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Abstract

The Ensembl gene annotation system has been used to annotate over 70 different verte-

brate species across a wide range of genome projects. Furthermore, it generates the

automatic alignment-based annotation for the human and mouse GENCODE gene sets.

The system is based on the alignment of biological sequences, including cDNAs, pro-

teins and RNA-seq reads, to the target genome in order to construct candidate transcript

models. Careful assessment and filtering of these candidate transcripts ultimately leads

to the final gene set, which is made available on the Ensembl website. Here, we describe

the annotation process in detail.
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Background

Sequenced genomes represent an extremely useful resource

in biological research. High quality annotations maximize

the utility of these genomes, as it is the annotations that

link genomic sequence to biological function. The ultimate

aim of genome annotation, therefore, is to identify the

functional elements within a genome sequence such as the

regions that are transcribed into mRNA, as well as those

involved in regulation and expression.

Ensembl provides high quality integrated genomics re-

sources for publicly available vertebrate genome assem-

blies. Since the project was launched 16 years ago (1), our

gene sets have maintained a reputation as being of the

highest quality (2, 3). Apart from being major components

of the GENCODE (4, 5) gene sets, our annotations have

also been the primary annotations used in the initial gen-

omic analyses for a number of genome projects (Table 1).

Furthermore, they have been used in a plethora of research

disciplines across the array of species for which we provide

annotations. Such examples include, but are not limited to,

studies of disease (6–9), vertebrate evolution and diver-

gence (10–14), metabolism (15) and gene expression (16).

The extensive reuse of Ensembl gene sets in these and other

studies, combined with experience and continual develop-

ment in genome annotation, has established Ensembl as an

authority in vertebrate genome annotation (17, 18).

The Ensembl gene annotation system is used for all ver-

tebrate species in Ensembl. When providing gene annota-

tion on a genome assembly, our main goal is to identify a

set of full-length protein-coding genes. High accuracy, as

judged by community assessments, is achieved by a well-

established core data flow that integrates alignments of ex-

pressed protein, cDNA and other biological sequences

(48). All Ensembl transcript models are supported by

Table 1. Genome projects for which Ensembl provided the primary annotation

Common name Scientific name Assembly name

in Ensembl

Assembly accession Ensembl

release number

Ensembl

release date

References

Duck Anas platyrhynchos BGI_duck_1.0 GCA_000355885.1 73 September 2013 (19)

Anole lizard Anolis carolinensis AnoCar2.0 GCA_000090745.2 61 February 2011 (20)

Cave fish Astyanax mexicanus AstMex102 GCA_000372685.1 74 December 2013 (21)

Cow Bos taurus UMD3.1 GCA_000003055.3 64 September 2011 (22)

Dog Canis lupus familiaris CanFam3.1 GCA_000002285.2 68 July 2012 (23)

Zebrafish Danio rerio Zv9 GCA_000002035.2 60 November 2010 (24)

Horse Equus caballus Equ Cab 2 GCA_000002305.1 49 March 2008 (25)

Atlantic cod Gadus morhua gadMor1 GCA_000231765.1 65 December 2011 (26)

Chicken Gallus gallus Galgal4 GCA_000002315.2 71 April 2013 (27)

Stickleback Gasterosteus aculeatus BROAD S1 GCA_000180675.1 40 August 2006 (28)

Gorilla Gorilla gorilla gorilla gorGor3.1 GCA_000151905.1 63 June 2011 (29)

Coelacanth Latimeria chalumnae LatCha1 GCA_000225785.1 66 February 2012 (30)

Rhesus macaque Macaca mulatta MMUL 1.0 n/a 40 August 2006 (31)

Wallaby Macropus eugenii Meug_1.0 GCA_000004035.1 55 July 2009 (32)

Turkey Meleagris gallopavo Turkey_2.01 GCA_000146605.1 61 February 2011 (33)

Opossum Monodelphis domestica monDom5 GCF_000002295.2 44 April 2007 (34)

Mouse Mus musculus GRCm38 GCA_000001635.6 68 July 2012 (35)

Ferret Mustela putorius furo MusPutFur1.0 GCA_000215625.1 69 October 2012 (36)

Gibbon Nomascus leucogenys Nleu1.0 GCA_000146795.1 63 June 2011 (37)

Nile tilapia Oreochromis niloticus Orenil1.0 GCA_000188235.1 67 May 2012 (38)

Platypus Ornithorhynchus anatinus OANA5 GCF_000002275.2 42 December 2006 (39)

Sheep Ovis aries Oar_v3.1 GCA_000298735.1 74 December 2013 (40)

Lamprey Petromyzon marinus Pmarinus_7.0 GCA_000148955.1 64 September 2011 (41)

Orang-utan Pongo abelii PPYG2 GCA_000001545.1 49 March 2008 (42)

Rat Rattus norvegicus Rnor_5.0 GCA_000001895.3 70 January 2013 (43)

Tasmanian devil Sarcophilus harrisii Devil_ref v7.0 GCA_000189315.1 64 September 2011 (44)

Pig Sus scrofa Sscrofa10.2 GCA_000003025.4 67 May 2012 (45)

Zebra finch Taeniopygia guttata taeGut3.2.4 GCA_000151805.2 53 March 2009 (46)

Platyfish Xiphophorus maculatus Xipmac4.4.2 GCA_000241075.1 71 April 2013 (47)

Species are listed along with assembly names, assembly accessions, the Ensembl release numbers where the annotations were first made available, the dates of

these Ensembl releases, and the references for each of the respective published genome projects. The rhesus macaque assembly (MMUL 1.0) was published before

the Browser Genome Release Agreement came into effect and therefore was not assigned an assembly accession.
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experimental sequence evidence; none are predicted solely

by ab initio methods.

Manual curation involves the evaluation of biological

sequences aligned to the genome in order to support gene

structures. The evidence for each gene structure is assessed

by an individual who is trained in genome biology, and re-

sults in low throughput gene annotation that is especially

valuable in biologically complex regions of the genome.

Ensembl’s approach is to automate the decision-making

steps followed by manual curators, as much as they can be,

using the same alignments. High-throughput annotation is

achieved because thousands of genes can be annotated in

parallel. The main strengths of the Ensembl annotation

methods are the speed and consistency with which

genome-wide annotation can be provided to the research

community. These advantages will become ever more im-

portant as the number of assembled genomes and the

amount of data available for each species increase due to

new sequencing technologies (49, 50).

The Ensembl gene annotation system described by

Curwen et al. (48) was designed to annotate species with

high-quality draft genome assemblies, where same-species

protein sequences and full-length cDNA sequences were

available as input for identifying many of the protein-coding

genes. More recently, fragmented genome assemblies have

become available for annotation, as have assemblies with

limited availability of same-species protein or full-length

cDNA sequences. For many species, RNA-seq is an add-

itional data source available for gene annotation. To address

these new challenges, our system has been extended to in-

clude methods for fast and effective annotation of assemblies

that are fragmented and for which there are relatively small

amounts of same-species data. Novel methods have been de-

veloped to use data from new sequencing technologies and

to improve accuracy for high-coverage genomes. We will

give a general overview of our gene annotation (genebuild)

process, and discuss the pipelines used within each phase.

