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We introduce a measure of both quantum as well as classical correlations in a
guantum state, the entanglement of purification. We show thafrdglarized
entanglement of purification is equal to the entanglement cost of creating @ state
asymptotically from maximally entangled states, with negligible communication.
We prove that the classical mutual information and the quantum mutual informa-
tion divided by two are lower bounds for the regularized entanglement of purifica-
tion. We present numerical results of the entanglement of purification for Werner
states inH,® H,. © 2002 American Institute of Physics.
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I. INTRODUCTION

The theory of quantum entanglement aims at quantifying and characterizing uniquely quan-
tum correlations. It does so by analyzing how entangled quantum states can be processed and
transformed by quantum operations. A crucial role in the theory is played by the class of local
operations and classical communicatir©CC), since quantum entanglement is nonincreasing
under these operations. Indeed, by considering this class of operations we are able to neatly
distinguish between the quantum entanglement and the classical correlations that are present in the
quantum state.

Given the success of this theory, we may be daring enough to ask whether we can similarly
construct a theory of purely classical correlations in quantum states and their behavior under local
or nonlocal processing. At first sight, such an effort seems doomed to fail since merely local
actions can convert quantum entanglement into classical correlations. Namely, Alice and Bob who
possess an entangled sthtd =3, \{|a;)®|b;) with Schmidt coefficienta; can, by local mea-
surements, obtain a joint probability distribution with mutual information equél (®). Thus it
does not seem possible to separate the classical correlations from the entanglement if we try to do
this in an operational way. Note that it may be possible to separate quantum and classical corre-
lations in a nonoperational wagee, for example, Ref. 1 or 2. The drawback of such an approach
is that no connection is made to the dynamical processing of quantum information, which is
precisely what has made the theory of quantum entanglement so elegant and innovative. An
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operational approach to the quantification of quantum and classical correlations was recently
formulated in Ref. 3.

In this article we propose to treat quantum entanglement and classical correlation in a unified
framework, namely we express both correlations in units of entanglement. Such a theory of “all”
correlations may have potential applications outside quantum information theory as well. Re-
searchers have started to look at entanglement properties of many-particle systems for example at
(quantum phase transitiongsee, for example, Ref. 4 and references therénstead of consid-
ering the entanglement of formation in these studies, one may choose to look at the behavior of a
complete correlation measure. In this article we introduce such a measure, called the entanglement
of purification. We would like to emphasize that our correlation measunetisn entanglement
measure, but a measure of correlations expressed in terms of the entanglement of a pure state.

It has been the experience (Quantum information theory that questions in the asymptotic
approximate regime are easier to answer than exact nonasymptotic queries. Thus we ask how to
create a bipartite quantum stgtein the asymptotic regime, allowing approximation, from an
initial supply of EPR-pairs by means tical operations and asymptotically vanishing communi-
cation This latter class of operations will be denoted as L@gal operations witto(n) com-
munication in the asymptotic regirheersus the class LO for strictly local operations. We can
properly define this formation co&, 4 as follows:

m
Eloq(p)= ”n"g inf[ﬁ‘ 3 Liog: D(LLog(| P -K¥_[*™),p"M)<eq. 1
Here| W ) is the singlet state iftt,® H., and L, o4 is a local superoperator usirggn) quantum
communicationD is the Bures distancB (p,p’)=2yJ1—F(p,p’) and the square-root-fidelity is
defined as=(p,p') =Tr(\p"%’ p™).% We could have allowed classical instead of quantum com-
munication in our definitiorfour results will not depend on this chojceo we may as well call all
communication quantum communication.

Before we consider this entanglement cost for mixed states, we observe that by allowing
asymptotically vanishing communication, we have preserved the interconvertibility result for pure
state$ This is due to the fact that both the process of entanglement dilution as well as entangle-
ment concentration can be accomplished with no more than asymptotically vanishing amount of
communication, see Ref. 7.

