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MONTE CARLO TECHNIQUES 

FOR DATA ASSIMILATION IN LARGE SYSTEMS 

GEIR EVENSEN 

T
he ensemble Kalman fi lter (EnKF) [1] is a sequential Monte Carlo method 

that provides an alternative to the traditional Kalman fi lter (KF) [2], [3]

and adjoint or four-dimensional variational (4DVAR) methods [4]–[6] to 

better handle large state spaces and nonlinear error evolution. EnKF pro-

vides a simple conceptual formulation and ease of implementation, since 

there is no need to derive a tangent linear operator or adjoint equations, and there 

are no integrations backward in time. EnKF is used extensively in a large com-

munity, including ocean and atmospheric sciences, oil reservoir simulations, and 

hydrological modeling. 

To a large extent EnKF overcomes two problems associated with the traditional 

KF. First, in KF an error covariance matrix for the model state needs to be stored 

and propagated in time, making the method computationally infeasible for mod-

els with high-dimensional state vectors. Second, when the model dynamics are 

nonlinear, the extended KF (EKF) uses a linearized equation for the error covari-

ance evolution, and this linearization can result in unbounded linear instabilities 

for the error evolution [7]. 
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In contrast with EKF, EnKF represents the error covari-

ance matrix by a large stochastic ensemble of model re-

alizations. For large systems, the dimensionality problem 

is managed by using a low-rank approximation of the er-

ror covariance matrix, where the number of independent 

model realizations is less than the number of unknowns 

in the model. Thus, the uncertainty is represented by a set 

of model realizations rather than an explicit expression for 

the error covariance matrix. The ensemble of model states 

is integrated forward in time to predict error statistics. For 

linear models the ensemble integration is consistent with 

the exact integration of an error covariance equation in the 

limit of an infinite ensemble size. Furthermore, for non-

linear dynamical models, the use of an ensemble integra-

tion leads to full nonlinear evolution of the error statistics, 

which in EnKF can be computed with a much lower com-

putational cost than in EKF [8]. 

Whenever measurements are available, each individual 

realization is updated to incorporate the new information 

provided by the measurements. Implementations of the up-

date schemes can be formulated as either a stochastic [9] or 

a deterministic scheme [8], [10]–[13]. Both kinds of schemes 

solve for a variance-minimizing solution and implicitly as-

sume that the forecast error statistics are Gaussian by using 

only the ensemble covariance in the update equation. 

The assumption of Gaussian distributions in EnKF al-

lows for a linear and efficient update equation to be used. 

A more sophisticated update scheme needs to be derived 

to take into account higher order statistics, which leads 

to particle filtering theory [14], where the Bayes formula 

is solved at each update step, although normally at a huge 

computational cost. While the particle filter accounts for 

non-Gaussian distributions by representing the full pdf in 

the parameter space, its applicability is normally limited 

to estimation of a few unknowns at the cost of integrating 

a very large ensemble consisting of typically more than 

O (104 )  realizations. 

In [8], EnKF is rederived as a sequential Monte Carlo 

method starting from a Bayesian formulation. The EnKF 

can then be characterized as a special case of the particle 

filter, where the Bayesian update step in the particle fil-

ter is approximated with a linear update step in the EnKF 

using only the two first moments of the predicted prob-

ability density function (pdf). With linear dynamics, EnKF 

is equivalent to a particle filter, since this case is fully de-

scribed by Gaussian pdfs. However, with nonlinear dy-

namics, non-Gaussian contributions may develop, and 

the EnKF only approximates the particle filter. Unlike the 

particle filters [14], EnKF does not need to re-sample the 

ensemble from the posterior pdf during the analysis step, 

since each prior model realization is individually updated 

to create the correct posterior ensemble. 

In EnKF, the solution is solved for in the affine space 

spanned by the ensemble of realizations. The ensemble, 

which evolves in time according to the nonlinear  dynamical 

model, provides a representation of the subspace where the 

update is computed at each analysis time. It is possible to 

formulate analysis schemes in terms of the ensemble, lead-

ing to efficient algorithms where the state error covariance 

matrix is not computed and is only implicitly used. 

A major approximation introduced in EnKF is related to 

the use of a limited number of ensemble realizations. The 

ensemble size limits the space where the solution is searched 

for and in addition introduces spurious correlations that 

lead to excessive decrease of the ensemble variance and 

possibly filter divergence. The spurious correlations can be 

handled by localization methods that attempt to reduce the 

impact of measurements that are located far from the grid-

point to be updated. Localization methods either filter away 

distant measurements or attempt to reduce the amplitude 

of the long-range spurious correlations. The use of a local 

analysis scheme effectively increases the ensemble solution 

space while reducing the impact of spurious correlations. 

The use of a local analysis scheme allows for a relatively 

small ensemble size to be used with a high- dimensional 

dynamical model. 

A chronological list of applications of EnKF is given 

in [8]. This list includes both low-dimensional systems 

of highly nonlinear dynamical models as well as high-

dimensional ocean and atmospheric circulation models 

with O (106 )  or more unknowns. Applications include 

state estimation in operational circulation models for the 

ocean and atmosphere as well as parameter estimation or 

history matching in reservoir simulation models. For ex-

ample, [15]–[17] present an implementation of an EnKF 

with an isopycnal ocean general circulation model, while 

[18] examines an implementation of a local EnKF with a 

state-of-the-art operational numerical weather prediction 

model using simulated measurements. It is shown that a 

modest-sized ensemble of 40 members can track the evolu-

tion of the atmospheric state with high accuracy. 

An implementation of the EnKF at the Canadian Meteo-

rological Centre in [19] demonstrates EnKF for operational 

atmospheric data assimilation and reviews EnKF with fo-

cus on localization and sampling errors. A review in [20] of 

a variant of EnKF called the local ensemble transform Kal-

man filter includes a derivation of the analysis equations 

and the numerical implementation, which differ somewhat 

from what is normally used in the Kalman filtering litera-

ture. An implementation of the local ensemble transform 

Kalman filter with the National Centers for Environmental 

Prediction (NCEP) global model, given in [21], concludes 

that the accuracy of the method is competitive with opera-

tional algorithms and that this technique can efficiently 

handle large number of measurements. 

An implementation of EnKF with the NCEP model in 

[22] is compared with the operational NCEP global data as-

similation system. The ensemble data assimilation system 

outperforms a reduced-resolution version of the operation-

al three-dimensional variational (3DVAR) data assimilation 
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system and shows improvement in data sparse regions. An 

observation-thinning algorithm is presented in [22], where 

observations with little information content leading to low 

variance reduction are filtered out. The thinning algorithm 

improves the analysis when unmodeled error correlations 

are present between nearby observations. The need for the 

thinning is eliminated if the error correlations are properly 

specified in the measurement error covariance matrix. 

EnKF is currently used in several research fields in 

addition to the ocean and atmosphere applications cited 

throughout this article. In [23], the EnKF is used to update 

a model of tropospheric ozone concentrations and to com-

pute short-term air quality forecasts. It is found that the 

EnKF updated estimates provide improved initial condi-

tions and lead to better forecasts of the next day’s ozone 

concentration maxima. In [24], EnKF is applied to a mag-

netohydrodynamic model for space weather prediction. 

The performance of EnKF in a land surface data assimi-

lation experiment is examined in [25]. These results are 

compared with a sequential importance re-sampling (SIR) 

filter, and it is found that EnKF performs almost as well 

as the SIR filter. Furthermore, it is emphasized that EnKF 

leads to skewed and even multimodal distributions despite 

the normality assumption imposed when computing the 

analysis updates. 

In this article, we outline the theory behind the EnKF 

and demonstrate its use in various high-dimensional and 

nonlinear applications in mathematical physics while 

also considering the combined parameter and state es-

timation problem in some detail. The goal of this article 

is to serve as an introduction and tutorial for new users 

of EnKF. We thus present examples that illustrate par-

ticular properties of the EnKF, such as its capability to 

handle high- dimensional state spaces as well as highly 

nonlinear dynamics. 

DATA ASSIMILATION AND PARAMETER ESTIMATION

Given a dynamical model with initial and boundary con-

ditions and a set of measurements that can be related to 

the model state, the state estimation problem is defined as 

finding the estimate of the model state that in some weight-

ed measure best fits the model equations, the initial and 

boundary conditions, and the observed data. Unless we 

relax the equations and allow some or all of the dynami-

cal model, the conditions, and the measurements to contain 

errors, the problem may become overdetermined and no 

general solution exists. 

We often use a prior assumption of Gaussian distribu-

tions for the error terms. It is also common to assume that 

errors in the measurements are uncorrelated with errors in 

the dynamical model. The problem can then be formulated 

by using a quadratic cost function whose minimum defines 

the best estimate of the state. 

The parameter estimation problem is different from 

the state estimation problem. Traditionally, in parameter 

estimation we want to improve estimates of a set of poorly 

known model parameters leading to an exact model solu-

tion that is close to the measurements. Thus, in this case we 

assume that all errors in the model equations are associ-

ated with uncertainties in the selected model parameters. 

The model initial conditions, boundary conditions, and the 

model structure are all exactly known. Thus, for any set 

of model parameters the corresponding solution is found 

from a single forward integration of the model. The way 

forward is then to define a cost function that measures the 

distance between the model prediction and the observa-

tions plus a term measuring the deviation of the parameter 

values from a prior estimate of the parameter values. The 

relative weight between these two terms is determined by 

the prior error statistics for the measurements and the pri-

or parameter estimate. Unfortunately, these problems are 

often hard to solve [8] since the inverse problem is highly 

nonlinear, and multiple local minima may be present in 

the cost function. 

In [8] the combined parameter and state estimation 

problem is considered. An improved state estimate and 

a set of improved model parameters are then searched 

for simultaneously. In [26] and [27] this problem is 

 formulated using a variational cost function that is mini-

mized using the representer method [28], [29]. Both [26] 

and [27] report convergence problems due to the non-

linearity of the problem and the possible presence of 

multiple local minima in the cost function. In [8] it is 

shown that the combined parameter and state estimation 

problem can be formulated, and in many cases solved 

efficiently, using ensemble methods. An illustrative ap-

plication of the EnKF for combined state and parameter 

estimation includes estimation of the permeability fields 

together with dynamic state variables in reservoir simu-

lation models [30]. These problems have huge parameter 

and state spaces with O (106 )  unknowns. The formula-

tion and solution of the combined parameter and state 

estimation problem using ensemble methods are further 

discussed below. 

REVIEW OF THE KALMAN FILTER

Variance Minimizing Analysis Scheme

The KF is a variance-minimizing algorithm that updates 

the state estimate whenever measurements are available. 

