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Abstract

Most genomic variants associated with phenotypic traits or disease do not fall within gene coding regions, but in

regulatory regions, rendering their interpretation difficult. We collected public data on epigenetic marks and

transcription factor binding in human cell types and used it to construct an intuitive summary of regulatory regions

in the human genome. We verified it against independent assays for sensitivity. The Ensembl Regulatory Build will

be progressively enriched when more data is made available. It is freely available on the Ensembl browser, from the

Ensembl Regulation MySQL database server and in a dedicated track hub.

Background
Despite our increasing knowledge of genomes and their

variants, the downstream effects of sequence variants

and the affected cellular mechanisms are still poorly

understood. In particular, a large number of the variants

identified in genome-wide association studies are located

in non-protein coding regions [1], and are presumed to

affect gene expression regulation. Similarly, it has been

proposed that a significant fraction of the potential for

phenotypic adaptation lies within the regulatory ele-

ments of the genome [2,3].

There is still much to learn about the dynamic regu-

lation of gene expression [3,4]. Cis-regulatory elements

are short segments of the genome that either recruit

transcription factors (TFs) or affect the properties of

the messenger RNA as it is being transcribed [5]. Gene

expression is also highly tied to transmissible epigen-

etic marks [6-8]. The DNA molecule and the histone

proteins it is wrapped around can be modified with

various additions, such as methyl, acetyl or phosphate

groups. These alterations have been shown to provide

crucial markers of developmental diseases [9] and

cancer [10]. Finally, the three-dimensional conform-

ation of the DNA molecule also affects its activity. In

particular, it determines which regions are accessible to

outside molecules [11], and which regions are in physical

proximity to each other despite being distant in the gen-

omic sequence [12].

Various experimental techniques help us identify the

epigenetic markers of the genome and the putative

underlying cis-regulatory elements. Chromatin immuno-

precipitation (ChIP) coupled with either genome-wide

tiling microarrays (ChIP-chip [13]) or direct high-

throughput sequencing (ChIP-Seq [14-16]) make it pos-

sible to perform genome-wide and protein-specific mea-

surements of DNA binding, as well as detect a range of

histone modifications. Other methodologies have been

developed to identify modified cytosine bases, ranging

from array-based approaches such as MeDIP-chip [17],

through to more exhaustive approaches such as whole-

genome bisulphite sequencing [18]. Regions of open

chromatin can be mapped using formaldehyde-assisted

isolation of regulatory elements (FAIRE) [19], nuclease

digestion by DNase1 coupled with high-throughput se-

quencing (DNase-seq) [20] or assaying transposase-

accessible chromatin (ATAC-seq) [21].

Significant efforts to provide genome-wide maps of his-

tone modifications have already proved successful in eluci-

dating some of the basic patterns associated with promoter

and enhancer regions [14,15,22,23]. In addition to an explo-

sion of small and medium-scale studies producing this type

of data, large-scale projects like ENCODE [24,25], Road-

map Epigenomics [26], and Blueprint [27] are releasing

large amounts of valuable data into the public domain.

With the promise of even higher sequencing throughput,

genome-wide epigenomic datasets will only become more

abundant.

One important challenge is to bring together and

standardize these studies, in order to integrate all the

information into a coordinated regulatory annotation

of the genome. To address this challenge we developed
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project [28], to provide a high-level overview of the

regulatory activity of the genome. Through this process,

we annotate putative regulatory regions from public ex-

perimental data, and associate these regions with regula-

tory function.

Results
We defined genomic regions of interest characterised by

biochemical activity through a four-step Regulatory

Build process that combined all available data, sum-

marised in Figure 1.

Figure 1 The Regulatory Build process. In a first step we run segmentation software across multiple cell types. For each cell type and at each

base pair, the genome is assigned a state, identified by an arbitrary number assigned by the segmentation software. We assign to each state a

non-unique functional label, represented by its color on the browser, as shown at the top. For each state at each base pair, we compute the number

of cell types sharing that state at that position, as shown in the center of the figure. Having selected relevant states and set some thresholds, we define

regions of interest, which are the foundation of the regulatory build. These regions are then complemented with unannotated ChIP-Seq transcription

factor binding site peaks and unannotated DNase1 hypersensitivity sites.
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We first reduced all the experimental data for each cell

type into a cell type-specific annotation of the genome.

This can be done with segmentation tools, such as Seg-

way [29] or ChromHMM [30]. In a first training pass,

these algorithms take as input a set of genome-wide as-

says, and detect recurring signal patterns (referred to as

'states'). In a segmentation pass, for each cell type at

each base pair of the genome, they determine the most

likely underlying state, based on local experimental

measurements.