We see that the cof; o4(p) of creating the statg is defined analogously to the entanglement
costE(p),®° with the restriction that Alice and Bob can only do a negligible amount of commu-
nication. It is immediate thaE| o4(p) will in general be larger thak.(p). In particular, for a
separable density matrik.(p) =0, whereas we will show that for any correlatee., not of the
form pag= pa® pg) density matrixE o4(p) >0. The entanglement coBt was found to be equal
to

E.(p)= lim %), )

n—o
whereE(p) is the entanglement of formatidriwe will similarly find an expression foE| oq,

Ep(P®n)

n—oo

whereEp(p) is a new quantity, the entanglement of purificationpof

Our article is organized in the following manner. We start by defining the entanglement of
purification and deriving some basic properties of this new function, such as continuity and
monotonicity under local operations. We will relate the entanglement of purification to the prob-

lem of minimizing the entropy of a state under a local T@Rce-preserving completely positive
map. With these tools in hand, we can prove our main result, Theorem 2. Then we spend some
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time proving the mutual information lower bounds t6ro4(p). We also compare our correlation
measure with the induced Holevo correlation meas@gg that were introduced in Ref. 1. We
prove that for Bell-diagonal states the correlation mea€urés equal to the classical capacity of

the related one-qubit Pauli channel. At the end of the article we present our numerical results for
Ep(p) wherep is a Werner state oft{,®H,. The proofs of the lemmas and theorems in this
article are all fairly straightforward and use many basic properties of entropy and mutual infor-
mation (concavity, subadditivity of entropy, nonincrease of mutual information under local ac-
tions, etc).

II. ENTANGLEMENT OF PURIFICATION

We define the entanglement of purification:
Definition 1: Letp be a bipartite density matrix of{,®@ Hg. Let |¢) € Haa ® Hgg' - The
entanglement of purification fp) is defined as

Ep(p)= min  Ed(|y)(y]), (4
i Trarg [ ) (hl=p

where E;(|#)(#]) is the entanglement ofi) which is equal to the von Neumann entropy
S(ogg)=—Trogg logogy Where agg:=Tran/|#){1|. Let {\;,|¢;)} be the eigenvalues and
eigenvectors opag. The “standard purification” ofp is defined as

|’/’s>=2i VN4 a®]0)arli Ve - 5

Every purification ofp can be written aby) = (1 ,\g® U arg/)|#0s) for some unitary operatdd 5 g
on A’ andB’. Therefore, Eq(4) can be rephrased as

Ep(p)= MInE((Iag®Uarg)| ) (thd(1ng@Unrg) ") (6)

Ua'g’

:umin S(Tran (1ag® U e 4 (¥d (1as® Uar)"))

:Tins((lB®AB’)(MBB’(p)))! (7

where we have taken the trace overandA’ to obtain Eq.(7),

e (p)=Tran | (i, 8

andAB,(v)ETrA,UA,B,(vB,@)|O>(O|A,)UL,B,. The minimization in Eq(7) is over all possible

TCP mapsAg: since every TCP map can be implemented by performing a unitary transformation
on the system and some ancilla and tracing over the ancilla. Note that the minimizations over
Uagr and Ag, are equivalent. Equation®) and (7) provide two different formulations of the
same minimization. Conceptually the first formulation is based on purificatiopsantl variation

over U, /g . The second formulation is based on extensiong,afsgg, Such that Tg oagps

=pag, and variation ove g, (v). Both formulations will be used throughout the article.

The idea of bipartite purifications was considered in Ref. 10 where the authors proved that
every correlated state has, in our language, a nonzero entanglement of purification. If we would
have included mixed states in the minimization in E.and used the entanglement of formation
as the entanglement measure, then the defined quantity would be equal to the entanglement of
formation of p, since the optimal extension gfis p itself.

We put some simple bounds @& (p). Intuitively, “the amount of quantum correlation in a
state is smaller than or equal to the total amount of correlationE¢p) <E,(p). To prove this
lower bound, le{y,)=2; j|i)a/|j)s ®|tij) be the purification that achieves the minimum in Eq.
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(4). Alice and Bob locally measure the labéjs andjg: of the state ,) such that they obtain
|¢ij> with probability p;; =<lﬂij|¢ij>- Since entanglement is nonincreasing under local operations,

we have
=3 oye (|¢.Jr>)<¢”|

It is immediate that we have equality between the entanglement of formation and the entanglement

of purification for pure states, where the optimal purification of a pure state is the pure state itself.
An easy upper bound B,(p) <E(|s)(#<|) =S(pa), wherep,=Trg(p) is the reduced den-

sity matrix inA. This corresponds tt 55, =1 s/ Or equivalentlyAz, =1z, on the rhs of Eq(6)

or (7). Applying the same argument withA’ andBB’ interchanged, we obtain

Ep(p)=min(S(pa),S(pe)), (10

where the purifications correspond to either completely purifying the stat®’cor on B'. In
general this is not the optimal purification, as we will see in Sec. V.