The update equations in the KF are normally derived by 

minimizing the trace of the posterior error covariance ma-

trix. The algorithm refers only to first- and second-order 

statistical moments. With the assumption of Gaussian 

priors for the model prediction and the data, the update 

equation can also be derived as the minimizing solution 

of a quadratic cost function. We start with a vector of vari-

ables stored in c (x, t ),  which is defined on some spatial 

domain 'D  with spatial coordinate x . When c (x, t )  is 

discretized on a numerical grid representing the spatial 
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model domain, it can be represented by the state vector 

ck  at each time  instant tk . The cost function can then be 

written as 

 J 3c k
a 45 (c k

f 2 c k
a )T(Ccc

f ) k
21 (c k

f 2 c k
a )

 1 (dk 2 Mkc k
a )T(C

PP
) k

21 (dk 2 Mk 
c k

a ),  (1)

where c k
a  and c k

f  are the analyzed and forecast estimates 

respectively, dk  is the vector of measurements, Mk  is the 

measurement operator that maps the model state ck  to the 

measurements dk , (Ccc
f ) k  is the error covariance of the pre-

dicted model state, and (C
PP

) k  is the measurement error co-

variance matrix. Minimizing with respect to c k
a  yields the 

classical KF update equations 

 c k
a 5 c k

f 1 Kk(dk 2 Mk 
c k

f ),  (2)

 (Ccc) k
a 5 (I 2 KkMk) (Ccc) k

f,  (3)

 Kk 5 (Ccc) k
f   Mk

T(Mk(Ccc) k
f  Mk

T 1 (C
PP

) k) 21,  (4) 

where the matrix Kk  is the Kalman gain. Thus, both the 

model state and its error covariance are updated. 

Kalman Filter

It is assumed that the true state c t  evolves in time accord-

ing to the dynamical model 

 c k
t 5 Fc k21

t 1 qk21,  (5) 

where F  is a linear model operator and qk21  is the unknown 

model error over one time step from k 2 1 to k . In this case 

a numerical model evolves according to 

 c k
f 5 Fc k21

a ,  (6) 

where the superscripts a and f denote analysis and fore-

cast. That is, given the best possible estimate (traditionally 

named analysis) for c  at time tk21 , a forecast is calculated 

at time tk , using the approximate equation (6). 

The error covariance equation is derived by subtracting 

(6) from (5), squaring the result, and taking the expecta-

tion, which yields 

 Ccc
f ( tk) 5 FCa

cc( tk21 )FT 1 Cqq( tk21 ) ,  (7) 

where we define the error covariance matrices for the pre-

dicted and analyzed estimates as 

 Ccc
f 5 (c f 2 c t ) (c f 2 c t )T,  (8)

 Ca
cc 5 (ca 2 c t ) (ca 2 c t )T.  (9) 

The overline denotes an expectation operator, which is 

equivalent to averaging over an ensemble of infinite size. 

Extended Kalman Filter

We now assume a nonlinear model, where the true state 

vector c k
t  at time tk  is calculated from 

 c k
t 5 G (c k21

t ) 1 qk21,  (10)

and a forecast is calculated from the approximate equation 

 c k
f 5 G (c k21

a ) .  (11) 

The error statistics then evolve according to the equation 

 Cf
cc( tk) 5 Gk21

r Ca
cc( tk21 )Gk21

rT 1 Cqq( tk21 ) 1c,  (12) 

where Cqq( tk21 )  is the model error covariance matrix and 

Gk21
r  is the Jacobian or tangent linear operator given by 

 Gk21
r 5  

'G (c )

'c
2
ck21

.  (13) 

Note that in (12) we neglect an infinite number of terms 

containing higher order statistical moments and higher 

order derivatives of the model operator. EKF is based 

on the assumption that the contributions from all of the 

higher order terms are negligible. By discarding these 

terms we are left with the approximate error covari-

ance expression 

 Ccc
f ( tk) . Gk21

r Ccc
a ( tk21 )Gk21

rT 1 Cqq( tk21 ) .  (14) 

Higher order approximations for the error covariance evo-

lution are discussed in [31]. 

EKF with a Nonlinear Ocean Circulation Model

As an application of EKF we consider a nonlinear ocean 

circulation model [7]. The model in Figure 1 is a multilayer 

quasi-geostrophic model of the mesoscale ocean currents. 

The quasi-geostrophic model solves simplified fluid equa-

tions for the slow motions in the ocean and are formulated 

in terms of potential vorticity advection in a background 

velocity field represented by a stream function. Given a 

change in the vorticity field, at each time step we can solve 

for the corresponding stream function. 

It is found that the linear evolution equation for the er-

ror covariance matrix leads to a linear instability. This in-

stability is demonstrated in an experiment using a steady 

background flow defined by an eddy standing on a flat ba-

thymetry [see Figure 1(a)]. This particular stream function 

results in a velocity shear and thus supports a sheared flow 

instability. Thus, if we add a perturbation and advect it us-

ing the linearized equations, then the perturbation grows 

exponentially. This growth is exactly what is observed in 

Figure 1(b) and (c). By choosing an initial variance equal 

to one throughout the model  domain, we observe strong 
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 error-variance growth at locations of 

large velocity and velocity shear in the 

eddy. The estimated mean square errors, 

which equal the trace of Ccc divided by 

the number of gridpoints, indicate expo-

nential error-variance growth. 

This linear instability is not realistic. 

In the real world we expect the instabil-

ity to saturate at a certain climatologi-

cal amplitude. As an example, in the 

atmosphere it is always possible to de-

fine a maximum and minimum pres-

sure, which is never exceeded, and the 

same applies for the eddy field in the 

ocean. An unstable variance growth 

cannot be accepted but is in fact what 

the EKF provides in some cases. 

Thus, an apparent closure prob-

lem is present in the error-covari-

ance evolution equation, caused by 

discarding third- and higher order 

moments in the error covariance 

equation, leading to a linear insta-

bility. If a correct equation could be 

used to predict the time evolution of 

the errors, then linear instabilities 

would saturate due to nonlinear ef-

fects. This saturation is missing in 

EKF, as confirmed by [32]–[34]. 

Extended Kalman 

Filter for the Mean

Equations (11), (13), and (14) are the most commonly 

used for EKF. A weakness of the formulation is that the 

central forecast is used as the estimate. The central fore-

cast is the single model realization initialized with the 

expected value of the initial state and then integrated 

by the dynamical model and updated at the measure-

ment steps. For nonlinear dynamics the central forecast 

may not be equal to the expected value, and thus it is 

just one realization from an infinite ensemble of pos-

sible realizations. 

An alternative approach is to derive a model for the evo-

lution of the first moment or mean. First G (c )  is expanded 

around c  to obtain 

 G (c ) 5G (c ) 1Gr (c ) (c 2 c ) 1
1

2
Grr (c ) (c 2 c ) 2 1c.

 (15)

Inserting (15) in (11) and taking the expectation or ensem-

ble average yields 

 ck 5 G (ck21 ) 1
1

2
Gk21
rr Ccc( tk21 ) 1c.  (16) 

It can be argued that for a statistical estimator it makes 

more sense to work with the mean than a central forecast. 

After all, the central forecast does not have any statistical 

interpretation as illustrated by running an atmospheric 

model without assimilation updates. The central forecast 

then becomes just one realization out of infinitely many 

possible realizations, and it is not clear how we can relate 

the central forecast to the climatological error covariance 

estimate. On the other hand the equation for the mean 

provides an estimate that converges to the climatological 

mean, and the covariance estimate thus describes the er-

ror variance of the climatological mean. All applications 

of the EKF for data assimilation in ocean and atmospheric 

models use an equation for the central forecast. However, 

the interpretation using the equation for the mean sup-

ports the formulation used in EnKF. 

ENSEMBLE KALMAN FILTER

We begin by representing the error statistics using an en-

semble of model states. Next, we present an alternative to 

the traditional error covariance equation for predicting 

error statistics. Finally, we derive the traditional EnKF 

 analysis scheme. 
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FIGURE 1 Example of an extended Kalman filter experiment from [7]. (a) shows the stream 

function defining the velocity field of a stationary eddy, while (b) shows the resulting error 

variance in the model domain after integration from t 5 0 to t 5 25. Note the large errors 

at locations where velocities are high. (c) shows the exponential time evolution of the 

estimated variance averaged over the model domain.
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Representation of Error Statistics

The error covariance matrices Ccc
f  and Ccc

a  for the 

 predicted and analyzed estimate in the Kalman filter are 

defined in terms of the true state in (8) and (9). How-

ever, since the true state is not known, we define the en-

semble covariance matrices around the ensemble mean 

c   according to 

 (Ccc
e ) f5 (c f2c f) (c f2c f)T,  (17)

 (Ccc
e ) a5 (ca2ca ) (ca2ca )T,  (18) 

where now the overline denotes an average over the ensem-

ble. Thus, we can use an interpretation where the ensemble 

mean is the best estimate and the spreading of the ensem-

ble around the mean is a natural definition of the error in 

the ensemble mean. 

Thus, instead of storing a full covariance matrix, we can 

represent the same error statistics using an appropriate en-

semble of model states. Given an error covariance matrix, 

an ensemble of finite size provides an approximation to the 

error covariance matrix, and, as the size N  of the ensemble 

increases, the errors in the Monte Carlo sampling decrease 

proportionally to 1/"N . 

Suppose now that we have N  model states or realizations 

in the ensemble, each of dimension n. Each realization can 

be represented as a single point in an n-dimensional state 

space, while together the realizations constitute a cloud of 

such points. In the limit as N  goes to infinity, the cloud of 

points can be described using the pdf 

 f(c ) 5
dN

N
,  (19) 

where dN  is the number of points in a small unit volume 

and N  is the total number of points. Statistical moments 

can then be calculated from either f(c )  or the ensemble 

representing f(c ) . 

Prediction of Error Statistics

A nonlinear model that contains stochastic errors can be 

written as the stochastic differential equation 

 dc5G (c )dt1 h(c )dq.  (20) 

Equation (20) states that an increment in time yields an in-

crement in c , which, in addition, is influenced by a random 

contribution from the stochastic forcing term h(c )dq , rep-

resenting the model errors. The term dq  describes a vector 

Brownian motion process with covariance Cqqdt . Since the 

model operator G  in (20) is not an explicit function of the 

random variable dq , the Ito interpretation is used rather 

than the Stratonovich interpretation [35]. 