We will also highlight changes with respect to the process

described by Hubbard et al. (51) and Curwen et al. (48), and

introduce new methods that have since been added. Brief de-

scriptions of how these processes have been applied to anno-

tate the mouse, Tasmanian devil and chimpanzee genomes

can be found in the Supplementary Information.

Results

The Ensembl gene annotation process (Figure 1) can be

divided into four main phases: Genome Preparation,

Protein-coding Model Building, Filtering and Gene Set

Finalization. Each stage is described below, along with a

selection of new methods. We also describe methods for

post-release updates to a gene set.

Some of the methods described are required for every

genebuild, whereas others are optional and can be em-

ployed to improve the gene annotation wherever necessary.

The choice of process is influenced by the position of the

species on the phylogenetic tree, the assembly quality and

the availability of same-species protein and cDNA se-

quence data (see Supplementary Information). The Results

section will detail recent changes and improvements to this

system.

Genome preparation

Ensembl does not produce genome assemblies. Instead, we

provide annotation on genome assemblies that have been

deposited into a member database of the International

Nucleotide Sequence Database Consortium [INSDC:

GenBank (52), ENA (53) and DDBJ (54)] and are therefore

publicly available. We select species to annotate on a case-

by-case basis according to a number of factors such as

phylogenetic position, assembly quality, value of the or-

ganism as a disease model, availability of same-species se-

quence data (e.g. RNA-seq) and additional funding. For

some species more than one genome assembly has been

produced. In these cases Ensembl, NCBI and UCSC consult

the species’ community in order to determine which assem-

bly should be annotated as reference.

Once we obtain an assembly from one of the INSDC

repositories, we load it into a database and prepare it for

sequence alignment by running the repeat masking and

raw compute analyses (Figure 1). The steps contained in

this ‘Genome Preparation’ stage are followed for every

genebuild.

Assembly loading

For vertebrate genome assemblies, assembly loading usu-

ally involves inserting a list of contig (component), scaffold

and chromosome accessions (where available) into an

Ensembl core database schema (55). Contigs are the basic

unit of a hierarchical genome assembly, with each contig

comprising contiguous sequence with no gaps. Mate-

pairing information is used to link contigs together into

longer structures called scaffolds, and scaffolds may be

linked together to form chromosomes (Figure 2). Each of

these levels has its own coordinate system that is relative to

the start of the sequences on that level.

DNA sequences for all the contigs are first stored in the

database. We then load mappings between each coordinate

system, using the AGP (‘A Golden Path’) files provided

with the assembly. These files identify equivalent regions

between sequences on different coordinate systems. We

load contig-to-scaffold, contig-to-chromosome and
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scaffold-to-chromosome mappings. It is not necessary to

store DNA for scaffold or chromosome sequences as these

higher level structures can be constructed from their com-

ponent contig sequences. Next, we label as ‘toplevel’ the

sequences in the genome assembly that are not a compo-

nent of another sequence region. Toplevel is therefore a

virtual coordinate system that includes the available

chromosome sequences, as well as all the scaffold

Figure 1. The Ensembl Genebuild workflow for annotating genes. The first phase of the annotation process is the Genome Preparation stage, which

prepares the genome for gene annotation. The second phase is the Protein-coding Model Building stage, consisting of the Similarity, Targeted and

RNA-seq pipelines. This generates a large set of potential protein-coding transcript models by aligning biological sequences to the genome and then

inferring transcript models (exon–intron structures) using the alignments. Noncoding genes are annotated separately. Usually, the final phase is the

Model Filtering stage. This involves sorting through the potential coding transcript models and filtering out those that are not well supported.

Pseudogenes are then annotated and the noncoding RNA genes are incorporated to create the Ensembl gene set, which is then cross-referenced with

external data sources. For some species (human, mouse, rat, zebrafish and pig) the HAVANA group produces manually curated gene sets. These an-

notations are merged with our Ensembl gene set to produce the final merged gene set. In the case of mouse and human, the merged sets comprise

the GENCODE sets of genes.

Figure 2. The genome assembly. Vertebrate genome assemblies usually comprise a number of possible layers of information. In most cases,

sequenced reads will be assembled into contigs. Contigs are assembled into scaffolds based on linkage data (e.g. paired reads, or markers), and

these scaffolds may be assembled to produce chromosomes.

Page 4 of 19 Database, Vol. 2016, Article ID baw082

 at U
p
p
sala U

n
iv

ersitetsb
ib

lio
tek

 o
n
 O

cto
b
er 1

2
, 2

0
1
6

h
ttp

://d
atab

ase.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

Deleted Text: -
http://database.oxfordjournals.org/


sequences that are not placed within a chromosome. All

gene annotation processes are run across the toplevel co-

ordinate system (56).

Repeat masking

RepeatMasker (57), Dust (58) and Tandem Repeat Finder

(59) (TRF) are used to mask repetitive genomic sequence.

RepBase repeat libraries (60) are used for RepeatMasker,

and in 2011, we started to run RepeatModeler (61) to gen-

erate our own libraries for some species that are distantly

related to the well-characterized mammals, such as coela-

canth. When preparing a RepeatModeler library, we use

BLAST (62) to align the repeat library output produced by

RepeatModeler to the UniProt (63) protein existence (PE)

level 1 and PE level 2 proteins. The UniProt PE levels indi-

cate that there is experimental evidence for the protein or

transcript, respectively. Any repeat sequence with a signifi-

cant hit to UniProt is removed from the RepeatModeler li-

brary so as to minimize the number of repetitive protein

sequences that will be included in the library for repeat

masking.

Several RepeatMasker analyses may be run; one for

each of various chosen RepBase libraries and one for

the custom RepeatModeler library generated in-house.

We then assess the results in order to select those

RepeatMasker runs that maximize the proportion of the

genome that is repeat masked, while also minimizing the

number of repeat libraries used. Results from the remain-

ing RepeatMasker runs are not used in subsequent

analyses.

Raw computes pipeline

‘Raw computes’ (56) is a collective term for the selection

of primary annotation analyses that are run across the gen-

ome assembly immediately after repeat masking. The ab

initio algorithms include Genscan (64), for predicting gene

models; Eponine (65), for finding transcription start sites;

CpG (Gos Micklem, unpublished software), for finding

CpG islands; tRNAscan-SE (66), for finding potential

tRNA genes and FirstEF (67), for identifying the first exons

of transcripts. With the exception of Genscan (used for

reducing the search space in the BLAST step described

below), the results of these analyses are not used in the gen-

ebuild; they are run purely for website display purposes.