The entanglement of purification is neither convex nor concave, unlike the entanglement of
formation. For instance, a mixture of product states, each with zero entanglement of purification,
need not have zero entanglement of purificatifun example, consider an equal mixture|60)
and|11)). On the other hand, the completely mixed state has zero entanglement of purification
equal to zero yet it is a mixture of four Bell states, each with one ebit of entanglement of
purification.

Before we present continuity bounds for the entanglement of purification, we analyze the
optimization problem of Eq(4) in more detail. We can omit doubly stochastic maps in the
optimization in Eq.(7) since they never decrease the entropy. Furthermore, the von Neumann
entropy is concave, so that the optimum in E@ can always be achieved wheYy, is an
extremalTCP map. An extremal TCP map is a TCP map that cannot be expressed as a convex
combination of other TCP maps. Chbhas proved that an extremal TCP map with input dimen-
siond has at mostl operation elements in its operator-sum representation. This result will allow
us to upper bound the dimensions of the optimal purifying Hilbert spaces, as stated in the follow-
ing lemma.

Lemma 1: Lep act on a Hilbert space of dimension g=d,dg . The minimum of Eq. (4) can
always be achieved by a stafefor which the dimension of ‘Ais dy=dg and the dimension of
B’ is dg,=d4g (or vice versa.

Proof: We use the formulation of the entanglement of purification as an optimization of a TCP
map in Eq.(7). Since the density matriggg/(p) is on Hy,®Hq, the optimal map\g, maps
HdAB into a space of some unspecified dimension. The optimal Mgpcan be assumed to be
extremal. Theorem 5 of Ref. 11 shows that an extremal TCPmdel)HB(HdZ) (Refs. 12

and 13 can be written with at modd; operations elements, that is, has the form

<Ep(p). ©)

dy
A(p)=2] VipV]. (11)

In our cased;=d,g. Consider implementing the TCP map by applying a unitary operafida

the input state with an ancilla appended. In our case, this ancilla can be taken as Alice’s purifying
systemA’, andU acts onA’'B’. The dimension of the ancillA’ can always be taken to be the
number of operation elements. Thus we hdye=d,z. TheB’ dimension is equal to the output
dimensiond, of the optimal mapA, which is unconstrained by the extremality condition. How-
ever, we note that the operatar(p) of Eq. (11) has a rank of at most. This is obtained by
observing that the range of this operator is exactly that of the vectors given by all the columns of
the matricesv; for all i (the V; matrices havead; columns andd, rows). Thus, there exists a
unitary operatotJ that permits the construction of a new map=UA whose output is confined
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to the firstdf dimensions of the output space. The operaiomay be obtained explicitly via a
Gram-Schmidt procedure applied to the column vectors oMthmatrices.A’ is also optimal,
since the entropy of Ed7) is not changed by a unitary operation. Since the output spad€ of
has dimension3, we conclude thatls, can be taken to bdg =d35. O

It is interesting to note that a similar minimization problem was encountered in Ref. 14. There
the goal was to use a set of noisy states for classical information transmission and we wanted to
minimize the coherent information divided by the entropy of a quantum state under the action of
a local map.

Theorem 1 (continuity of the entanglement of purification): Let p and o be two density
matrices onHy, ®Hy, with Bures distance [p,o)=<e€. Then

|E(p)—Ep(0)|<20D(p,0)logdag—D(p,o)logD(p,0), (12

for small enougte.
Proof: Let |,) and|¢,) be the purifications op and o which achieve the maximutrin

F(p,o)= max|(i,|4,)]. 13

Yoty

Let |¢p> and|¢,,) correspond to the optimal purifications pfand o with respect toE,. There
exists a unitary transformatiod relating|y,) to [¢,), i.e., U®1)[4,)=|¢,). We define the
(nonoptimal purification|,) as U®1)|4.)=|,). Now we have

Ep(o-) - Ep(p) = E(l ¢0><¢(r|)_ E(| ¢p><¢p|)$ E(| lp(r><‘r//(r|)_ E(| ¢p><¢p|) (14)

We use continuity of entanglemeltt'® Lemma 1(which indicates that the pure state has support
on a space of dimension at mat), and the fact thal Yol po)| = (ol ¥,)|=F(p,0) to bound

Ep(0)—Ep(p)=<5D(p,0)logdag—2D(p,0)logD(p, ) (15)

for small enougtD (p,o). We can obtain the full bound in E¢L2) by alternatively relatingy, )
to the optimal purification¢,) by a unitary transformatiot. [l