When additive Gaussian model errors forming a Markov 

process are used, it is possible to derive the Fokker-Planck 

equation (also called Kolmogorov’s equation), which 

 describes the time evolution of the pdf f(c )  of the model 

state. This equation has the form 

 
'f(c )

't
1 a

i

' (gi f(c ) )

'ci

5
1

2ai,j

'
2f(c ) (hCqqh

T ) ij

'ci'cj

,  (21) 

where gi  is the component number i  of the model operator 

G  and hCqqh
T  is the covariance matrix for the model errors. 

The Fokker-Planck equation (21) does not entail any ap-

proximations and can be considered as the fundamental 

equation for the time evolution of the error statistics. A de-

tailed derivation is given in [35]. Equation (21) describes the 

change of the probability density in a local “volume,” which 

depends on the divergence term describing a probability flux 

into the local “volume” (impact of the  dynamical equation) 

and the diffusion term, which tends to flatten the probabil-

ity density due to the effect of stochastic model  errors. If (21) 

could be solved for the pdf, it would be possible to calculate 

statistical  moments such as the mean and the error covariance 

for the model forecast to be used in the analysis scheme. 

A linear model for a Gauss-Markov process, in which the 

initial condition is assumed to be taken from a normal distri-

bution, has a probability density that is completely character-

ized by its mean and covariance for all times. We can then 

derive exact equations for the evolution of the mean and the 

covariance as a simpler alternative than solving the full Fok-

ker-Planck equation. These moments of (21), including the er-

ror covariance (7), are easy to derive, and several methods are 

illustrated in [35]. The KF uses the first two moments of (21). 

For a nonlinear model, the mean and covariance matrix 

do not in general characterize the time evolution of f(c ) .  

These quantities do, however, determine the mean path 

and the width of the pdf about that path, and it is possible 

to solve approximate equations for the moments, which is 

the procedure characterizing the EKF. 

The EnKF applies a Markov chain Monte Carlo 

(MCMC) method to solve (21). The probability density 

is then represented by a large ensemble of model states. 

By integrating these model states forward in time ac-

cording to the model dynamics, as described by the 

stochastic differential equation (20), this ensemble pre-

diction is equivalent to using a MCMC method to solve 

the Fokker-Planck equation. 

Dynamical models can have stochastic terms embedded 

within the nonlinear model operator, and the derivation of 

the associated Fokker-Planck equation can become com-

plex. Fortunately, the explicit form of the Fokker-Planck 

equation is not needed, since, to solve this equation using 

MCMC methods, it is sufficient to know that the equation 

and a solution exist. 

Analysis Scheme

We now derive the update scheme in the KF using the 

ensemble covariances as defined by (17) and (18). For 
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convenience the time index k  is omitted in the equa-

tions to follow. As shown by [9] it is essential that the 

observations be treated as random variables having a 

distribution with mean equal to the observed value and 

covariance equal to C
PP

. Thus, we start by defining an 

ensemble of observations 

 dj 5 d 1 Pj,  (22) 

where j  counts from one to the number N  of ensemble 

members. By subtracting any nonzero mean from the N  

samples Pj , it is ensured that the simulated random mea-

surement errors have mean equal to zero and thus the ran-

dom perturbations do not introduce any bias in the update. 

Next we define the ensemble covariance matrix of the mea-

surement errors as 

 C
PP

e 5 PP
T,  (23) 

while, in the limit of infinite ensemble size this matrix con-

verges to the prescribed error covariance matrix C
PP

 used in 

the Kalman filter. The following discussion is  valid using 

both an exactly prescribed C
PP

 and an ensemble representa-

tion C
PP

e  of C
PP

, which can be useful in some implementa-

tions of the analysis scheme. 

The analysis step in EnKF consists of updates performed 

on each of the ensemble members, as given by 

     c j
a 5 c j

f 1(Ccc
e ) fMT(M (Ccc

e ) fMT1C
PP

e ) 21 (dj2Mc j
f) .  (24)

With a finite ensemble size, the use of the ensemble covari-

ances introduces an approximation of the true covarianc-

es. Furthermore, if the number of measurements is larger 

than the number of ensemble members, then the matrices 

M (Ccc
e ) fMT  and C

PP

e  are singular, and pseudo inversion 

must be used. 

Equation (24) implies that 

   ca 5 c f 1 (Ccc
e ) fMT(M (Ccc

e ) fMT 1 C
PP

e ) 21 (d 2 Mc f ) ,  (25) 

where d 5 d  since the measurement perturbations have 

ensemble mean equal to zero. Thus, the relation between 

the analyzed and predicted ensemble mean is identical 

to the relation between the analyzed and predicted state in 

the standard Kalman filter, apart from the use of (Ccc
e ) f,a  

and C
PP

e  instead of Ccc
f,a  and C

PP
. Note that the introduction 

of an ensemble of observations does not affect the update 

of the ensemble mean. 

It is now shown that, by updating each of the ensemble 

members using the perturbed observations, we can create 

a new ensemble with the correct error statistics. We derive 

the analyzed error covariance estimate resulting from the 

analysis scheme given above, although we retain the stan-

dard Kalman filter form for the analysis equations. First, 

(24) and (25) are used to obtain 

 c j
a 2 ca 5 (I 2 KeM ) (c j

f 2 c f) 1 Ke (dj 2 d) ,  (26) 

where we use the Kalman gain

 Ke 5 (Ccc
e ) fMT(M (Ccc

e ) fMT 1 C
PP

e ) 21.  (27) 

The error covariance update is then derived as 

(Ccc
e ) a 5 (ca 2 ca ) (ca 2 ca )T

 5 ( (I 2 KeM ) (c f 2 c f) 1 Ke (d 2 d ) )

 3 ( (I 2 KeM ) (c f 2 c f) 1 Ke (d 2 d ) )
T

 5 (I 2 KeM ) (c f 2 c f) (c f 2 c f)T(I 2 KeM )T

 1 Ke (d 2 d ) (d 2 d )TKe
T

 5 (I 2 KeM ) (Ccc
e ) f(I 2 MTKe

T) 1 KeCPP

e Ke
T

 5 (Ccc
e ) f 2 KeM (Ccc

e ) f 2 (Ccc
e ) fMTKe

T

 1 Ke (M (Ccc
e ) fMT 1 C

PP

e )Ke
T

 5 (I 2 KeM ) (Ccc
e ) f.  (28)

The last expression in (28) is the traditional result for the mini-

mum error covariance found in the KF analysis scheme. Thus, 

(28) implies that EnKF in the limit of an infinite ensemble size 

gives the same result as KF. It is assumed that the distributions 

used to generate the model-state ensemble and the observa-

tion ensemble are independent. Using a finite ensemble size, 

neglecting the cross-term introduces sampling errors. Note 

that the derivation (28) shows that the observations d must 

be treated as random variables to introduce the measurement 

error covariance matrix C
PP

e  into the expression. That is, 

 C
PP

e 5 PP
T 5 (d 2 d) (d 2 d)T.  (29)

A full-rank measurement error covariance matrix can 

be used in (27), but the use of an ensemble representation of 

the measurement error covariance matrix leads to an exact 

cancellation in the second last line in (27), which becomes 

 Ke (M (Ccc
e ) fMT 1 C

PP

e )Ke
T 5 Ke(M(Ccc

e )fMT1C
PP

e )

 3 (M(Ccc
e )fMT1C

PP

e )21M(Ccc
e ) f

 5 KeM (Ccc
e ) f.  (30) 

Thus, we conclude that the use of a low-rank measurement 

error covariance matrix, represented by the measurement 

perturbations, when computing the Kalman gain, reduces 

the sampling errors in EnKF. The remaining sampling er-

rors come from neglecting the cross- correlation term be-

tween the measurements and the forecast ensemble, which 

is nonzero with a final ensemble size, and from the approx-

imation of the state error covariance matrix using a finite 

ensemble size. 
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The above derivation assumes that the inverse in the Ka-

lman gain (27) exists. However, the derivation also holds 

when the matrix in the inversion is of low rank, for ex-

ample, when the number of measurements is larger than 

the number of realizations and the low-rank C
PP

e  is used. 

The inverse in (27) can then be replaced with the pseudoin-

verse, and we can write the Kalman gain as 

 Ke 5 (Ccc
e ) fMT(M (Ccc

e ) fMT 1 C
PP

e ) 1.  (31)

When the matrix in the inversion is of full rank, (31) 

becomes identical to (27). Using (31) the expression (30) 

becomes 

Ke (M (Ccc
e ) fMT 1 C

PP

e )  Ke
T 5 (Ccc

e ) fMT(M (Ccc
e ) fMT1 C

PP

e )1

 3 (M (Ccc
e ) fMT1 C

PP

e )

 3 1M 1Ccc
e 2 fMT1C

PP

e 21M 1Ccc
e 2 f

 5 (Ccc
e ) fMT(M (Ccc

e ) fMT

 1 C
PP

e ) 1M (Ccc
e ) f

 5 KeM (Ccc
e ) f,  (32) 

where we have used the property Y1 5 Y1YY1  of the 

pseudoinverse. 

It should be noted that the EnKF analysis scheme is ap-

proximate in the sense that non-Gaussian contributions 

in the predicted ensemble are not properly taken into ac-

count. In other words, the EnKF analysis scheme does 

not solve the Bayesian update equation for non-Gaussian 

pdfs. On the other hand, the EnKF analysis scheme is not 

just a resampling of a Gaussian posterior distribution. 

Only the updates defined by the right-hand side of (24), 

which are added to the prior non-Gaussian ensemble, are 

linear. Thus, the updated ensemble inherits many of the 

non-Gaussian properties from the forecast ensemble. In 

summary, we have a computationally efficient analysis 

scheme where we avoid resampling of the posterior. 

Ensemble Kalman Filter with 

a Linear Advection Equation

The properties of EnKF are now illustrated in a simple 

example when used with a one-dimensional linear ad-

vection model. The model describes general transport 

in a prescribed background flow on a periodic domain 

of length 1000 m. The model has the constant advection 

speed u 5 1 m/s, the grid spacing Dx 5 1 m, and the time 

step Dt 5 1 s. Given an initial condition, the solution of 

this model is exactly known, which facilitates realistic 

experiments with zero model error to examine the im-

pact of the dynamical evolution of the error covariance. 

The true initial state is sampled from a normal dis-

tribution N , with mean equal to zero, variance equal 

to one, and a spatial decorrelation length of 20 m. The 

first guess solution is generated by drawing  another 

sample from N  and adding this  sample to the true state. 

