that the dispatch code becomes
CPU bound and fails to run new jobs.

NameService NIS or DNS servers become overloaded due to many
gethostsbyname, getuid, getgroup requests.

NetFill Backbone network becomes saturated with I/O
requests, e.g., heavy NFS or DBI loading.

DeadDisk Storage failure on remote node. When large numbers
of spindles are considered, this becomes a
significant factor. Jobs can arrive at the remote
node and find that the storage has failed.

RDBKiller Head database nodes become saturated with long
running requests, or too many concurrent
connections. RDB is no longer able to actively
serve results for new SQL statements.

There are a number of bottlenecks that can appear in farm environ-
ments; the table above is a list of some of the significant ones. If you
are particularly unlucky, you will see all of them at the same time.

Table 2. Execution Time for wublastn Jobs With 5 EST
Sequences

Mode CPU Seconds

One host with local storage: 226 seconds
One host (NFS): 220 seconds
Thirty hosts (NFS): 282 seconds
Two hundred hosts (NFS): 1121 seconds
Two hundred hosts with local storage: 226 seconds

Figure 4 Server code in kernel thread state. The kernel idle process here is the NFS kernel
thread in the server trying desperately to serve NFS requests.
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total. Mean time between failure becomes an issue when there
are >2000 disk drives to deal with. This accounts for the DeadDisk
issue described in Table 1. On the Ensembl cluster, SMART disk
failure code was written to automatically close hosts when stor-
age was shown to be in a pre-fail state.

Initial experiments with multicast (push data to all nodes at
the same time) failed. Reliable multicast is difficult, as the under-
lying UDP protocol has no concept of byte order or guaranteed
delivery. Recently, however, code based on udpcast (Knaff 2003)
have been deployed. Udpcast is a stable multicast code that is
able to distribute multigigabyte files at close to wire speed. This
code has been recently tested over the entire farm with good results.

Due to the vast number of storage devices deployed, and the
fact that they are the only item with moving parts in a server
(other than cooling fans), this has been the hardest task to main-
tain service. It was decided that consolidating this storage was
the only way to reduce this overhead.

The latest addition of hardware to the farm uses SAN tech-
nology. Because the data analysis problem on the farm is inher-
ently read only, tricks can be deployed where storage is presented
to multiple nodes as read-only file systems. Because they are read
only, the same device can be presented to multiple operating
systems. If this were a read-write volume, the journal logs would
corrupt instantly, and the storage would need to be reinitialized.

Figure 5 shows a schematic of how a read-only arrangement
works in practice. The bottlenecks tend to move to the switch
fabric and the speed of the interswitch links (ISLs). From our tests
running four ISLs with two controllers, we can sustain 588 MB/
sec peak speed, which is ca 44 MB/sec per node.

DISCUSSION

Conclusions
The most effective method to maintain a highly available com-
pute environment is to keep the components as simple as pos-
sible. Only use expensive enterprise class servers where you really
need them, for example, database engines.

Localizing data files is essential to reduce internal denial of
service due to code design failure or systems failure.

Storage-area network technologies, while currently expen-
sive, are an effective way to tightly couple both storage and serv-
ers, and provide exceptional I/O performance.

Read-only problems, such as sequence comparison and SQL
selects, can be effectively accommodated by multiple-device pre-
sentation to load balanced servers and by cluster-wide file systems.

Looking forward, plans to increase the amount of directly
attached storage and to extend this direct attached storage out
the farm nodes are underway, as is the provision of cluster-wide
file systems to the farm nodes.
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