It is fairly straightforward to prove monotonicity of the entanglement of purification from
monotonicity of entanglement:

Lemma 2 (monotonicity of the entanglement of purification): The entanglement of purification
of a density matrix is nonincreasing under strictly local operations. Let Alice carry out a local
TCP mapS, on the statep. We have

Ep((Sa®1)(p))<Ep(p). (16)

Let Alice carry out a local measurement prthrough which she obtains the state with prob-
ability p; . We have

Z PiEp(p)<Ep(p). 17)

Let £, oq be a local operation assisted by m qubits of communication. The entanglement of
purification obeys the equation

Ep(LLog(p))<Ep(p)+m. (18)
Proof: Let |¢p) be the optimal purification op. This optimal purification is related tsome

purification of (Sa®1)(p) by a unitary transformation on Alice’s system only. Then EbS)
follows from the fact that entanglement is nonincreasing under local partial traces. The state
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|y = Ai® 1 gl )| Al Ai® 1 g| ), whereA; corresponds to a measurement outcome of Alice, is
some purification op; . The entanglement is nonincreasing under local operations and thus

Ep<p>=E<|¢p><wpl)>Z |oiE<|wi><¢i|)>Ei PiEp(pi). (19

For the last inequality, let Alice and Bob start with the entangled $#afeand carry out their LOg
protocol. By subadditivity of entropy, the entanglement of this state can increase by ahrhist
whenm qubits of communication are sefttack and forth Thus the entanglement of the final
state which is some purification df o4(p) is smaller than or equal tB,(p) +m. O

Now we are ready to prove our main theorem:

Theorem 2: The entanglement cost pfon Hy® Hy without classical communication equals
ELOq(P) = E;(P)-

Proof: The inequalityELoq(p)sE;’(p) uses entanglement dilution. Lktbe the number of
copies ofp for which the regularized entanglement of purificatEﬁ is achieved. One way of
making many p) copies ofp®* out of EPR pairs and(p)=<o(pKk) classical communication is to
first perform entanglement dilution on the EPR pairs so as to cfeat@pproximation tpthe
purification |)®P and then trace over the additional registers to g&’. The other inequality
E‘;(p)sELoq(p) can be proved from monotonicity and continuity of the entanglement of purifi-
cation. We start witm EPR pairs which hav&, equal ton. The LOq process for creating an
approximationp, to p®¥ using o(k) qubits of communication increases the entanglement of
purification by at mosb(k) bits, see Lemma 2, 0o, (p,)<n+o0(k). Using the continuity of
Theorem 1 and dividing the last inequality by and taking the limitk—oo gives E:;(p)
<ELoq(p)- 0

Ill. MUTUAL INFORMATION LOWER BOUNDS

The entanglement co$, o4 is @ measure of the quantum and classical correlations in a
quantum state. The quantum and classical mutual information of a quantum state are similar
measures that capture correlations in a quantum state. How do these measures relate to the new
correlation measure? The quantum mutual informatigpAg) is defined as

l4(paB) =S(pa) +S(pg) —S(pap)- (20)

We define the classical mutual information of a quantum digie.g) as

l(pag)=  max H(pa)+H(pg) —H(pas)- (21
Ma :pa.Mp:pg

Here local measuremenid,, andMg give rise to local probability distributiong, andpg. The
classical mutual information of a quantum state is the maximum classical mutual information that
can be obtained by local measurements by Alice and Bob. Both quantum as well as classical
mutual information share the important property that they are nonincreasing under local operations
(LO) by Alice and Bob. For the classical mutual information, this basically follows from the
definition Eq.(21). The definition itself as a maximum over local measurements makes sense since
the classical mutual information of a probability distribution is nonincreasing under local manipu-
lations of the distribution. The proof of this well known fact is analogous to the proof for the
quantum mutual information which we will give here for completeness.

We can write the quantum mutual information as

lq(pa) =S(pasllPa®ps), (22

whereS(.||.) is the relative entropy. The relative entropy is nonincreasing under anyAn{ap
Ref. 17, i.e.,
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S(A(pap)||[A(pa®p))<S(pasllpa®pp). (23

When A is of a local form, i.e., A,® Ay, the Ihs of this equation equals the quantum mutual
information of the stateA ,® Ag)(pag) and thus the inequality,((Ax® Ag)(pag)) <lq(pas) is
proved.