By overlapping these segmentation states, produced by

unsupervised machine learning, with known genomic

features, we assigned them functional labels, such as ‘pre-

dicted promoter with TSS’ (where TSS is transcription

start site), ‘predicted transcribed region’, ‘predicted pro-

moter flank’, ‘predicted enhancer’, ‘CTCF enriched’, ‘pre-

dicted repressed’, ‘predicted low activity’, ‘predicted

heterochromatin’. To ensure the broadest applicability of

our approach, we minimized the use of known epigenetic

marks when assigning labels, rather using prior annota-

tions. We nonetheless verified after the fact that states

with similar labels display similar histone marks, as shown

in Figure 2.

We then defined consensus regions of interest, re-

ferred to as ‘MultiCell’ regulatory features. To do so, for

each of the labels ‘predicted promoter with TSS’, ‘pre-

dicted promoter flank’, ‘predicted enhancer’ and ‘CTCF

enriched’, we computed a summary function, which

Figure 2 Experimental marks associated with different labels. This heatmap represents the experimental marks and the label associated with

each state. The states were defined by Segway, and the labels assigned by the Ensembl Regulatory Build a posteriori. Although the label

assignment relies mainly on overlaps with known features, the states with the same labels co-cluster based on their experimental marks. The main

exception are the promoter flanking states, which cluster either with promoters or with distal cis-regulatory elements. In effect, these states tend

to represent a mixture of the other two.
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represents at any given base pair how many cell types

have one of the corresponding segmentation states. We

then computed contiguous regions where this summary

function is above a threshold, set to optimally fit the glo-

bal TF binding signal (see Materials and methods sec-

tion). In addition to these regions, we added regions

where TF binding or open chromatin were reported, yet

were not covered by the previous annotations.

Finally, the MultiCell features defined above were an-

notated with cell type-specific activity levels. This activ-

ity level was obtained by querying, for each feature, the

presence or absence of cell type-specific evidence associ-

ated with that feature’s label.

We examined the properties of the consensus annota-

tion, as shown in Table 1. The overall coverage of the

genome is 12.9%, which is commensurate with previous

estimates [25]. The promoters, including attached flank-

ing regions, are by far the largest elements (mean length

4.4 kb), whereas distal enhancers and CTCF binding

sites are shorter (respectively 547 and 622 bp on aver-

age), but far more numerous (respectively 127,786 and

117,711 elements). Finally, proximal enhancers, defined

as flanking regions detached from any promoter, cover

the greatest number of bases (160 Mbp in total).

To corroborate our annotation, we compared it with

other reference annotations. Of the 217,516 strict TSS

calls found with CAGE tags by the FANTOM 5 consor-

tium [31], 88.9% were recovered. Of the 882 validated

human VISTA enhancers [32], 92.4% were recalled in

our build. Finally, 80.3% of the 38,533 robust enhancers

called by FANTOM 5 [33] were covered by one of our

annotations.

Discussion
By design, this annotation of the genome is focused on

the pragmatic need to define epigenomic markers across

samples. Its regulatory features are phenomenological,

that is, defined by biochemical signal alone [34]. If only

because of the resolution of epigenetic marks (generally

at nucleosome scale), they are probably a broad extension

of the biochemically active bases in the genome. At the

same time, we focused exclusively on the marks associated

with transcriptional regulation. This compromise led us to

annotating 12.9% of the human genome.

A key parameter that can distort the segmentation is

the number of states used by the machine-learning algo-

rithm. Instead of trying to optimize the number of

states, we circumvented this issue by focusing on the

biologically meaningful labels that are ultimately pro-

vided to the user. There are only eight such labels, and

Figure 2 illustrates that nearly all labels have more than

one underlying state. This suggests that the granularity

of the segmentation was sufficient for our purpose, that

is, distinguishing these eight labels.

The build process reduces inherently noisy and com-

plex biological data into a tidy and easy to understand

summary. Consequently, subtle patterns can be masked

from the user. To mitigate this loss of information, all

the data used in the Regulatory Build, namely the experi-

mental signal and the segmentations, are available through

the Ensembl Browser.

The Ensembl Regulatory Build is by no means a final

product, rather a continuing process that will be extended

and enriched in the coming years. In future Ensembl re-

leases, we will be importing more and more datasets, cov-

ering more cell types, as they are made available. This will

provide greater sensitivity to detect transient elements

that are only active in a few cell types. Also, we are start-

ing to receive normal cell and tissue data, as opposed to

cell lines. Coupled with knowledge of cell differentiation

pathways, these data will help illuminate the key epige-

nomic marks associated with cell fate.