The initial ensemble of 1000 realizations is generated 

by adding samples drawn from N  to the first guess 

solution. Thus, the initial state is assumed to have an 

error variance equal to one. Four measurements of the 

true solution, distributed regularly in the model do-

main, are assimilated every fifth time step. The mea-

surements of the wave amplitude are contaminated 

by errors of variance equal to 0.01, in nondimensional 

units, and we assume uncorrelated measurement er-

rors. The length of the integration is 300 s, which is 50 

s longer than the time of 250 s needed for the solution 

to advect from one measurement to the next. 

The example in Figure 2 illustrates the convergence of 

the estimated solution at various times during the experi-

ment. In particular, Figure 2 shows how information from 

measurements is propagated with the advection speed and 

how the error variance is reduced each time measurements 

are assimilated. The first plot shows the result of the first 

update with the four measurements. Near the measurement 

locations, the estimated solution is consistent with both the 

true solution and the measurements, and the error variance 

is reduced accordingly. The second plot is taken at t 5 150 s, 

that is, after 30 updates with measurements. Now the infor-

mation from the measurements has propagated to the right 

with the advection speed, as seen both from direct compari-

son of the estimate with the true solution, as well as from the 

estimated variance. The final plot, which is taken at t 5 300 

s, shows that the estimate is now in good agreement with 

the true solution throughout the model domain. Note also 

the linear increase in error variance to the right of the mea-

surements, which is caused by the addition of model errors 

at each time step. It is also clear that the estimated solution 

deteriorates far from the measurements in the advection 

direction. For linear models with regular measurements at 

fixed locations and stationary error statistics, the increase 

of error variance from model errors balances the reduction 

from the updates with measurements. 

Discussion

We now have a complete system of equations that consti-

tute the EnKF, and the similarity with the standard KF is 

maintained both for the prediction of error  covariances 

This article provides a fundamental theoretical basis for understanding EnKF 

and serves as a useful text for future users.
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and in the analysis scheme. For lin-

ear dynamics the EnKF solution 

converges exactly to the KF solution 

with increasing  ensemble size. 

One of the advantages of EnKF is 

that, for nonlinear models, the equa-

tion for the mean is solved and no 

closure assumption is used since each 

ensemble member is integrated by the 

full nonlinear model. This nonlinear 

error evolution is contrary to the ap-

proximate equation for the mean (16), 

which is used in EKF. 

Thus, it is possible to interpret EnKF 

as a purely statistical Monte Carlo meth-

od where the ensemble of model states 

evolves in state space with the mean as 

the best estimate and the spreading of 

the ensemble as the error variance. At 

measurement times each observation 

is represented by another ensemble, 

where the mean is the actual measure-

ment and the variance of the ensemble 

represents the measurement errors. 

Thus, we combine a stochastic predic-

tion step with a stochastic analysis step. 

PROBABILISTIC FORMULATION

For the ensemble Kalman smoother 

(EnKS) [8], the estimate at a particular 

time is updated based on past, present, 

and future measurements. In contrast, a 

filter estimate is influenced only by the 

past and present measurements. Thus, 

EnKF becomes a special case of EnKS, 

where information from measurements 

is not projected backward in time. The 

assumptions of measurement errors 

being independent in time and the dy-

namical model being a Markov process 

are sufficient to derive the EnKF and 

the EnKS. These assumptions are nor-

mally not critical and are already used 

in the original KF. It is also possible to 

include the estimation of static model 

parameters in a consistent manner. The 

combined parameter and state estimation problem for a dy-

namical model can be formulated as finding the joint pdf of 

the parameters and model state, given a set of measurements 

and a dynamical model with known uncertainties. 

Model Equations and Measurements

We consider a model with associated initial and boundary 

conditions on the spatial domain D  with boundary 'D,  and 

with observations 

 
'c (x,t )

't
5 G (c (x, t ) , a (x ) ) 1 q (x, t ) ,  (33) 

 c (x, t0 ) 5 C0 (x ) 1 a(x ) ,  (34) 

 c (j, t ) 5 Cb(j, t ) 1 b (j, t ), for all j [ dD,  (35) 

 a (x ) 5 a0 (x ) 1 a r (x ) ,  (36) 

 M 3c, a 45 d 1 P.  (37) 

The model state c (x, t ) [ R
nc  is a vector consisting of the 

nc  model variables, where each variable is a function of 
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FIGURE 2 An ensemble Kalman fi lter experiment. For this experiment a linear advection 

equation illustrates how a limited ensemble size of 100 realizations facilitates estimation 

in a high-dimensional system whose state vector contains 1000 entries. The plots show 

the reference solution, measurements, estimate, and standard deviation at three different 

times, (a) t 5 5 s, (b) t 5 150 s, and (c) t 5 300 s.
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space and time. The nonlinear model is defined by (33), 

where G (c, a ) [ R
nc  is the nonlinear model operator. More 

general forms can be used for the nonlinear model opera-

tor, although (33) suffices to demonstrate the methods con-

sidered here. 

The model state is assumed to evolve in time from the ini-

tial state C0 (x ) [ R
nc defined in (34), under the  constraints 

of the boundary conditions Cb(j, t ) [ R
nc defined in (35). 

The coordinate j  runs over the surface 'D,where the bound-

ary conditions are defined. The variable b is used to repre-

sent errors in the boundary conditions. 

We define a (x ) [ R
na  as the set of na  poorly known pa-

rameters of the model. The parameters can be a vector of 

spatial fields in the form written here, or, alternatively, a 

vector of scalars, and are assumed to be constant in time. 

A prior estimate a0 (x ) [ R
na  of the vector of parameters 

a (x ) [ R
na  is introduced through (36), and possible errors 

in the prior are represented by a r (x ) . 

Additional conditions are present in the form of the 

measurements d [ R
M. Both direct point measurements of 

the model solution and more complex parameters that are 

nonlinearly related to the model state can be used. For the 

time being we restrict ourselves to the case of linear mea-

surements. An example of a direct measurement functional 

is then 

Mi 3c 45 33cT(x, t )dci
d ( t2 ti)d (x2 xi)dt dx5c (xi, ti)dci

,  

 (38)

where the integration is over the space and time domain of 

the model. The measurement di  is related to the model-state 

variable as selected by the vector dci
[ R

nc   and evaluated at 

the space and time location (xi, ti).  If a model with three 

state variables is used and the second variable is measured, 

then dci
 becomes the vector (0, 1, 0)T,  while d ( t2 ti)  and 

d (x2 xi) are Dirac delta functions. 

In (33)–(37) we include unknown error terms, q , a , b,  

a r,  and P,  which represent errors in the model equations, 

the initial and boundary conditions, the first guess for the 

model parameters, and the measurements, respectively. 

Without these error terms the system as given above is 

overdetermined and has no solution. On the other hand, 

when we introduce these error terms without additional 

conditions, the system has infinitely many solutions. The 

way to proceed is to introduce a statistical hypothesis 

about the errors, for example, assuming that the errors are 

 normally distributed with means equal to zero and known 

error covariances. 

Bayes Theorem

We now consider the model variables, the poorly known 

parameters, the initial and boundary conditions, and the 

measurements as random variables, which can be described 

by pdfs. The joint pdf for the model state, as a function of 

space, time, and the parameters, is f(c, a ) .  Furthermore, 

for the measurements we can define the likelihood func-

tion f(d|c, a ) .  Thus, we may have measurements of both 

the model state and the parameters. Using Bayes theorem, 

the parameter and state estimation problem is now written 

in the simplified form 

 f(c, a|d) 5gf(c, a ) f(d|c, a ),  (39) 

where g  is a constant of proportionality whose computa-

tion requires the evaluation of the integral of (39) over the 

high-dimensional solution and parameter space. 

Parameter estimation problems, in particular, for ap-

plications involving high-dimensional models, such as 

oceanic, atmospheric, marine ecosystem, hydrology, and 

petroleum applications, often do not include the model 

state as a variable to be estimated. It is more common to 

first solve for the poorly known parameters by minimizing 

an appropriate cost function where the model equations 

act as a strong constraint and then rerun the model to find 

the model solution. It is then implicitly assumed that the 

model does not contain errors, an assumption that gener-

ally is invalid. 

In the dynamical model, we specify initial and bound-

ary conditions as random variables, and we include prior 

information about the parameters. Thus, we define the pdfs 

f(c0 ) ,  f(cb) ,  and f(a )  for the estimates c0 , cb , and a  of 

the initial and boundary conditions, and the parameters, 

respectively. Instead of f(c,a ) ,  we write 

 f(c, a, c0, cb) 5 f(c|a, c0, cb) f(c0 ) f(cb) f(a ) .  (40) 

Equation (39) should accordingly be written as 

 f(c, a, c0, cb|d)5gf(c|a, c0, cb) f(c0 ) f(cb) f(a ) f(d|c, a ),  

 (41)

where it is also assumed that the boundary conditions 

and initial conditions are independent, although this as-

sumption may not be true for the locations where initial 

and boundary conditions intersect at t0 . Here the pdf 

f(c|a, c0, cb)  is the prior density for the model solution 

given the parameters and initial and boundary conditions. 

t0 t1 t2 t3 t4 t5 t6 t7 ti tk
ψ0 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψi ψk

dJd2 d3d1

t i(1) t i(2) t i(3) t i(j) t i(J)

dj

. . .

. . .

. . .. . .

. . . . . .

. . .

. . .

FIGURE 3 Discretization in time. The time interval is  discretized into 

k1 1  nodes, t 0  to t k,  where the model state vector ci 5c 1 ti 2  is 

defined. The measurement vectors dj  are available at the discrete 

subset of times t i 1j2,  where  j5 1, . . . , j.  
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Discrete Formulation

In the following discussion we work with a model state that 

is discretized in time, that is, c (x, t )  is represented at fixed 

time intervals as ci(x ) 5c (x, ti)  with i5 0, 1, c, k ; see 

Figure 3. Furthermore, we define the pdf for the model in-

tegration from time ti21  to ti  as f(ci|ci21, a, cb( ti) ) , which 

assumes that the model is a first-order Markov process. The 

joint pdf for the model solution and the parameters in (40) 

can now be written as 

f(c1, c, ck, a, c0, cb)

 5 f(a ) f(cb) f(c0 ) q
k

i51

f(ci|ci21, a, cb) .  (42) 

Independent Measurements

We now assume that the measurements d [ R
M can be divided 

into subsets of measurement vectors dj [ R
mj, collected at times 

ti(j) , with j5 1, c, J  and 0 , i(1) , i(2) ,c, i( J ) , k. 