Proof of lower bounds

We show that the quantities,(p)/2 and the regularized classical informatidg(p)
=lim,_.. (I;(p®")/n) are both lower bounds for the entanglement dist,. The argument is
similar to the proof of theE;c lower bound onE, o4 in Theorem 2[The reasoning is in fact a
special case of Theorem 4 in Ref. (@. Ref. 19 applied to the class LOq instead of the original
LOCC|]

We start with a number, sdy, of EPR pairs which have,=2k and| equal tok.?® In the
limit of large n, the ratiok/n is the entanglement co&f o4(p). We apply the LOg mag which
useso(n) communication to obtain an approximati@y to p®". Since the quantum mutual
information and the classical mutual information can only increase(oy by the process
applied to the initial EPR pairs, see Lemma 3, it follows that

l4(Pn)=<0(n)+ 2K, (24
and similarly
lc(pn)=<o(n)+k. (29

The last step is to relate the mutual information$gto the mutual information 0p®". For this,
we need a continuity result of the form

[lge(0) =1 ge(p)|<Clogdllp—al[;+O(1) (26)

for p, o on'Hy, ||p— o], sufficiently small andC is some constarit: Below we will prove these
desired continuity results. We can divide E(&) and(25) by n and take the limit of larga. We
use the continuity relation of E426) and the fact that in the large limit 5, tends top®". Thus
we have

|q(P®n)

lim

n—o

:lq(P)SZELOq(P)a (27)

where we used that the quantum mutual information is additive, and similarly

ls(p)<ELoq(p)- (28

What remains is to prove the continuity relations and the nonincrease ma@lainder LOq
operations.

Continuity of mutual information

The continuity of the quantum mutual informatidg(p) can be proved by invoking Fannes’
inequality?? and Ruskai’s proof of nonincrease of the trace-distance under TCP7hiagsp and
o be two density matrices which are close, il@.+ a||,=Tr|p— o|< € for sufficiently smalle. We
have

[14(pag) = q(aap) [<|S(pa) = S(oa)| +|S(pg) — S(og)|+[S(aaB) — S(pas), (29

which can be bounded as

[14(pas) —l4(oap)| =<3 l0gdagllpas— oaslli+ 37| pas— o asl1) (30
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where (x) = —xlogx and||p— o ;<3

It is not hard to prove the continuity of the classical information of a quantum state, again
using the nonincrease df||; under TCP maps. Le®? and M% be the optimal measurement
achieving the classical mutual informatiop(p). Under this measurement the stajesind o,
which is, say, close tp, go to probability distributiong?(i,j) andp“(i,j) which are close again,
i.e,|lp?—p°li<|p—oll,. We have that

le(o)=1c(p)<I(p?)—1(p*)<logk|p”—p“[,+O(1), (32)

wherek is the number of joint outcomes in the optimal measureméif (M%&) and| is the
classical mutual information of a joint probability distribution. The last inequality in @B4)
could in principle be derived from Fannes’ inequality, using diagonal matrices, but it is a standard
continuity result in information theof§ as well. To finish the argument, we should argue that
the number of joint measurement outcomes, is bounded. The classical mutual informistian
concave function of the joint probability(i,j).?* Therefore only extremal measuremehts and
Mg need to be considered in the optimization over measurements. An extremal measurement has
at mostd? outcomes when acting on a space of dimensigRef. 29 and thusk=<d4. The same
argument, interchanging and p, can be used to upperbouhgp) —1.:(o).

Lemma 3 (monotonicity properties of mutual information): Ketonsist of a series of local
operations assisted by m qubits of two-way communication. The quantum mutual information
obeys the inequality

l4(L(0))<I4(o)+2m, (32
for all stateso. For the classical mutual information we have

Le(LA )y =<1l +m, (33)

for all pure stateq ).

Proof: Let us first consider the quantum mutual information. We can decompose the two-way
schemel into a sequence of one-way schemes. It is sufficient to prove for such a one-way scheme
usingm qubits of communication, say from Alice to Bob, that

l4(L(0))<I4(o)+2m. (34

Alice’s local action can consist of adding an ancilain some state and apply a TCP map to the
systemsAA’ thus obtaining the state,,s.g. Such an action does not increase the quantum nor
classical mutual information as we showed before. Now Alice sends systeim Bob. We have

lq(oap)=1g(oanr8) = S(AA") +S(B) —S(AA'B)
= S(AA')—S(A') + S(BA')— S(AA'B)
= S(A)—2S(A’) + S(BA')— S(AA'B)
=lq(oaa) —2S(A), (35

where we usedS(A) —S(B)|<S(AB)<S(A)+S(B). The quantum mutual information of the
final state id 4(oa.ga’). SinceS(A’)<m, we obtain the needed inequality. Alice could send only
a part of ancillaA’, but this does not change the bound.