We also BLAST all of UniProt, UniGene and vertebrate

RNAs from the ENA against the Genscan peptide se-

quences. Running this step across the Genscan results, ra-

ther than across the whole genome, reduces the compute

time required. The result of the UniProt BLAST step is

used later in the genebuild if the Similarity pipeline

(described below) is run as part of the protein-coding gene

annotation system.

Protein-coding model building

The model-building phase involves the alignment of pro-

tein, cDNA, EST and RNA-seq sequences to the genome

assembly. The methods used in this phase depend on the

input data available at the time of annotation. Input data-

sets are selected taking provenance into account, with

same-species data preferred over data from other species,

and with annotated sequences preferred over computed se-

quences. The final output of this section of the genebuild is

a collection of databases that contain sequence alignments

and a large set of potential protein-coding transcript

models.

Targeted pipeline

The Targeted (same-species) pipeline uses same-species

protein sequences to first identify the rough genomic loca-

tion of protein-coding genes, and then to produce coding

models using GeneWise (68). This two-step method aims

to speed up the process by reducing the search space made

available to GeneWise to a subsection of the genome,

which has similarity to the protein sequence being aligned.

Same-species protein sequences are downloaded from

UniProt and RefSeq (69), with the aim of restricting these

to a set of high-confidence input sequences. For UniProt,

we download only Swiss-Prot and TrEMBL protein se-

quences labeled as PE level 1 and PE level 2. In the case of

RefSeq, we download sequences with ‘NP’ and ‘AP’ acces-

sions, which are the annotated protein sequences. RefSeq

computed protein sequences including the ‘XP’ accessions

are not downloaded. The combined set of downloaded

UniProt and RefSeq protein sequences form the input for

the Targeted pipeline.

We locate the approximate genomic location of tran-

scripts by aligning protein sequences to the genome using

Pmatch (R. Durbin, unpublished software) with a thresh-

old of ‘-T 14’. This threshold indicates the number of con-

secutive amino acids that must exactly match the genomic

DNA, and is an efficient method for aligning proteins

when they have high identity to the genome. It is important

not to lose too many same-species input sequences at this

early stage of the genebuild process. Thus, if Pmatch does

not align all input proteins, we then align the remaining

protein sequences using Exonerate (70).

Every Pmatch hit will correspond to translated exonic

sequence. Pmatch hits from each input protein sequence

are grouped along the lengths of genomic sequences, using

the module [also referred to as a Runnable (56)]
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BestPmatch, so that the genomic range of the hits roughly

corresponds to the location of the input protein’s tran-

script. The genomic range identified by BestPmatch is ex-

tended by 200 kb in both directions and the DNA

sequence for this region is passed to GeneWise, along with

the original input protein sequence. GeneWise aligns the

protein sequence to the DNA using a splice-aware algo-

rithm and generates a protein-coding transcript model as

output.

For human, mouse and selected other species, we run

GeneWise at least twice across the genome: a first time

requiring consensus splicing and a second to allow noncon-

sensus splice sites. While consensus splicing is more com-

mon than nonconsensus splicing, the second run of

GeneWise provides flexibility for those coding models with

real nonconsensus splice sites and permits alignment of the

protein sequence in regions where there are genomic se-

quence errors. Some models produced by GeneWise con-

tain small ‘frameshift introns’ of 1, 2, 4 or 5 bp long where

errors, insertions or deletions in the genomic sequence

would otherwise introduce translation frameshifts. When

translated off the genomic sequence, the coding sequence

for these models is more likely to be full length, which is

particularly useful in lower quality draft genomes.

In Curwen et al. (48), we described passing ‘MiniSeqs’

to GeneWise. However, we no longer use this approach.

We now use ‘FullSeqs’ that include all genomic sequence

from the first to last Pmatch alignments; intronic genomic

sequence is no longer removed. This FullSeq method is pos-

sible due to increased computational resources and opti-

mization of the GeneWise program. It is preferred because

it allows GeneWise to search the full genomic sequence

and to correctly place short exons, while genomic se-

quences for short exons were not always present in the

MiniSeqs.

In addition to GeneWise, we also use Exonerate’s

cdna2genome tool (70) to generate protein-coding gene

models. This is achieved by downloading cDNA sequences

that have a coding sequence (CDS) range annotated in the

INSDC record; cDNA sequences without an annotated

CDS in the INSDC record are not used in this step.

Combined alignment of a cDNA and its annotated CDS by

Exonerate has the advantage of adding untranslated re-

gions (UTRs) to the protein-coding models in one step, and

of ensuring that the correct UTR is added to a coding

model. This step is only run for the handful of species that

have large numbers of annotated protein-cDNA pairings.

As Exonerate produces models whose translation include

stop codons, we search each of the resulting models and re-

move those with more than one internal stop. For models

with only a single internal stop codon, a small frameshift

intron is introduced in its place.

From the multiple GeneWise and Exonerate methods

described above, each original protein sequence may have

produced multiple coding transcript models at one loca-

tion, with slightly different exon structures and translated

sequences, depending on the degree to which the protein

sequence matches the genome. In order to identify the

model whose translation most closely matches the input se-

quence, the translation from each of these models is

aligned back to the original protein sequence by the

BestTargeted module, using Exonerate’s ‘affine:local’

model. This is a local alignment that uses the affine gap

penalty, similar to the Smith–Waterman–Gotoh algorithm

(71). For each original protein sequence, the Ensembl

model producing the highest Exonerate score is selected to

be the final output for the Targeted pipeline.

Similarity pipeline

As with the Targeted pipeline, the aim of the Similarity

pipeline is to identify the rough genomic location of

protein-coding transcripts and then to produce coding

models using GeneWise. Unlike the Targeted pipeline,

which restricts its input to only same-species proteins, the

Similarity pipeline takes as input UniProt proteins from a

wide range of species. This approach is especially useful

for species that do not have many same-species proteins

suitable for use in the Targeted pipeline such as elephant or

anole lizard, but is less so for well-described species with

many proteins in UniProt, such as human and mouse.

The method for reducing the genomic search space

passed to GeneWise is different in the Similarity pipeline

compared to the Targeted pipeline. Instead of using Pmatch

to identify the rough placement of protein sequences, we use

the UniProt BLAST results produced in the raw compute

pipeline. Although BLAST requires more compute resource

than Pmatch to run, it is more tolerant of the sequence mis-

matches that typically occur when aligning proteins from

the broad range of species used in the Similarity pipeline.

The UniProt BLAST results are first classified across

three axes according to the information provided by

UniProt: by PE level, by source (Swiss-Prot or TrEMBL)

and by taxonomy. This division of UniProt subsets allows

us to prioritize the reviewed protein sequences that are

more closely related to the species being annotated.

UniProt proteins that mapped to a Genscan peptide se-

quence during the raw computes step are then aligned to

the full genomic sequence underlying the Genscan model,

again using BLAST. This step allows hits to be identified

outside of the Genscan exons. It is these results that define

the regions on which GeneWise is subsequently run.