The subset dj depends only on c ( ti(j) ) 5ci(j)  and a. Further-

more, it is assumed that the measurement errors are uncorre-

lated in time. We can then write 

 f(d|c, a ) 5q
J

j51

f(dj|ci(j), a ) ,  (43) 

and from Bayes theorem we obtain 

 f(c1, c, ck, a, c0, cb|d)

 5gf(a ) f(c0 ) f(cb) q
k

i51

f(ci|ci21, a ) q
J

j51

f(dj|ci(j), a ) .  (44) 

Sequential Processing of Measurements

It is shown in [36] and [37] that, in the case of time- correlated 

model errors, it is possible to reformulate the problem as a 

first-order Markov process by augmenting the model er-

rors to the model-state vector. A simple equation forced by 

white noise can be used to simulate the time evolution of 

the model errors. 

In [38] it is shown that a general smoother and filter can 

be derived from the Bayesian formulation given in (44). We 

now rewrite (44) as a sequence of iterations 

 f(c1, c, ci(j), a, c0, cb|d1, c, dj)

 5gf(c1, c, ci(j21), a, c0, cb|d1, c, dj21 )

 3 q
i(j)

i5i(j21)11

f(ci|ci21, a ) f(dj|ci(j), a ) .  (45)

Thus, we formulate the combined parameter and state-

 estimation problem using Bayesian statistics and see that, 

under the condition that measurement errors are indepen-

dent in time and the dynamical model is a Markov process, 

a recursive formulation can be used for Bayes theorem. 

That is, the model state and parameters with their respec-

tive uncertainties are updated sequentially in time when-

ever the measurements become available. 

We note again that this recursion does not introduce 

any significant approximations and thus describes the full 

inverse problem as long as the model is a Markov process 

and the measurements errors are independent in time. 

Further, for many problems the recursive processing of 

measurements provides a better posed approach for solv-

ing the inverse problem than trying to process all of the 

measurements simultaneously as is normally done in vari-

ational formulations. Sequential processing is also conve-

nient for forecasting problems where new measurements 

can be processed when they arrive without recomputing 

the full inversion. 

Ensemble Smoother

The ensemble smoother (ES) can be derived by assuming 

that the pdfs for the model prediction as well as the likeli-

hood are Gaussian and by using the original Bayes theo-

rem (41). The derivation requires that we approximate 

the pdfs resulting from an integration of the ensemble 

through the whole assimilation time period with Gauss-

ian pdfs. We can then replace Bayes theorem with a least 

squares cost function similar to (1), but with the time di-

mension included, and the analysis becomes a standard 

variance minimizing analysis in space and time. All of 

the data are processed in one step, and the solution is up-

dated as a function of space and time, using the space-

time covariances estimated from the ensemble of model 

realizations. The ES in [39] is computed as a first-guess 

estimate, which is the mean of the freely evolving ensem-

ble, plus a linear combination of time-dependent influ-

ence functions, which are calculated from the ensemble 

statistics. Thus, the method is equivalent to a variance-

minimizing objective analysis method where the time 

dimension is included. 

Ensemble Kalman Smoother

An assumption of Gaussian pdfs for the model prediction 

(the prior) and the distribution for the data (the likeli-

hood function) in (45) allows us to replace the Bayesian 

update formula with a least squares cost function sim-

ilar to (1) but additionally including the state vector at 

all previous times. Again the cost function is minimized 

using a standard variance-minimizing analysis scheme, 

involving a state variable defined from the initial time to 

the current update time. That is, we also update the state 

variables backward in time using the combined time and 

space ensemble covariances. This scheme results in the 

EnKS as in [38]. 

Ensemble Kalman Filter

The EnKF is just a special case of EnKS where the up-

dates at previous times are skipped. EnKF is obtained by 
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 integrating out the state variables at all previous times 

from (45) and assuming that the resulting model pdf for 

the current time as well as the likelihood function are 

Gaussian. The incremental update (45) can then be re-

placed by the penalty function (1), leading to the standard 

Kalman filter analysis equations. Thus, the measurements 

are filtered. At the final time, or, actually, from the lat-

est update and for predictions into the future, EnKF and 

EnKS provide identical solutions. 

EXAMPLE WITH THE LORENZ EQUATIONS

The example from [40] and [38] with the chaotic Lorenz 

model of [41] is now used to compare ES, EnKS, and EnKF. 

The Lorenz model consists of the coupled system of nonlin-

ear ordinary differential equations given by 

 
dx

dt
5 g (y 2 x ) ,  (46)

 
dy

dt
5 rx 2 y 2 xz,  (47)

 
dz

dt
5 xy 2 bz.  (48) 

Here x ( t ), y ( t ), and z ( t ) are the dependent variables, 

and we choose the parameter values g 5 10, r 5 28, and 

b 5 8/3. The initial conditions for the reference case are 

given by (x0, y0, z0 ) 5 (1.508870, 2 1.531271, 25.46091)  and 

the time interval is t [ 30, 40 4 . 

The observations and initial conditions are simulated by 

adding normally distributed white noise with zero mean 

and variance equal to 2.0 to the reference solution. All of 

the variables x , y , and z  are measured. In the calculation 

of the ensemble statistics, an ensemble of 1000 members is 

used. The same simulation is rerun with various ensemble 

sizes, and the differences between the results are negligible 

with as few as 50 ensemble members. 

The three methods discussed above are now exam-

ined and compared in an experiment where the time 

between measurements is Dtobs 5 0.5 , which is similar to 

Experiment B in [40]. In the upper plots in figures 4–6, 

the red line denotes the estimate and the blue line is the 

reference solution. In the lower plots the red line is the 

standard deviation estimated from ensemble statistics, 

while the blue line is the true residuals with respect to 

the reference solution. 

Ensemble Smoother Solution

The ES solution for the x-component and the associated 

estimated error variance are given in Figure 4. It is found 

that the ES performs rather poorly with the current data 

density. Note, however, that even if the fit to the reference 

trajectory is poor, the ES solution captures most of the tran-

sitions. The main problem is related to the estimate of the 

amplitudes in the reference solution. The problem is linked 

to the appearance of non-Gaussian contributions in the dis-

tribution for the model evolution, which can be expected in 

such a strongly nonlinear case. 

Clearly, the error estimates evaluated from the pos-

terior ensemble are not large enough at the peaks where 

the smoother performs poorly. The underestimated errors 

again result from neglecting the non-Gaussian contribution 

from the probability distribution for the model evolution. 

Otherwise, the error estimate looks reasonable with mini-

ma at the measurement locations and maxima between the 

measurements. Note again that if a linear model is used, 

then the posterior density becomes Gaussian and the ES 

provides, in the limit of an infinite ensemble size, the same 

solution as the EnKS and the Kalman smoother. 

Ensemble Kalman Filter Solution 

EnKF does a reasonably good job tracking the reference 

solution with the lower data density, as can be seen in Fig-

ure 5. One transition is missed near t 5 18, while EnKF has 

problems, for example, at t 5 1, 5, 9, 10, 13, 17, 19, 23, 26, and 

34. The error variance estimate is consistent, showing large 

peaks at the locations where the estimate obviously has 

problems tracking the reference solution. Note also the sim-

ilarity between the absolute value of the residual between 

the reference solution and the estimate, and the estimated 

standard deviation. For all peaks in the  residual, a corre-

sponding peak is present in the error  variance estimate. 
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FIGURE 4 Ensemble smoother. (a) shows the inverse estimate 

(red line) and reference solution (blue line) for x. (b) shows the 

corresponding estimated standard deviations (red line) as well as 

the absolute value of the difference between the reference solu-

tion and the estimate, that is, the real posterior errors (blue line). 

(Reproduced from [38] with permission.) 
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The error estimates show the same behavior as in [32] 

with very strong error growth when the model solution 

passes through the unstable regions of the state space and 

otherwise weak error variance growth or even decay in the 

stable regions. Note, for example, the low error variance for 

t [ 328, 34 4  corresponding to the oscillation of the solution 

around one of the attractors. 

In this case, the nonlinearity of the problem causes 

EnKF to perform better than the ES. In fact, at each up-

date, the realizations are pulled toward the true solution 

and are not allowed to diverge toward the wrong attrac-

tors of the system. In addition, the Gaussian increments 

of the ensemble members lead to an approximately 

Gaussian ensemble distributed around the true solution. 

This property of the sequential updating is not exploited 

in the ES, where realizations evolve freely and lead to 

non-Gaussian ensemble distributions. Note again that if 

the model dynamics are linear, then, in the limit of an 

infinite ensemble size, EnKF gives the same solution as 

the Kalman filter and the ES  solution gives a better result 

than EnKF. 

Ensemble Kalman Smoother Solution 

Figure 6 shows the solution obtained by EnKS. This so-

lution is smoother in time than the EnKF solution and 

provides a better fit to the reference trajectory. All of the 

problematic locations in the EnKF solution are recov-

ered in the smoother estimate. Note, for example, that 

the additional transitions at t5 1, 5, 13, and 34 in the 

EnKF solution are eliminated in the smoother. In addi-

tion, the missed transition at t5 17 is recovered by EnKS. 

The error estimates are reduced throughout the time in-

terval. In particular the large peaks in the EnKF solution are 

now significantly reduced. As for the EnKF solution, there 

are corresponding peaks in the error estimates for all the 

peaks in the residuals, which suggests that the EnKS error 

estimate is consistent with the true errors. In fact, in [40], it 

is found that the EnKS solution with Dtobs5 0.5 seems to do 

as well or better than the EnKF solution with Dtobs5 0.25. 

Note that, if only z  is measured in the Lorenz equations, 

the measured information is not sufficient to determine the 

solution. EnKF in this case develops realizations located at 

both attractors, and a bimodal distribution develops. The 

EnKF update breaks down with the bimodal distribution, 

but even the use of a Bayesian update in a particle filter does 

not suffice to determine the correct solution in this case since 

the bimodal distribution has the same probability for both 

peaks of the distribution. Note also that the assumption of 

Gaussian pdfs in the analysis equation is an approximation, 

whose severity must be judged on a case-by-case basis. 

PRACTICAL IMPLEMENTATION

In [37] it is shown that the EnKF analysis scheme can be 

formulated in terms of the ensemble without reference to 

the ensemble covariance matrix, which allows for efficient 

numerical implementation and an alternative interpretation 

of the method. In the discussion below, we omit the time in-

dex, since all variables refer to the same update time. 