We will also be refining our annotation of regulatory

features. The architecture of the Ensembl Regulatory

Build process will allow us to take full advantage of ongoing

research in machine learning, and genome segmentation in

particular. We hope to extend the vocabulary used to de-

scribe the elements and the activity levels. For example, we

wish to distinguish poised, repressed and closed elements,

instead of applying a binary active/inactive notation.

The remaining open question is how to confidently as-

sign gene targets to cis-regulatory elements. A number

Table 1 Summary details for the regulatory build in Ensembl release 76

Type Number Average length (bp) Standard deviation (bp) Total length (Mbp) Genome coverage (%)

Promoters 16,488 4,369 2,746 72 2.3%

Proximal enhancers 85,526 1,876 1,741 160 5.2%

Distal enhancers 127,786 547 482 70 2.3%

CTCF binding 117,711 622 1,206 73 2.4%

Unannotated transcription
factor binding site

27,523 528 628 15 0.5%

Unannotated open chromatin 71,568 502 346 36 1.2%

Total 446,602 399 12.9%
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of experimental assays are being investigated, such as

statistical correlation [35], chromatin conformation

assays [36-38] or expression quantitative trait loci

studies [39,40]. The Ensembl framework, which cur-

rently holds a consistent relation database of gene

transcripts [41], variants [42], and now regulatory ele-

ments will be a natural home for this key component

of cell biology.

Conclusions
The Ensembl Regulatory Build aims to provide the

most up-to-date and comprehensive survey of the

regulatory elements of the genome, in the same way

the Ensembl Genebuild maintains a reliable summary

of known gene sequences. Centralizing datasets from

various large-scale projects, we process them with a

uniform pipeline, then compute an exhaustive and ro-

bust annotation of the regulatory elements of the gen-

ome. Although this annotation will likely evolve in the

years to come, the regions are already assigned stable

identifiers, providing a solid framework for ongoing

epigenomic research.

Materials and methods
Source data

We chose to run our segmentation (see below) on a pre-

selected set of ChIP-Seq assays (CTCF, H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K27me3,

H3K36me3, H4K20me1) along with DNaseI hypersensi-

tivity and a control ChIP-Seq experiment. We therefore

downloaded from ENCODE 2 and Epigenomics Road-

map all the raw read datasets produced by ChIP-Seq and

DNaseI hypersensitivity experiments on the 18 cell types

that had all of the above required assays: A549, DND-41,

GM12878, H1-hESC, HeLa-S3, HepG2, HMEC, HSMM,

HSMMtube, HUVEC, IMR90, K562, Monocytes-CD14+,

NH-A, NHDF-AD, NHEK, NHLF, Osteoblast. Including

replicates and control samples, this amounted to 740 data-

sets, all referenced in the Ensembl homo_sapiens_func-

gen_76_38 MySQL database.

Uniform processing of sequencing data

Most studies using epigenomic data present their own

analysis and results, which often differ from each other

in small, but relevant details. In the current absence of

standardized practices, and to make all data as homoge-

neous as possible, raw sequencing reads from these exper-

iments were processed with a uniform in-house analysis

pipeline.

For each ChIP-Seq experiment, the raw sequencing

reads were mapped to the GRCh38 human genome assem-

bly using bwa samse [43] with default parameters.

We called punctate peaks using SWEMBL [44]. We

filtered SWEMBL peaks on their score, using a fixed

permissive threshold (-f 150 -R 0.0005 -d 150), then

retained the highest scoring peaks, as defined by the EN-

CODE Irreproducibility Discovery Rate (IDR) process

[45] with an IDR threshold of 0.01 for datasets with

more than 100,000, and 0.05 for smaller datasets, as rec-

ommended by the IDR developers. To account for large

differences in the number of reads between replicates,

the number of retained peaks was scaled linearly to half

the ratio between the largest and smallest estimated

numbers of peaks.

To detect broader regions, such as H3K36me3 and

H3K27me3 enrichment, we used CCAT [46]. We filtered

out peaks falling within known problematic regions, de-

fined on GRCh38 using the same process as the Duke

ENCODE excluded regions [47].

Genome segmentation

The coverage signal was normalized within each dataset

using align2rawsignal [48], with options (-w = 180 -n = 5).

The segmentation was run across all the resulting datasets

using Segway, with options (–num-labels = 25 –num-

instances = 10 –resolution = 200 –prior-strength =

1000 –ruler-scale = 200 -m 1,2,3,4,5,6,7,8,9,10,11,12).

For performance reasons, training was only computed

on the ENCODE pilot regions. The segmentations

were masked across the same problematic regions as

the peaks.