The output of the Similarity pipeline is a set of models,

based on protein sequences from a variety of species, which
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supplements the models already generated by the Targeted

pipeline.

RNA-seq pipeline

With the rapid adoption of high-throughput transcriptome

sequencing (i.e. RNA-seq) as an experimental method, the

amount of available transcribed sequence data is increasing

dramatically (72). The quality of such sequence data is ex-

pected to continue to increase over the next few years,

making it a valuable resource in the gene annotation

process.

The main difficulty in using short reads for gene annota-

tion is that the full length of an mRNA is not represented

in one contiguous sequence. These short sequences must be

combined to generate longer transcript models without full

knowledge of the splicing pattern of the exons in each ex-

pressed isoform. The paired reads provide more inform-

ative alignments than single reads because reads that align

as a pair have a higher confidence level of being aligned

correctly (73). It is also possible to take the expected insert

size for paired reads into account when validating their

alignments. Stranded reads are particularly useful for cases

in which transcripts overlap on opposite strands, and as-

signment of a read to the correct strand can be ambiguous,

although for un-stranded reads, a transcript’s strand can

normally be determined from the direction of splice sites.

Most of the RNA-seq data with which we have worked

have been paired-end reads of 50 bases or longer, gener-

ated by Illumina machines.

Because short read data do not allow the confident con-

struction of full-length splicing models, the Ensembl RNA-

seq pipeline is usually configured to produce only one tran-

script model per gene as output. This conservative

approach aims to prevent the introduction of false tran-

script structures that result from incorrectly combining

exons and introns along the length of a model.

RNA-seq-based models are produced from a two-step

alignment process with only minor modifications to that

described by Collins et al. (74). Firstly, raw reads are now

aligned to the genome using BWA (75). These alignments

are collapsed to create alignment blocks that roughly cor-

respond to transcribed exons. Read pairing information is

then used to group putative exons into approximate tran-

script structures called proto-transcripts. In the second

alignment step, the reads that were partially aligned by

BWA are extracted and aligned to the proto-transcripts, or

more commonly to the underlying genomic sequence, using

Exonerate. Exonerate is splice-aware, providing

alignments that allow us to infer introns. Finding clear

exon–intron junctions is a challenge when the raw reads

have been sequenced from a mixture of fully processed and

partially processed transcripts; reads sequenced from re-

tained intronic sequence can lead to the annotation of one

long, false exon that should have been annotated as one in-

tron surrounded by two exons. These false exons are

removed when detected; they are identified by searching

within the genomic range of each putative exon for evi-

dence of spliced reads. The result of the Exonerate align-

ment step is a set of spliced alignments representing

canonical and noncanonical introns. Transcript models are

created by combining the transcribed regions from the

proto-transcripts with the observed (intronic) spliced align-

ments to create all possible transcript isoforms indicated

by the aligned data. We usually configure the system to

only keep the isoform with the most read support across its

splice junctions and exons.

Read length and depth of coverage are both important

when identifying introns. When read coverage is high, it is

more likely that the set of raw reads contains sequences

that can be aligned across an intron. When reads are lon-

ger, it is more likely they will span an intron. Having reads

that align across every intron in a transcript makes it pos-

sible for us to build a complete transcript model. If the

coverage is very low, some splice boundaries may not be

covered by a read in the raw data set. Without read sup-

port, these introns will not be generated in the Exonerate

step, which can result in fragmented models or models

with retained introns.

The RNA-seq pipeline produces both protein-coding

and noncoding transcript models. The final step in this

process is to BLAST UniProt PE 1 and PE 2 proteins

against the set of RNA-seq models so as to identify the

protein-coding transcript models. Our standard thresholds

for the UniProt alignments are 80% identity and 80%

coverage of the sequences.

For the reads from each input sample, and for

the merged set of reads from all samples, the output of the

RNA-seq pipeline includes an indexed BAM file of the

reads aligned by BWA, a set of intron features produced by

aligning intron-spanning reads with Exonerate, and a set

of transcript models. These data can be viewed as separate

tissue tracks in the Ensembl browser. They can also be ob-

tained through a programmatic interface.

Transcript models are produced separately for each of

the tissue samples, as well as for the merged set. Transcript

models from a single tissue input sample are often more

fragmented than transcript models from the merged set.

(The data in the merged set are deeper, and this allows

more splice junctions to be detected and therefore more

consecutive exons to be joined to produce longer models.)

For this reason, transcript models resulting from typically

only the merged set of reads are used for incorporating

into the final gene set.
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Intron features from the set of merged reads are used

later on in the annotation process by the

TranscriptConsensus module to filter Similarity models

(described below). Transcript models from the set of

merged reads may be used for adding UTRs to Targeted

and Similarity models, and may also be included as part of

the main gene set during the LayerAnnotation pipeline

(also described below).

Ortholog recovery pipeline

In preparing a set of preliminary transcript models pro-

duced by the model-building pipelines, comparative data

may be used for both assessing the completeness of the

transcript set and for supplementing the transcript set

where appropriate. Transcript structures may be absent

from a preliminary set for a number of reasons, most com-

monly because the genomic sequence is missing from the

assembly or because the Targeted and Similarity pipelines

did not produce a model. For the latter case, it may still be

possible to annotate models using our ortholog recovery

pipeline. The RNA-seq pipeline described above will also

identify genes not found by the Targeted and Similarity

pipelines, and so use of the ortholog recovery pipeline has

become less common since RNA-seq data became more

widely available.

The OrthologueEvaluator module was developed to

identify and annotate additional transcript models based

on orthology. OrthologueEvaluator takes as input the pre-

liminary transcript set with the gene sets from at least two

well-annotated species, usually human and mouse. A set of

orthology predictions is generated by best reciprocal

BLAST hits across the input sets. These predictions are

then used to fill in gaps and to supplement truncated mod-

els. In both cases, the Ensembl protein sequence of an

ortholog from one of the well-annotated species is selected

for alignment, with Exonerate, to the genome being anno-

tated. When Exonerate generates a good alignment the re-

sulting model is added to the preliminary transcript set.

Projection pipeline

The Targeted and Similarity steps rely on the alignment of

complete protein sequences to the genome sequence. This

method is unsuitable for low-coverage fragmented assem-

blies where missing genomic sequence, mis-orientations

and misplacements occur more frequently than in the

higher quality draft genome assemblies. In fragmented

assemblies many genes will be represented only partially

(or not at all) in the assembly, and many others (particu-

larly those genes with large genomic extent) will be found

in pieces, distributed across more than one scaffold.