Ensemble Representation of the Covariance

We define the matrix A  whose columns are the ensemble 

members ci [ R
n  by 

 A5 (c1, c2, c, cN) [ R
n3N,  (49) 

where N  is the number of ensemble members and n  is the 

size of the model state vector. The ensemble mean is stored 

in each column of A , which is defined as 

 A5A1N,  (50) 

where 1N [ R
N3N  is the matrix whose entries are all equal 

1/N . We then define the ensemble perturbation matrix as 

 A
r5A2A5A (I2 1N) .  (51) 

The ensemble covariance matrix Ccc
e
[ R

n3n  can be de-

fined as 

 Ccc
e 5

1

N2 1
A
r (A

r )T.  (52) 

Measurement Perturbations

Given a vector of measurements d [ R
m , where m  is the 

number of measurements, we define the N  vectors of per-

turbed observations as 

 dj5 d1 Pj,  j5 1, c, N,   (53) 

which are stored in the columns of the matrix 

 D5 (d1, d2, c, dN) [ R
m3N,  (54) 

while the ensemble of perturbations, with ensemble mean 

equal to zero, are stored in the matrix 

 E5 (P1, P2, c, PN) [ R
m3N,  (55) 

from which we construct the ensemble representation of 

the measurement error covariance matrix 

 C
PP

e 5
1

N2 1
EE

T.  (56)

Analysis Equation

The analysis equation (24), expressed in terms of the en-

semble matrices, is 

 A
a5A1Ccc

e
M

T(MCcc
e

M
T1C

PP

e )21 (d2MA ) .  (57) 
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Using the ensemble of innovation vectors defined as 

 D
r5D2MA,  (58) 

along with the definitions of the ensemble error cova-

riance matrices in (52) and (56), the analysis can be ex-

pressed as 

 A
a5A1A

r
A
rT

M
T(MA

r
A
rT

M
T1 EE

T)21
D
r,  (59) 

where all references to the error covariance matrices are 

eliminated. 

We now introduce the matrix S [ R
m3N  holding the 

measurements of the ensemble perturbations by 

 S5MA
r,  (60) 

and the matrix C [ R
m3m , 

 C5 SS
T1 (N2 1)C

PP
.  (61) 

Here we can use the full-rank, exact measurement error co-

variance matrix C
PP

 as well as the low-rank representation 

C
PP

e  defined in (56). 

The analysis equation (59) can then be written as 

 A
a5A1A

r
S

T
C
21

D
r  

 5A1A (I2 1N)S
T
C
21

D
r  

 5A (I1 (I2 1N)S
T
C
21

D
r )  

 5A (I1 S
T
C
21

D
r )  

 5AX,  (62) 

where we use (51) and 1NS
T
; 0 . The matrix X [ R

N3N  is 

defined as 

 X5 I1 S
T
C
21

D
r.  (63) 

Thus, the EnKF analysis becomes a combination of the fore-

cast ensemble members and is searched for in the space 

spanned by the forecast ensemble. 

It is clear that (62) is a stochastic scheme due to the use 

of randomly perturbed measurements. Thus, (62) allows 

for a nice interpretation of EnKF as a sequential Markov 

chain Monte Carlo algorithm, while making it easy to un-

derstand and implement the method. The efficient and 

stable numerical implementation of the analysis scheme is 

discussed in [8], including the case in which C  is singular 

due to the number of measurements being larger than the 

number of realizations. 

In practice, the ensemble size is critical since the com-

putational cost scales linearly with the number of real-

izations. That is, each individual realization needs to be 

integrated forward in time. The cost associated with the 

ensemble integration motivates the use of an ensemble 

with the minimum number of realizations that can pro-

vide acceptable accuracy. 

There are two major sources of sampling errors in EnKF, 

namely, the use of a finite ensemble of stochastic model re-

alizations as well as the introduction of stochastic measure-

ment perturbations [8], [42]. In addition, stochastic model 

errors influence the predicted error statistics, which is ap-

proximated by the ensemble. The sampling of physically 

acceptable model realizations and realizations of model er-

rors is chosen to ensure that the ensemble matrix has full 

rank and good conditioning. Furthermore, stochastic per-

turbation of measurements used in EnKF can be avoided 

using a square root implementation of the analysis scheme, 

to be discussed below. 

EnKF for Combined Parameter and State Estimation

When using EnKF to estimate poorly known model 

 parameters, we start by representing the prior pdfs of the 

parameters by an ensemble of realizations, which is aug-

mented to the state ensemble matrix A  at the update steps. 

The poorly known parameters are then updated using the 

variance-minimizing analysis scheme, where the covari-

ances between the predicted data and the parameters are 

used to update the parameters. 
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FIGURE 5 Ensemble Kalman filter. (a) shows the inverse estimate 

(red line) and reference solution (blue line) for x . (b) shows the 

corresponding estimated standard deviations (red line) as well as 

the absolute value of the difference between the reference solu-

tion and the estimate, that is, the real posterior errors (blue line). 

(Reproduced from [38] with permission.)
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The updated ensemble for the parameters is included in 

the space defined by the initial ensemble of realizations. Thus, 

EnKF reduces the dimension of the combined parameter and 

state estimation problem to a size given by the dimension of 

the ensemble space. This simplification allows us to handle 

large sets of parameters, but it requires that the true param-

eters can be well represented in the ensemble space. 

The parameter estimation approach used in EnKF and 

EnKS is a statistical minimization, or sampling of a posterior 

pdf, rather than a traditional minimization of a cost function. 

Thus, EnKF does not to the same extent suffer from the typical 

problems of converging to local minima as in parameter-esti-

mation methods. EnKF rather has a problem with multimodal 

pdfs. However, the EnKF does not search for the mode but 

rather the mean of the distribution. Thus, in many cases where 

a minimization method might converge to a local minimum, 

EnKF provides an estimate that is the mean of the posterior. 

An important point is that the sequential updating used in 

EnKF reduces the risk of development of multimodal distribu-

tions, a result that is supported by the Lorenz example. 

DETERMINISTIC SQUARE 

ROOT SCHEME

The perturbation of measurements used in the EnKF 

standard analysis equation (57) is an additional source of 

sampling error. However, methods such as the square root 

scheme compute the analysis without perturbing the mea-

surements [10]–[13], [43], [44]. 

Based on results from [10]–[13], a variant of the square 

root analysis scheme is derived in [42] and further elab-

orated on in [8]. The perturbation of measurements is 

avoided, and the scheme solves for the analysis without 

 imposing any additional approximations, such as the as-

sumption of uncorrelated measurement errors or knowl-

edge of the inverse of the measurement error covariance 

matrix. This implementation requires the inverse of the 

matrix C , defined in (61), which can be computed effi-

ciently, either using the low-rank ensemble representation 

Ce  or by projecting the measurement error covariance ma-

trix onto the space defined by the columns in S  from (60). 

This version of the square root scheme is now presented. 

Updating the Mean

In the square root scheme, the analyzed ensemble mean is 

computed from the standard Kalman filter analysis equa-

tion, which can be obtained by multiplying the first line 

in (62) from the right with 1N , so that each column in the 

resulting equation for the mean becomes 

 ca5  c f1A
r
S

T
C
21 (d2M c f) .  (64) 

Updating the Ensemble Perturbations

The deterministic algorithm used to update the ensem-

ble perturbations is derived starting from the traditional 

analysis equation for the covariance update (28) in the Kal-

man filter. By using the ensemble covariances, (28) can be 

 written as 

(Ccc
e ) a

5 (Ccc
e ) f2 (Ccc

e ) f
M

T(M (Ccc
e ) f

M
T1R )21

M (Ccc
e ) f,   (65) 

with the time index dropped for convenience. When using 

the ensemble representation for the error covariance matrix 

C
PP

e  defined in (52), (65) becomes 

 A
ar

A
arT5A

r (I2 S
T
C
21

S)A
rT,  (66)

where S  and C  are defined in (60) and (61), and we drop the 

superscripts “f” on the forecast ensemble. We now derive 

an equation for updating the ensemble perturbations Ar  by 

defining a factorization of (66), which does not involve the 

measurements or measurement perturbations. 

We start by forming C  as defined in (61). For now we 

assume that C21  exists, which requires that the rank of the 

ensemble be greater than the number of measurements. 

The low-rank case involves pseudo inversion [8]. Note also 

that the use of a full rank C
PP

e  can result in a full rank C  

even when m $ N . 
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FIGURE 6 Ensemble Kalman smoother. (a) shows the inverse esti-

mate (red line) and reference solution (blue line) for x . (b) shows 

the corresponding estimated standard deviations (red line) as well 

as the absolute value of the difference between the reference so-

lution and the estimate, that is, the real posterior errors (blue line). 

(Reproduced from [38] with permission.) 
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By computing the eigenvalue decomposition ZLZ
T5C , 

we obtain the inverse of C  as 

 C
215ZL21

Z
T,  (67) 

where Z [ R
m3m  is an orthogonal matrix and L [ R

m3m  is 

diagonal. The eigenvalue decomposition may be the most 

demanding computation required for the analysis when m  

is large. An efficient alternative inversion algorithm is pre-

sented in [8]. 

We now write (66) as 

 A
ar

A
arT5A

r (I2 S
T
ZL21

Z
T
S)A

rT

 5A
r (I2 (L21/2

Z
T
S)T(L21/2

Z
T
S) )A

rT

 5A
r (I2X2

T
X2 )A

rT,  (68) 

where X2 [ R
m3N  is defined as 

 X25L
21/2

Z
T
S,  (69) 

and where rank (X2) = min(m, N–1). Thus, X2  is a projection 

of S  onto the eigenvectors of C  scaled by the square root of 

the eigenvalues of C . 

Next we compute the singular value decomposition of 

X2  given by 

  U2S2V2
T5X2,  (70) 

with U2 [ R
m3m , S2 [ R

m3N  and V2 [ R
N3N . Since U2  

and V2  are orthogonal matrices, (68) can be written 

 A
ar

A
arT5A

r (I2 3U2S2V2
T 4T 3U2S2V2

T 4 )A
rT

 5A
r (I2V2S2

TS2V2
T)A

rT  

 5A
r
V2 (I2S2

TS2 )V2
T
A
rT  

 5 (Ar
V2"I2S2

TS2 ) (A
r
V2"I2S2

TS2 )T.  (71) 

Thus, a solution for the analysis ensemble perturbations is 

 A
ar5A

r
V2"I2S2

TS2.  (72) 

As noted in [45] the update equation (72) does not conserve 

the mean of the ensemble perturbations and in fact leads to 

the production of outliers that contain most of the ensem-

ble variance as explained in [46] and [8], which is further 

illustrated in the example below. 

We now write the square root update in the more gen-

eral form 

 A
ar5A

r
T,  (73) 

where T  is a square root transformation matrix. 

It is shown in [44] and [47] that for the square root analy-

sis scheme to be unbiased and preserve the zero mean in the 

updated perturbations, the vector (1/N )1 , where 1 [ R
N  

has all components equal to one, must be an eigenvector 

of the square root transformation matrix T . As noted in 

[44] and [47], this condition is not satisfied for the update 

in (72). 