Computing transcription factor binding densities

For each TF t, we computed a summary function pt
across the genome representing the number of overlap-

ping peak calls at that position divided by the number of

assays. This function represents an approximate bino-

mial estimator for the existence of a peak across the ob-

served experiments.

We then computed an overall TF binding probability

function assuming approximate independence between

the binding probabilities of the different transcription

factors:

pTF ¼ 1−
Y

t∈TF

1−ptð Þ

Assigning labels to segmentation states

For each segmentation state s we constructed a sum-

mary function fs representing for each base pair the

number of cell types that are in state s at that position.

We computed the enrichment of contiguous regions

where fs was strictly positive for TF binding, TSSs and

exonic regions. We also computed the Pearson correlation
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of fs to the CTCF density. The state s was then assigned a

label using the decision tree represented in Figure 3.

Defining regions of interest through cutoff

optimization

We assume that the labels we are interested in, namely

cis-regulatory elements, promoters and insulators, are

correlated to TF binding. Given a cutoff k we computed

the enrichment for TF binding signal pTF of regions where

fs was strictly greater than k. If we found a value of k such

that this enrichment was greater than 2, then the segmen-

tation state was retained for the next step.

For each label l, we then set a cutoff kl that maxi-

mized the F-score Fl,k where Sl is the set of states

Does the state 

summary have a 

Pearson correlation 

greater than 0.25 with 

the average CTCF 

track?

CTCF

Do the state 

emissions contain 

known repression 

marks, above 50% of 

the maximum 

observed value?

Repressed

Are the enrichments in 

exonic and TF binding 

regions both lower 

than 1?

Hetero-

chromatin

Are the enrichments in 

exonic and TF binding 

regions both lower 

than 2?

Low activity

Is the enrichment in 

TS sites greater than 

10?

TSS

Is the enrichment in 

exonic regions greater 

than the enrichment in 

TF binding?

Transcribed 

region

Is the enrichment in 

TS sites greater than 

2?

Enhancer

YES

YES

YES

YES NO

YES

YES

YES

NO

NO

NO

NO

NO

NO

Figure 3 Decision tree assigning labels to unsupervised segmentation states.
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which were assigned that label and passed the above

test, and:

f l ¼
X

s∈Sl

f s

δl;k ¼

(

1 if f l > k

0 otherwise

Se ¼

Z

pTF :δl;k
Z

pTF

Sp ¼

Z

pTF :δl;k
Z

δl;k

F l;k ¼ 2
Se:Sp

Seþ Sp

Having computed k, we computed the contiguous re-

gions where fl was greater than kl.

For simplicity, enhancer elements that overlapped pro-

moter flanks were merged into the latter. Promoter-

flanking regions that overlapped promoters were merged

into the flanks of the promoter element. Because of their

structural significance, CTCF binding sites were not

merged into overlapping elements.

If any contiguous regions where pTF was greater than

0 did not overlap one of the segmentation-based annota-

tions defined above, it was added into the Build, marked

as ‘TF binding site’.

Finally, we computed the overlap of all observed open

chromatin regions. If one of those did not overlap any of

the annotations defined above, it was added into the

Build, labeled as ‘Open Chromatin’.

Determining cell-specific activity

We then annotated the activity of these features in each

cell type with a binary active/inactive label. For each re-

gion defined by segmentation data, we searched for an

overlap in that cell type’s segmentation with a state that

had the same label. For each region defined from TF

binding sites, we searched for an overlap with a TF bind-

ing site detected on that cell type. Finally, for each re-

gion defined from open chromatin peaks, we searched

for overlap with an open chromatin peak observed in

that cell type.

Comparisons

The VISTA enhancers were downloaded from the

Ensembl database. The FANTOM5 enhancers and pro-

moters were downloaded from the FANTOM5 servers

[49]. These three sets of regions were remapped from

GRCh37 to GRCh38 using liftOver [50]. They were then

compared with the Ensembl Regulatory Build using bed-

tools [51].

Software tools

The Ensembl eHive framework [52] was used to maximize

the efficient use of available compute resources. All the

statistical calculations were performed with the Wiggle-

Tools library [53].

Availability and requirements

All Ensembl data and source code are freely available

and may be downloaded in their entirety from the

Ensembl website [54]. Additionally, the data are available

through programmatic Perl, REST interfaces and through

the web based Ensembl Biomart. Finally, a track hub [55]

contains segmentations, intermediary summary functions

and annotations that can be downloaded in bulk. The

code used to compute the build is available in script form

within the Ensembl Funcgen codebase [56], freely avail-

able under an Apache 2 license.
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