In order to improve gene annotation on species with

fragmented assemblies, we developed a methodology that

relies on a whole genome alignment (WGA) to an anno-

tated reference genome—usually the human genome. This

method was used, as follows, to annotate all of the low-

coverage mammal genomes produced by the 29 Mammals

Project (76). For each of the low coverage target genomes,

the whole-genome alignment between the human genome

and target was generated using BLASTz (77). The resulting

set of local alignments was linked into chains using

axtTools (78). A custom filter was then applied to ensure

that each base pair in the target genome aligned to no

more than one position in the human genome. The WGA

block underlying each annotated gene structure in the

human genome was used as a guide to bring together scaf-

folds from the target species and join them into longer

‘GeneScaffolds’ (Figure 3) that could contain complete

gene structures. The inferred GeneScaffolds created a vir-

tual assembly on top of the target species’ primary assem-

bly. Genes from the human genome were then ‘projected’

(copied) down on to the target genome. In regions where

the WGA implied that the target assembly was missing

genomic sequence containing an internal exon, the pro-

jected exon was placed on the gap sequence. This resulted

in a string of Xs corresponding in length to the projected

translation. The creation of GeneScaffolds altered the set

of toplevel sequences that were initially loaded into the

Ensembl database, so the raw compute analyses were run

across the new GeneScaffolds. This method of altering the

toplevel sequences is no longer used because it would hin-

der navigation between Ensembl and other genome brows-

ers such as UCSC and NCBI.

This method of whole-genome alignment and projec-

tion of annotation from the human genome to the target

assembly was also applied to higher primates. However,

the creation of GeneScaffolds was unnecessary because the

primate assemblies were of better quality or were created

using order and orientation information from the human

assembly.

Extending protein-coding models into their UTRs

Protein-coding models generated from protein-to-genome

alignments in the Targeted, Similarity and Ortholog recov-

ery pipelines will not have UTRs annotated. Targeted mod-

els produced by Exonerate’s cdna2genome model, on the

other hand, do not require UTR extension because they are

based on the alignment of cDNA and will already have

UTRs annotated.

Models made from RNA-seq, cDNA or EST sequences

can be used to add UTRs to the coding models. We have al-

ready described the RNA-seq pipeline and how these
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models are generated. For cDNAs, models are generated

by aligning the cDNA sequences to the softmasked genome

using Exonerate. ESTs are aligned in the same way as

cDNAs, and these alignments are collapsed into models

using the EST2genes or TranscriptCoalescer modules.

These two modules combine spliced EST alignments into

longer transcript structures.

The variable quality of EST data, which often come

from multiple labs using different protocols, makes the se-

quences difficult to incorporate into an annotation system

that expects data to be of a consistently high quality. We

do not use EST models for UTR addition unless a species

has a large number of EST sequences and very little cDNA

or RNA-seq data.

The UTR_Builder module traverses each toplevel se-

quence and identifies protein-coding models that are over-

lapped by RNA-seq, cDNA or EST models. When the start

and end boundaries of the first intron of a protein-coding

model are matched by an RNA-seq, cDNA or EST structure,

this sequence evidence can be used to add a UTR at the 5-

prime end. The same rule applies to the last intron of a

protein-coding model when adding the 3-prime UTR. For

single-exon transcripts, the exon start and end must lie

within the corresponding sequence evidence in order to add a

UTR. When a translation does not start with a Methionine,

the UTR is searched upstream of the CDS for the first in-

frame Methionine. Similarly, when a translation does not

end in a stop codon the UTR is searched up to 150 bases

downstream of the CDS for the first in-frame stop codon.

CAGE (79) and paired-end tags (ditags) (80) provide in-

formation on the transcription start and end positions. We

have adapted our UTR pipeline to make use of these data so

as to define UTR boundaries more precisely. The genomic

locations of CAGE tags and ditags are compared against the

cDNA models, which allows scoring of each potential pair-

ing of protein model to cDNA. The UTR_Builder module

prioritizes the cDNA model with the most CAGE and ditag

support. This has been applied in human and mouse where

deep sequencing data are available.

The output of the UTR_Builder step is an updated set of

protein-coding transcript models that have been extended to

include UTRs where evidence was available (Figure 4). The

cDNA and EST models are used in filtering steps later on and

are also displayed on the website along with the ESTgenes.

Special types of protein-coding genes

The protein-coding gene annotation process described

above creates high quality gene models throughout most of

the genome. The annotation process relies on aligning pro-

tein sequences to the genome and is suitable for most

protein-coding genes.

There are certain types of protein-coding genes,

however, where the above approach is not suitable. These

include Immunoglobulin/T-cell receptor genes and seleno-

proteins. We have developed separate approaches to im-

prove annotation for both such cases.

Immunoglobulins and T-cell receptors

The Immunoglobulin/T-cell receptor clusters are difficult

to annotate because the underlying genomic region under-

goes somatic recombination. This process of genome

rearrangement combines multiple genes from the cluster—

known as Variable (V), Constant (C), Diverse (D) and

Joining (J) genes—by excising the intervening DNA. This

generates a functional immunoglobulin gene sequence that

encodes a complete immunoglobulin/T-cell receptor.

We aim to annotate the individual V, D, J and C genes.

However, many records of proteins in UniProt and cDNAs

in ENA are full-length products of transcripts expressed

after the associated V(D)J somatic recombination events.

Each of these records contains sequence for multiple genes,

which would need to be separated to generate the correct

annotation.

Figure 3. Projection of human FGF10 to alpaca. The FGF10 gene in alpaca was annotated by aligning the human and alpaca assemblies using

BLASTz, and then projecting (copying) the human gene onto the alpaca genome. A novel structure, GeneScaffold_2975, was generated in the alpaca

assembly by bringing together the shorter scaffolds that aligned to the human region containing the FGF10 gene.
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The V, D, J and C gene boundaries are often incorrectly

predicted when aligned back to the un-rearranged refer-

ence genome using a spliced-alignment program such as

GeneWise or Exonerate. This is because the junctions are

not generated by the standard splicing machinery, and

therefore do not display the standard splicing signals.

Annotation for T-cell receptors and immunoglobulin

genes has been improved for human and mouse by collabo-

rating with other annotators who contribute to the

International Immunogenetics information system (IMGT)

(81). This database contains annotations of individual

genes on RNA and genomic DNA reference entries. The

IMGT genes are aligned to the genome using Exonerate

and are then merged with our gene annotations. Existing

transcript models that overlap at the exon level with the

aligned IMGT genes are removed.

Selenoproteins

Selenocysteines are encoded by UGA, one of the three

codons responsible for translation termination. To repre-

sent these codons as encoding selenocysteines instead of

stop codons, we align UniProt records with the ‘SEL_CYS’

tag to the genome using Exonerate. The stop codons at the

relevant positions specified by these records are then

replaced with selenocysteine residues.

Model filtering

The aim of the model filtering phase is to determine a sub-

set of protein-coding transcript models, generated by the

different model-building pipelines, that will comprise the

final protein-coding gene set.

Although we are careful to select input protein se-

quences that are of high confidence and from species

closely related to the target genome, the model-building

phase creates models that result from poor protein align-

ment and must be removed. The annotated splicing struc-

tures for these models may be unique but they are not

biologically real alternate isoforms. While the model-

building phase has an emphasis on sensitivity, where we

align large numbers of sequences to the genome with a

broad range of alignment thresholds, the model filtering

phase has an emphasis on specificity and will select only

the models with the highest confidence at each locus to

take forward to the final gene set.