Multiplying (73) from the right with the vector 1  and as-

suming that (1/N )1  is an eigenvector of T , we can write 

 05A
ar

15A
r
T15lA

r
15 0.  (74) 

Equation (74) shows that a sufficient condition for the 

mean to be unbiased is that (1/N )1  be an eigenvector of T . 

If the transform matrix is of full rank, then this condition is 

also necessary [47]. 

The symmetric square root solution for the analysis en-

semble perturbations is defined as 

 A
ar5A

r
V2 (I2S2

TS2 ) 1/2
V2

T.  (75) 

It is easy to show that (75) is also a factorization 

of (71) since V2  is an orthogonal matrix. As shown in 

[44], [47], the symmetric square root has an eigenvector 

equal to (1/N )1  and is unbiased. In addition, the sym-

metric square root resolves the issue with outliers in the 

factorization used in (72). The analysis update of the 

perturbations becomes a symmetric contraction of the 

forecast ensemble perturbations. Thus, if the predicted 

ensemble members have a non-Gaussian distribution, 

then the updated distribution retains the shape but the 

variance is reduced. 

A randomization of the analysis update can be used 

to generate updated perturbations that better resemble a 

Gaussian distribution [42]. Thus, we write the symmetric 

square root solution (75) as 

 A
ar5A

r
V2 (I2S2

TS2 ) 1/2
V2

TF T,  (76) 

where F  is a mean-preserving random orthogonal matrix, 

which can be computed using the algorithm from [44]. 

The properties of the square root schemes are illus-

trated in Figure 7, which shows the resulting ensemble up-

dates using several variants of the EnKF analysis scheme. 

The Lorenz equations (46)–(48) are used since the strong 

nonlinearities lead to the development of a non-Gaussian 

distribution for the forecast ensemble. Three observations 

are used in the update step. Each ensemble member is plot-

ted as a circle in the x, y  plane. In Figure 7(a) and (b) the 

forecast ensemble members are plotted as the blue circles, 

which have a non-Gaussian distribution in the x, y  plane. 

In Figure 7(a) the updated analysis from the “one-

sided” square root scheme in (72) is shown as the yellow 

circles. It can be seen that N2 3 of the updated ensemble 

perturbations collapse onto (0, 0), while the three non-

zero “outliers,” one for each measurement, determine 

the ensemble variance. However, one of the outliers is 
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too close to zero to be distinguished 

from the other points at zero. The 

variance of the updated ensemble is 

correct, but the analysis introduces a 

bias through a shift in the ensemble 

mean. The shift in the mean should 

come as no surprise since we do not 

impose a condition for the conserva-

tion of the mean when the update 

equation is derived. The particular 

ensemble collapse related to the use 

of (72) is discussed and explained in 

[8]. It is in fact shown that with three 

measurements and a diagonal mea-

surement error covariance matrix, 

we obtain an ensemble with three 

outliers, while the remainder of the 

perturbations collapse onto zero. 

In Figure 7(a) the updated analy-

sis from the symmetric square root 

scheme in (75) is shown as the red 

circles. This scheme has the property 

that it rescales the ensemble of pertur-

bations without changing the original 

shape of the perturbations. Thus, the 

scheme allows for preserving pos-

sible non-Gaussian structures in the 

ensemble during the update. We also 

note that the symmetric square root 

scheme from (75) is unbiased and thus 

preserves the mean [44]. 

In Figure 7(b) the updated analy-

sis from the symmetric square root 

scheme from (76), which includes 

an additional mean-preserving 

random rotation, is plotted using 

the green circles. It is clear that the 

ensemble of updated perturbations 

now has a Gaussian shape, and the 

non- Gaussian shape of the forecast 

ensemble perturbations is lost. The 

random rotation completely destroys 

any prior structure in the ensemble 

by randomly redistributing the variability among all of 

the ensemble members. Thus, the random rotation acts 

as a complete resampling from a Gaussian distribution, 

while preserving the ensemble mean and variance. 

Figure 7(b) also shows the updated analysis from the 

standard EnKF scheme from (62), where the measure-

ments are randomly perturbed to represent their uncer-

tainty. The standard EnKF analysis becomes similar to 

the symmetric square root analysis with random rotation. 

As with the symmetric square root analysis, most of the 

non-Gaussian shape of the forecast ensemble is lost. How-

ever, only the increment in the standard EnKF analysis is 

Gaussian, and some of the non-Gaussian properties of the 

forecast ensemble is retained, as indicated by the two out-

liers that represent the tail of the distribution seen in the 

forecast ensemble. 

It is also interesting to consider the standard EnKF 

scheme when used without perturbation of measurements. 

It is then clear from (28) that the variance is reduced twice by 

the additional multiplication with I2KeM  resulting from 

C
PP

e  in (28) being identical to zero when the measurements 

are not treated as stochastic variables. Figure 7(a) shows that 

the EnKF scheme without perturbation of  measurements 

preserves the shape of the forecast  distribution in the same 
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way as the symmetric square root scheme, although the 

variance is too low. Thus, the perturbation of measure-

ments in EnKF both increases the ensemble variance to the 

“correct” value, and introduces additional randomization. 

The randomization is different from the one observed in 

(76) since only the increments are randomized in the EnKF 

scheme with perturbation of measurements. 

It is currently not clear which of the analysis schemes, 

that is, the standard EnKF (62), the symmetric square root 

(75), or the symmetric square root with random rotation 

(76), is best in practice. Probably the choice of analysis 

scheme depends on the dynamical model and possibly also 

on the measurement density and ensemble size used. For a 

linear dynamical model, the forecast distribution is Gauss-

ian, and the random rotation is not needed. Thus, we then 

expect the symmetric square root (75) to be the best choice. 

On the other hand, for a strongly nonlinear dynamical 

model where non-Gaussian effects are dominant in the pre-

dicted ensemble, the symmetric square root with a  random 

rotation (76) or EnKF with perturbed measurements (62) 

may work better. Both of these schemes introduce Gaussi-

anity into the analysis update, while a Gaussian forecast 

ensemble may lead to more consistent analysis updates. 

The random rotation might be considered as a re-

 sampling from a Gaussian distribution at each analysis 

update. Note again that the random rotation in the square 

root filter, contrary to the measurement perturbation used 

in EnKF, completely eliminates all previous non-Gaussian 

structures that may be contained in the forecast ensemble. 

SPURIOUS CORRELATIONS, 

LOCALIZATION, AND INFLATION

Since EnKF is a Monte Carlo method, making this method 

affordable for large systems requires the use of a sufficient-

ly small ensemble of model realizations. Around 100 real-

izations in the ensemble is typical in applications, and in 

many cases we see only marginal improvements when the 

ensemble size is further increased, which is explained by 

the slow convergence, proportional to "N , of Monte Carlo 

methods, together with the fact that a large part of the vari-

ability in the state and parameters often is well represented 

by an ensemble of 100 model realizations. On the other 

hand, even O (100) model realizations become extremely 

computationally demanding in many applications, which 

is an incentive for using as few realizations as possible. In 

the following we discuss the problems caused by using a 

finite ensemble size and present some remedies that can 

reduce the impact of sampling errors. 

Spurious Correlations

The use of a finite ensemble size to approximate the error 

covariance matrix introduces sampling errors that are seen 

as spurious correlations over long spatial distances or be-

tween variables known to be uncorrelated. A result of these 

sampling errors is that the updated ensemble variance is 

underestimated. On the other hand, the consistency of the 

updated variance improves when a larger ensemble is used. 

A spurious correlation between a predicted measurement 

and a variable leads to a small nonphysical update of the 

variable in each ensemble member, and thus an associated 

variance reduction. This problem is present in all EnKF 

 applications and can lead to filter divergence. 

The following example, which is based on the linear ad-

vection case from Figure 2, illustrates the variance reduc-

tion resulting from spurious correlations. We use the form 

(62) for the EnKF analysis scheme with the update matrix 

X  defined from (63). 

An additional ensemble B [ R
nrand3N  is generated, 

where each row contains random samples from a Gaussian 

distribution with mean equal to zero and variance equal to 

one, and the entries in different rows are sampled indepen-

dently. Thus, B  is the ensemble matrix for a state vector of 

independent variables with zero mean and unit variance. 

At analysis times we compute the updates 

 aA
a

B
ab

 

5 aA
f

B
fb

 

X . (77) 

The predicted ensemble A
f  is the result of the ensemble 

integration using the advection model, while B
f  does not 

evolve according to any dynamical equation and at an up-

date time equals Ba  at the previous update time. 

Since the correlations between B  and the predicted 

measurement perturbations S  become zero in the limit of 

an infinite ensemble size, it follows that 

 lim
NS`

 
BS

T

N2 1
5 0.  (78) 

However, due to the finite ensemble size, (78) can-

not be exactly satisfied, and B
a  experiences a small 

update and associated reduction of variance through 

the update in (77). 

As in the advection example, we compute the matrix X  

based on the four measurements, and then apply it to B  ac-

cording to (77) at every analysis time. The value nrand5 100 

is found to be sufficient to obtain a consistent result that is 

independent of the random sampling of B . 

To a large extent, EnKF overcomes two problems associated 

with the traditional KF. 



JUNE 2009 « IEEE CONTROL SYSTEMS MAGAZINE 101

The variance reduction resulting from the spurious 

correlations is illustrated in Figure 8, which shows the 

decrease of the average variance of the random ensem-

ble B , resulting from EnKF with 100 and 250 realiza-

tions, and from the symmetric square root scheme using 

100 realizations. 

EnKF with 100 realizations is repeated five more times 

using different random seeds to verify that the result 

is independent of the seed. A nearly linear decrease of 

variance is obtained during the first 50 updates, while 

for the final 12 updates the decrease is lower. The reason 

for the lower error variance reduction in the final part of 

the experiment is that the information assimilated at one 

measurement location propagates to the next measure-

ment location during 50 updates. Thus, after 50 updates 

the ensemble variance is lower at the measurement loca-

tions, and the relative weight on the data compared to the 

prediction is decreased. EnKF with 250 realizations ex-

periences a significantly lower impact from spurious cor-

relations, as expected. 

The square root scheme is slightly less influenced 

by the spurious correlations, and an explanation can be 

that the measurement perturbations in the EnKF update 

increases the strength of the update of individual real-

izations and thus amplifies the impact of the spurious 

correlations. 

In many dynamical systems, the variance decrease 

caused by spurious correlations may be masked by strong 

dynamical instabilities. The impact of the spurious correla-

tions may then be less significant. On the other hand, in 

parameter-estimation problems, the spurious correlations 

clearly lead to an underestimate of the ensemble variance 

of the parameters. 

Localization

We now discuss the use of localization to reduce spurious 

correlations [48]. Two classes of localization methods are 

currently used, covariance localization and local updating. 

In [48] the ensemble covariance matrix is multiplied 

with a specified correlation matrix through a Schur product 

(entry-wise multiplication). The specified correlation func-

tions are defined with local support and thus effectively 

truncate the long-range spurious correlations produced by 

the limited ensemble size. Covariance localization is used 

in [11], [12], [49], and [50]. 

We can assume that only measurements located within 

a certain distance from a gridpoint impact the analysis in 

that gridpoint. This assumption allows for an algorithm 

where the analysis is computed gridpoint by gridpoint, 

and only a subset of observations, located near the current 

gridpoint, is used in each local analysis. This approach is 

used in [51], [52], and [37] and is also the approach used in 

the local EnKF in [53]. In addition to reducing the impact of 

long-range spurious correlations, the localization methods 

make it simpler to handle large data sets where the number 

of measurements is much greater than the number of en-

semble realizations. 

Another reason for computing the local analysis is the 

fact that EnKF is computed in a space spanned by the en-

semble members. This subspace may be rather small com-

pared to the total dimension of the model state. Computing 

the analysis gridpoint by gridpoint implies that, for each 

gridpoint, a small model state is solved for in a relatively 

large ensemble space. The analysis then results from a dif-

ferent combination of ensemble members for each grid-

point, and the analysis scheme is allowed to reach solutions 

not originally represented by the ensemble. In many appli-

cations the local analysis scheme significantly reduces the 

impact of a limited ensemble size and allows for the use of 

EnKF with high-dimensional model systems. 

The degree of approximation introduced by the local 

analysis depends on the range of influence defined for 

the observations. In the limit that this range becomes 

sufficiently large to include all of the data, the solution 

for all the gridpoints becomes identical to the standard 

global analysis. The range parameter must be tuned 

and should be large enough to include the information 

from measurements that contribute significantly but 

small enough to eliminate the spurious impact of re-

mote measurements. 

The local analysis algorithm goes as follows. We first 

construct the input matrices to the global EnKF, that is, 

the measured ensemble perturbations S , the innovations 

D
r , and either the measurement perturbations E  or the 

measurement error covariance matrix C
PP

. We then loop 

through the model grid, and, for each gridpoint, for ex-

ample, ( i, j)  for a two-dimensional model, we extract the 

rows from these matrices corresponding to measurements 

FIGURE 8 Variance reduction of a random ensemble due to spuri-

ous correlations, as a function of analysis updates. The ensemble 

Kalman fi lter (EnKF) with 100 realizations is compared with EnKF 

with 250 realizations as well as the square root scheme using 100 

realizations. EnKF with 100 realizations is repeated using different 

seeds to ensure that the results are consistent.
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that are used in the current update, and then compute the 

matrix X(i,j)  that defines the update for gridpoint ( i, j) . 

The analysis at gridpoint ( i, j)  becomes 

 A(i,j)
a 5A(i,j)X(i,j)  (79)

 5A(i,j)X1A(i,j) (X(i,j)2X ) ,  (80)

where X  is the global solution, while X(i,j)  becomes the so-

lution for a local analysis corresponding to gridpoint ( i, j)  

where only the nearest measurements are used in the anal-

ysis. Thus, it is possible to compute the global analysis first 

and then add the corrections from the local analysis if these 

effects are significant. 

The quality of the EnKF analysis is connected to the en-

semble size used. We expect that to achieve the same qual-

ity of the result, a larger ensemble is needed for the global 

analysis than the local analysis. In the global analysis, a 

large ensemble is needed to properly explore the state space 

and to provide a consistent result that is as good as the local 

analysis. Note also that the use of a local analysis scheme 

is likely to introduce nondynamical modes, although the 

amplitudes of these modes are small if a large enough in-

fluence radius is used when selecting measurements. We 

also refer to the discussions on localization and filtering of 

long-range correlations by [54]. 

In adaptive localization methods, the assimilation sys-

tem itself is used to determine the localization strategy. 

Such algorithms are useful since the dynamical covari-

ance functions change in space and time, and the spuri-

ous correlations depend on the ensemble size. Thus, every 

 assimilation problem and ensemble size requires a separate 

tuning of the localization parameters. 

The hierarchical approach in [55] uses several small en-

sembles to explore the need for using localization in the 

analysis. This approach uses a Monte Carlo method based 

on splitting the ensemble into several small ensembles to 

assess the sampling errors and the spurious correlations. 

This method is a statistically consistent approach to the 

problem. However, the localization is optimized for a small 

ensemble and may become suboptimal when used with the 

full ensemble including all realizations. 

An alternative localization method in [56] is based on 

the online computation of a flow-dependent moderation 

function that is used to damp long-range and spurious cor-

relations. This method is named SENCORP for “smoothed 

ensemble correlations raised to a power.” The idea is that the 

moderation functions can be generated from a smoothed 

covariance function, which, when raised to a power, damps 

small correlations. 

In [57] a local analysis method handles measurements 

that are integral parameters of the model state. The idea 

is that the covariance matrix of the predicted measure-

ments is computed globally using the full model state, 

while the updates are computed locally gridpoint by grid-

point, and only the measurements that have  significant 

correlations with the model variables in the local grid-

point are assimilated. 

Thus, while traditional localization methods are distance 

based, [55]–[57] discuss adaptive localization methods 

where the assimilation system determines whether correla-

tions are significant or spurious, and whether a particular 

measurement shall be used in the update of a particular 

model variable. The further development of adaptive local-

ization methods is important for many applications where 

distance-based methods are less suitable, an example being 

the use of measurements that are integral functions of the 

model state as in [57]. 

Finally, it is not clear how the local analysis scheme 

is best implemented in EnKS. One approach is to define 

the local analysis to use only measurements in a certain 

space-time domain, taking into account the propagation of 

information in the model together with the time scales of 

the model. In [58] EnKS is used with a high-dimensional 

atmospheric circulation model. The impact of spurious cor-

relations related to the lag time in a lagged EnKS is studied, 

and it is pointed out that the lagged implementation facili-

tates localization in time. 

Infl ation

A covariance inflation procedure [59] can be used to coun-

teract the variance reduction observed due to the impact 

of spurious correlations as well as other effects leading to 

underestimation of the ensemble variance. The impact of 

ensemble size on noise in distant covariances is examined 

in [49], while the impact of using an “inflation factor” as 

discussed in [59] is evaluated. The inflation factor is used 

to replace the forecast ensemble according to 

 cj5r(cj2  c ) 1  c,  (81) 

with r  slightly greater than one (typically 1.01). The in-

flation procedure is also used in [60], where the EnKF is 

examined in an application with the Lorenz attractor, and 

results are compared with those obtained from different 

versions of the singular evolutive extended Kalman (SEEK) 

filter and a particle filter. In [60], ensembles with very few 

members are used, which favors methods like the SEEK 

where the “ensemble” of empirical orthogonal functions 

(EOFs) is selected to best represent the model attractor. 

Several approaches adaptively estimate an optimal infla-

tion parameter. In [61] the covariance inflation is estimated 

based on the sequence of innovation statistics, while in [62] 

a method is presented that is based on augmenting the in-

flation parameter to the model state where it is updated as 

a parameter in the EnKF analysis computations. Online es-

timation of the inflation parameter is also studied in [63] 

together with the simultaneous estimation of observation 

errors. It is found that the estimation of inflation alone does 

not work appropriately without accurate observation error 

statistics, and vice versa. 
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Clearly, the inflation parameter becomes a tuning pa-

rameter, and optimally it is best estimated adaptively. The 

need for inflation depends on the use of a local versus glob-

al analysis scheme, and the use of a local scheme can to a 

large extent reduce the need for an additional inflation. 

Here we describe an alternative approach for estimating 

the inflation coefficient. In the spurious correlation example, 

as presented in Figure 8, an independent ensemble is used to 

quantify the variance reduction due to spurious correlations. 

A simple algorithm for correcting the analyzed ensemble 

perturbations in each analysis step goes as follows. 

At each analysis time we generate the additional ensem-

ble matrix Bf  with random normally distributed numbers, 

such that the mean in each row is exactly zero, and the vari-

ance is exactly equal to one. We thus sample the matrix ran-

domly from N(0, 1) . Then, for each row, first subtract any 

nonzero mean, then compute the standard deviation and 

scale all entries by it. Then, compute the analysis update 

according to (77). For each row in Ba , compute the standard 

deviation. The inflation factor r  is then defined as one over 

the average of the standard deviations from each row in Ba . 

The accuracy of the estimated inflation factor depends on 

the number of realizations used as well as the number of 

rows in B . It is expected that with a low number of realiza-

tions additional rows in B  might compensate for the sam-

pling errors when computing the inflation factor. 

This algorithm provides a good first approximation of 

the inflation factor needed to counteract variance reduc-

tion due to long-range spurious correlations resulting from 

sample noise. The estimated inflation factor depends on the 

number of realizations used, the number of measurements, 

and the strength of the update determined by the innova-

tion vector and both the predicted and measurement error 

covariance matrices. A question remains, as to whether the 

inflation is best applied equally for the whole model state, 

including at the measurement locations. 

CONCLUSIONS

This article provides a fundamental theoretical basis for 

understanding EnKF and serves as a useful text for future 

users. Data assimilation and parameter-estimation prob-

lems are explained, and the concept of joint parameter 

and state estimation, which can be solved using ensemble 

methods, is presented. KF and EKF are briefly discussed 

before introducing and deriving EnKF. Similarities and 

differences between KF and EnKF are pointed out. The 

benefits of using EnKF with high-dimensional and highly 

nonlinear dynamical models are illustrated by examples. 

EnKF and EnKS are also derived from Bayes theorem, us-

ing a probabilistic approach. The derivation is based on 

the assumption that measurement errors are independent 

in time and the model represents a Markov process, which 

allows for Bayes theorem to be written in a recursive form, 

where measurements are processed sequentially in time. 

The practical implementation of the analysis scheme is 

 discussed, and it is shown that it can be computed efficient-

ly in the space spanned by the ensemble realizations. The 

square root scheme is discussed as an alternative method 

that avoids the perturbation of measurements. However, 

the square root scheme has other pitfalls, and it is recom-

mended to use the symmetric square root with or with-

out a random rotation. The random rotation introduces a 

stochastic component to the update, and the quality of the 

scheme may then not improve compared to the original 

stochastic EnKF scheme with perturbed measurements. 
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