TranscriptConsensus

TranscriptConsensus is a filtering module that is run rou-

tinely for all genebuilds with the aim of removing putative

alternate transcript isoforms that are not well supported.

The poorly supported models are most likely to arise from a

poor protein alignment in the Similarity pipeline: when pro-

teins from distantly related species are aligned to the genome

and used as evidence to annotate a model, the low identity

match between the protein and the genome can confound

the GeneWise alignment and result in a model with a poorly

supported splicing structure. TranscriptConsensus compares

the protein-coding models produced by the Similarity pipe-

line against available same-species evidence: cDNA, EST

and RNA-seq models, and RNA-seq introns.

Figure 4. Sample transcript models with supporting evidence for untranslated regions (UTRs). This figure shows sample transcript models from

HAVANA (yellow) and Ensembl (red) aligned with supporting evidence from cDNAs (green), ESTs (purple) and proteins (orange). Darker colors in the

alignments correspond with exons. Unfilled boxes at the ends of the transcripts represent UTRs. Support for the UTRs comes from the aligned

cDNAs and ESTs but not from the proteins.
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In this module, each protein-coding model from the

Similarity pipeline is scored by comparing its exon and in-

tron boundaries to those of the same-species cDNA, EST

and RNA-seq models. The scoring of each candidate model

is weighted by the length and score of other overlapping

protein-coding models. The highest scoring models will be

labelled as ‘good’ and low scoring overlapping models will

be labelled ‘bad’ and excluded. We typically require a

depth of at least six same-species models in order to score

and distinguish between the good and bad models. When

too few cDNAs are available to determine the score of the

protein-coding model it is labeled as ‘small’. The output of

this step is a classification of the set of protein-coding tran-

script models according to how well their exons and in-

trons are supported.

LayerAnnotation

The LayerAnnotation module allows us to define a hier-

archy of input sets of models, from most preferred to least

preferred, and to selectively filter out models in the less

preferred input sets (Figure 5).

All candidate protein-coding models are used as input

for LayerAnnotation. Models supported by same-species

data (Targeted and RNA-seq) are prioritized in the top

layer of the hierarchy and will all be selected. Where there

are few models supported by same-species data, these mod-

els will not contribute significantly to the final gene set.

Next, we rank transcript models generated from the pro-

tein sequences of species with a relatively short evolution-

ary distance to the species being annotated. This

information comes from the classification of the Similarity

transcript models according to their taxonomic position.

We assume also that we should prioritize transcript models

that have their exon–intron structure well supported by

other sources of sequence alignment such as cDNAs and

ESTs. This information comes from the classification of

models according to PE level and the TranscriptConsensus

module (‘good’, ‘small’ or ‘bad’). The ‘good’ Similarity

models are inserted into the hierarchy in successive layers

that represent increasing evolutionary distance, followed

by the ‘small’ Similarity models. Models from lower layers

in the hierarchy will only be selected when they do not

overlap models from the preferred layers.

For example, when annotating the rat genome, we

might choose the following hierarchy: first, the models

supported by rat data from the Targeted and RNA-seq

pipelines; second, the murine models from the Similarity

pipeline that are labeled as ‘good’ by TranscriptConsensus;

third, the remaining models labeled as ‘good’ by

TranscriptConsensus.

For every species, the relative contribution from each of

the model-building pipelines to the final gene set will vary

depending on the priority given to each set of models and

the number of models in each of the sets. When models pro-

duced by same-species data are available, we heavily priori-

tize their inclusion over the homology-based ones. For well-

studied species, the Targeted pipeline will contribute the ma-

jority of gene models to the final gene set. The Similarity

pipeline contributed the bulk of gene models for most other

vertebrate species prior to RNA-seq data becoming widely

available. For more recent genebuilds, the primary source of

Figure 5. LayerAnnotation method. Candidate transcript models produced by each of the model-building pipelines are assigned varying levels of pri-

ority. In this example, models produced by the Targeted pipeline (which uses same-species protein data) are placed in Layer 1 and are therefore given

preference over models with overlapping exons from the other model-building pipelines. Models produced using RNA-seq data are placed in Layer 2

and are given priority over those produced by the Similarity pipeline (which uses protein data from other species) in Layer 3. Final models indicate

those selected for the final Ensembl gene set. (A) Candidate transcript models were produced by three model-building pipelines. The final protein-

coding models were selected from Layer 1. Untranslated regions (unfilled boxes) were added from an RNA-seq model in Layer 2. The two transcript

models will later be collapsed into a single gene model. (B) Layer 1 contains no model that overlaps with the model in Layer 2, and so the model in

Layer 2 is the final model. (C) Layer 1 and Layer 2 contain no models that overlap with that in Layer 3, so the model in Layer 3 is selected as the final

one.
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data is now same-species RNA-seq supported by other-

species protein alignments, with Similarity from other species

as the next major source of gene models. Detailed informa-

tion on these relative contributions can be found on the

Ensembl species home pages by clicking on the link that

says ‘More information and statistics’.

GeneBuilder

The transcript models selected by LayerAnnotation are

passed to the GeneBuilder module. The aim of this module

is to remove redundant transcript models and produce

multi-transcript, protein-coding genes.

GeneBuilder clusters protein-coding models into multi-

transcript gene structures when their coding exons overlap.

It will then remove those models where the splicing pattern

is completely redundant (i.e. no unique splices) when com-

pared to a longer model.

Pseudogenes

All of the gene models produced by the GeneBuilder module

are labeled as protein-coding because they are supported by

aligned protein sequences. The Pseudogene annotation

method aims to identify processed pseudogenes from within

this set of gene models and to label them accordingly.

Our annotation system allows protein sequences to

align imperfectly to the genome. In most cases, this is ad-

vantageous because it allows models to be generated where

there is genomic variation or a sequencing error. In some

cases, a protein sequence may align to a pseudogenic re-

gion of the genome, resulting in a gene model that our an-

notation initially labels incorrectly as protein-coding.

Some protein sequences align to multiple regions in the

genome, giving rise to multiple gene models. Where these

multiple gene models are either all multi-exon or all single-

exon, we assume that they belong to a functional gene fam-

ily. However, there are cases where one protein sequence

gives rise to both multi-exon and single-exon genes. Such

cases suggest that a process of retrotransposition occurred,

generating unspliced copies of the multi-exon gene in the

genome, and the protein sequence has aligned to both the

parent and pseudogenic copies. The single-exon gene mod-

els in these cases are consequently labeled by the

Pseudogene module as ‘processed pseudogenes’.

In addition, the Pseudogene module searches for

protein-coding gene models that have a high proportion of

their intronic sequence composed of repeats. This suggests

that repetitive sequence was inserted into an otherwise

single-exon region, which may have resulted in loss of

function and pseudogenization. It also identifies models

where all introns are fewer than nine bases long. These

frameshift introns may indicate a degenerate coding re-

gion. In these cases, the gene models are labeled by the

Pseudogene module as ‘pseudogenes’.

The output of the Pseudogene pipeline is a genome-

wide set of gene models, with genes labeled as either

protein-coding or pseudogene. For most species this is the

final gene set. However, there are additional methods that

may be run for selected species.

Gene set finalization

This section describes optional methods that may be run

after the Pseudogene module. These methods serve three

main purposes: to add noncoding gene models to the gene

set, to incorporate annotations from external groups, and

to add additional information to the annotated genes. Each

of these methods is discussed below.

Annotation of nonprotein-coding genes

Short noncoding RNA pipeline

As with proteins, the structure of the noncoding RNA

(ncRNA) molecule imparts biological function. However,

while related proteins have conserved primary sequences

this is not necessarily the case for ncRNAs. Therefore, our

standard sequence alignment methods used for the annota-

tion of protein-coding genes are not suitable for annotating

small ncRNA genes (82).

In order to annotate small ncRNA genes, sequences

from Rfam (83) are first aligned to the genome using

BLASTN. Although the resulting alignments will over-

predict the number of potential ncRNA loci, BLAST is a

useful tool for narrowing genomic search space. Next, the

Infernal suite of programs (84) filters the BLAST hits using

a covariance model that incorporates information about

the ncRNA secondary structure. Finally, Infernal’s

cmsearch is used to build ncRNA models.

MicroRNAs (miRNAs) are annotated by an initial

BLASTN search of genomic sequence against miRBase

(85) stem-loop sequences, followed by filtering of the re-

sults according to E-value. Gene models are then created

from these results when a folding calculation, performed

by RNAFold (86), infers that the underlying genomic se-

quence forms a stable hairpin structure.

Transfer RNAs (tRNAs) are not annotated in this

method. They are predicted during the raw compute pipe-

line, using the ab initio algorithm, tRNAscan-SE (66).

Long intergenic noncoding RNA pipeline

Long intergenic noncoding RNA (lincRNA) genes have a

number of characteristics that make them a challenge to

Page 12 of 19 Database, Vol. 2016, Article ID baw082

 at U
p
p
sala U

n
iv

ersitetsb
ib

lio
tek

 o
n
 O

cto
b
er 1

2
, 2

0
1
6

h
ttp

://d
atab

ase.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: 5
Deleted Text: 54
Deleted Text: 55
Deleted Text: 56
Deleted Text: 57
Deleted Text: 58
Deleted Text: -
Deleted Text: -
http://database.oxfordjournals.org/


annotate (87). Our current method traverses each toplevel

sequence and identifies models generated by the Exonerate

alignments of cDNAs that do not overlap with protein-

coding genes. Next, these candidate lincRNA models are

compared against regions of chromatin methylation

(H3K4me3 and H3K36me3) identified by the Ensembl

Regulation pipeline (88). A final evaluation step deter-

mines whether or not each candidate lincRNA has protein-

coding potential. Any candidate lincRNA containing a

substantial open reading frame (ORF) (covering 35% or

more of its length) and either Pfam or TIGRFAM (89) pro-

tein domains will be rejected. Candidate lincRNAs that

pass the final evaluation step are included in the final

Ensembl gene set as lincRNA genes. LincRNAs have, to

date, only been annotated in this way for human and

mouse.

Incorporation of additional gene models from

external sources

The Ensembl-HAVANA merge pipeline

The Ensembl-HAVANA merge pipeline combines the

Ensembl annotation with the manually curated HAVANA

set to produce a ‘merged’ gene set. The aim of this process

is to create the most comprehensive gene set possible, by

including the entire annotation from HAVANA and sup-

plementing it with the Ensembl annotation (Figure 6). The

Ensembl models fill the gaps where there are no HAVANA

models, and they provide additional transcript isoforms

using new sequence data that have not already been anno-

tated. The full process has been described by Harrow et al.

(4). This technique is only applied for human, mouse,

zebrafish, rat and pig annotations. For human and mouse,

the merged set of Ensembl and HAVANA genes form the

GENCODE gene set (4).

Annotations from external sources

For some species other than human and mouse, external

groups have produced their own gene annotations, which

we have assessed and incorporated into the Ensembl gene

set where appropriate. Currently, the platypus, zebra finch

and anole lizard gene sets include selected models created

in this way.

CCDS

Ensembl collaborates in the Consensus Coding Sequence

(CCDS) project (90, 91). This project provides a set of con-

sistently annotated protein-coding gene models between

GENCODE and RefSeq for human and mouse. When we

update the gene models for either of these species, we

ensure that all CCDS models are present by comparing our

gene set against the latest snapshot of the CCDS tracking

database. Any missing CCDS models are added back into

the gene set before being released to the public.

Additional annotations

At this point, the protein-coding and noncoding gene sets

are finalized. The subsequent steps do not modify the gene

models themselves, but rather add further information

including stable identifiers, cross-references to external

databases and positions of protein domains.

All genes, transcripts, translations and exons are as-

signed stable identifiers. When annotating a species for the

first time, these identifiers are auto-generated. In all subse-

quent annotations for a species, the identifiers are propa-

gated based on comparison of the new gene set to the

previous gene set so that equivalent genes for a species can

be discerned between releases. Stable identifiers have ver-

sions that are incremented when the sequence or coordin-

ates of an exon, transcript or gene has been updated.

Genes, transcripts and translations are cross-referenced

to external databases. This process adds gene names and

descriptions where possible, and links the Ensembl annota-

tions to entries in relevant resources. For human, this in-

cludes cross-referencing to the HGNC (92), RefSeq (69),

UCSC (93), OMIM (94), CCDS, UniProt, ENA and other

external databases. Transcripts with potential frameshift

occurrences (exons 1, 2, 4 or 5 bp apart) are labeled in the

database as having frameshift attributes.

Finally, Ensembl translations are scanned for protein

signatures. We identify these signatures by both ab initio

sequence search [SEG (95), SignalP (96), ncoils (97),

TMHMM (98)] and searching protein domain databases

for sequence matches [PRINTS (99), Pfscan (100), Pfam

(101), TIGRFAM, SUPERFAMILY (102), SMART (103)

and PIRSF (104)].

Post-release updates to the gene set

Once the final gene set has been produced, it becomes part

of a numbered Ensembl public release. For most species,

the gene set remains stable for several releases and would

not normally be updated until an improved assembly or

significant new input data become available.

Minor updates to the protein-coding gene set are most

likely to occur following genome-wide searches for gene

models that are poorly supported. For example, models

that do not have orthologs are investigated for removal.

There are currently four types of new data that may

trigger a larger update to the gene set, which are outlined

below.
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Noncoding RNAs

Noncoding RNAs are periodically updated to incorporate

changes to the underlying Rfam and miRBase databases.

HAVANA annotation

HAVANA is continuously adding to and updating their an-

notations on human, mouse, rat, pig and zebrafish. At

regular intervals, they will take a snapshot of their annota-

tion database and we will use this to update the gene set,

employing the Ensembl-HAVANA merge process

described above. Snapshots are currently provided every

3 months for mouse, every 6 months for human, rat and

zebrafish, and less frequently for pig.

Patch annotation

The Genome Reference Consortium (GRC) (105) currently

maintains the human, mouse and zebrafish reference

assemblies. Between major assembly releases, updates and

improvements are released by GRC in the form of

assembly patches. These patches are provided as alternate

scaffolds to the primary assembly and have the purpose of

either correcting known assembly errors (fix patches) or

adding novel genomic sequence (novel patches) (Figure 7).

We incorporate these alternate genomic sequences, pro-

vide basic annotation on them and import all annotation

on assembly patches from HAVANA. Assembly patches

are anchored to the primary assembly and therefore in-

clude sequence that is identical or highly similar to the pri-

mary assembly. Our first step in providing annotation on

the assembly patches is to align the patches to the primary

assembly. Following the alignment, we ‘project’ annota-

tions from the primary assembly onto the corresponding

assembly patches in regions where there is high genomic

similarity (Figure 7). To fill in gaps, we also use a modified

version of our model-building method to add novel

isoforms. This includes alignments produced by the

cdna2genome step of the Targeted stage and the Similarity

step. The alignments are then filtered using the

TranscriptConsensus and LayerAnnotation modules, re-

sulting in a set of new annotations on the patch region.

Figure 6. Merging gene and transcript models. For both Ensembl and HAVANA models, transcripts with overlapping exons are grouped together into

genes. (A) If the intron–exon boundaries, excluding UTRs, of a transcript from HAVANA completely match those of one from Ensembl the result is a

merged transcript model, which is always based on the HAVANA annotation. If the intron–exon boundaries do not completely match then the two

models are treated as separate transcripts belonging to the same gene. (B) Exons for a HAVANA gene overlap with those for an Ensembl gene. All

transcripts are grouped together in the same merged gene. The intron–exon boundaries for one HAVANA and one Ensembl transcript match perfectly

so they are merged to create the merged transcript shown in yellow. (C) Exons for Ensembl and HAVANA transcripts overlap but there are no tran-

scripts with complete matching intron–exon boundaries. We still group the transcripts together into a merged gene but no transcripts are merged.

Page 14 of 19 Database, Vol. 2016, Article ID baw082

 at U
p
p
sala U

n
iv

ersitetsb
ib

lio
tek

 o
n
 O

cto
b
er 1

2
, 2

0
1
6

h
ttp

://d
atab

ase.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

Deleted Text: -
Deleted Text: -
Deleted Text: three 
Deleted Text: six 
Deleted Text: 77
http://database.oxfordjournals.org/


RNA-seq update pipeline

We developed a method for updating an existing gene set

when new RNA-seq data become available. This method is

particularly relevant for species that had very little same-

species data available when they were annotated, such as

primates that were initially annotated using mainly human

data like orang-utan. Other species with little same-species

data annotated in this way include those that are distantly

related to other mammals, such as platypus and opossum.

The RNA-seq update method allows us to add genes and

UTRs, and to lengthen truncated genes. It also identifies

and removes transcript models when their splicing struc-

ture is not well supported by RNA-seq data.

This process involves first running the RNA-seq pipe-

line across the genome to produce a set of RNA-seq-based

models. Protein-coding models from both the previous

Ensembl gene set and the RNA-seq pipeline are then passed

through the TranscriptConsensus, LayerAnnotation and

GeneBuilder modules in order to create an updated

protein-coding gene set. Pseudogenes and nonprotein-cod-

ing genes from the previous Ensembl annotation are added

to finalize the gene set.

Conclusions

We use the Ensembl gene annotation system to produce an-

notations for selected vertebrate genomes. During the time

in which we have been producing gene sets for a wide

range of vertebrate species, advances in the understanding

of genome biology and new data types have presented

themselves. We have embraced these developments in sci-

ence and sequencing techniques to extend and improve our

annotation methods, while maintaining our goal of high

quality gene annotation.

We have described our more stringent choices in input

data for protein and cDNA sequences, new methods for

aligning these sequences to the genome and new methods

for filtering the resulting alignments.

While our previously published annotation system (48)

was designed to annotate only protein-coding genes, we

now have systems for the annotation of short and long

noncoding RNAs, immunoglobulin genes and selenopro-

teins. The inclusion of the HAVANA gene sets has greatly

improved the annotations that we provide for human,

mouse, rat, pig and zebrafish.

Furthermore, we have kept abreast of changing input

data. Additional new methods in our repertoire include

one for predicting transcript models from RNA-seq data,

and another for updating existing gene sets using models

produced by the RNA-seq pipeline. We also have a projec-

tion pipeline for annotating fragmented or higher primate

genome assemblies. As sequencing technologies and soft-

ware improve and mature, we will continue to improve

our choice of input data and our pipelines.

With the decreasing cost in DNA sequencing, projects

such as Genome10K (106) are producing a large number

of genome assemblies. We are now considering how we

Figure 7. Annotation of patches. (A) Currently, we have two different types of patches: fix patches and novel patches. Both types are anchored to the

assembly by shared sequence. Fix patches become part of the next major version of the assembly while novel patches remain as alternative se-

quence. (B) When annotating a novel patch, we first project gene models from the reference assembly. In this example, the HAVANA (red) and

merged (yellow) genes are copied to the patch sequence. The Ensembl gene (blue) is not copied because the underlying genomic DNA is too different

between the chromosome and the patch to enable the projection process. After projection, a patch will be annotated fully using the Ensembl annota-

tion pipeline. In this case, two new gene models (green) have been annotated on the novel patch.
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might annotate such a large number of new genome assem-

blies to include in Ensembl.

Availability

All Ensembl data and source code are freely available.

Each Ensembl release is made available at http://www.

ensembl.org and then maintained as an archive web site

for at least 2 years after the date of initial release (see

http://www.ensembl.org/info/website/archives/index.html).

Ensembl is updated approximately every 3 months with

new data. Not every species has sufficient new data to war-

rant an update for each release. The current release number

and month of release are shown at the bottom of every

Ensembl web page. Additionally, the data can be queried

through a programmatic interface (REST or Perl API) and

through the web-based Ensembl Biomart.

The full codebase for our Ensembl Gene Annotation sys-

tem is available on GitHub (https://github.com/Ensembl)

under an Apache 2.0 licence, and we welcome others who

would like to use it. The system has been developed for our

own use, as our overriding goal is to produce genome anno-

tations and not a gene annotation program. We offer work-

shops and in situ training to guide collaborators in the use

of the pipelines, which require a thorough understanding in

order to run successfully. We continue to improve the acces-

sibility of our annotation system and to streamline the set-

up, customization and related user documentation.

Supplementary data

Supplementary data are available atDatabaseOnline.
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