Let us now consider the classical mutual information. We may convert the entire pucess
into a coherent procegdwhere all the measurements are deferred to the end; this does not change
the amount of communication that Alice and Bob carry out. Thus, prior to the measurements Alice
and Bob have converted the pure stake into some pure statep) whose local entropy is at most
E+m whereE is the entanglement of the stdt), which is equal td .(|)(#|) (see Ref. 2D
Now Alice and Bob locally measure and/or trace out some registers which are operations that do
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not increase the classical mutual information. Therefore the final £(@t8)(|) has a classical
mutual information that is bounded by the initial classical mutual information iplus O

Remark:Note that Eq.(32) for the quantum mutual information applies to both pure and
mixed states while we have found mixed states that violate (&8). for the classical mutual
information.

Let us state the final result once more:

Corollary 1: E| o4(p)=14(p)/2 and E o=1.(p).

With this corollary we can show that the LOg-entanglement cost of any correlated density
matrix p is nonzerd® Indeed, the quantum mutual informatidg(p) of a correlated density
matrix is strictly larger than zero, sin@pag) is strictly less thars(p,) + S(pg) (equality is only
obtained wherpag=pa® pg) and thereforee o4(p)>0.

We present a simple example for whiBhoq(p) = E‘;(p)>lq(p)/2.

Example 1 (All correlation is classical correlation): Consider the separable state
=3pilai)(a|®|bj)(bi| where (ajla;)=4; and (bj|b;)=6;. In this case }(p)/2=H(p)/2.
However, we can show that,Ep)=H(p). We have[cf. Eq. (8] wu(p)=Zpi|b;)(bi|®][i)(il.
Under some local TCP map we obtain a statew’=X;p;|b;){b;|®p; where p; are density
matrices. The entropy g’ equals $u')=2;p;S(p;) +H(p)=H(p). The entanglement of pu-
rification E,(p) may be nonadditive, so we have to considg(£E"). We haveu(p®")=pu""
and nowp' =% i pi - Pi iz, in)i1,..in|®pi i . Again the von Neumann entropy of
wp' is larger than or equal to niip). Note that in this example we do achieve the classical mutual
information lower bound

Here is an example where the upper and lower bounds fixréglarized entanglement of
purification:

Example 2: Letp be an equal mixture of the stateq)= (1/2) (|00)+|11)) and |W¥,)
= (1M2) (|00)—|11)). Alice and Bob can get one bit of classical mutual information by both
measuring in thg0,1} basis. Thus Egq(p)=1c(p) =1, but E o4(p)<S(pa) <1, Eq. (10). There-
fore E gq=1.

IV. OTHER CORRELATION MEASURES: THE LOCALLY INDUCED HOLEVO
INFORMATION

In Ref. 1 the authors considered the locally induced Holevo information as a measure of
classical correlations in the state. It is defined either with respect to Alice’s measuremngrar(
Bob’s measurementQ;)

Cap(p)= maxs
Ma/Mg

> p?’ApF/A)_Z PP S(pP'"), 38

whereM ,(Mg) on p gives reduced density matricg§(p!") with probability p?(p?). The clas-

sical mutual informatiori; (p) will in general be less than these quantities, since to achieve the
Holevo information one may have to do coding. In Ref. 1 it was shownGhaf are nonincreas-

ing under local operations. We leave it as an exercise for the reader to prove continuity and
nonincrease modulo(n) under LOq operationgpplied to some pure statehus showing that

the regularized versions of these two quantities are also lower bound &g

Bell-diagonal states

We show that for Bell-diagonal statege the quantityC, (equal toCg by symmetry of the
Bell-diagonal statess equal to the classical capacity of the corresponding qubit channels. By the
previous arguments this give us some lower bounds on the regularized entanglement of purifica-
tion of these states. The Bell-diagonal states are of the following form,

PBen:Z pil (W, (37)
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whereV s are the four Bell states whef® ) is (1#2) (|00)+|11)). The corresponding chan-
nel, the so called generalized depolarizing channel, or Pauli channel, is of the form

znm=2pm«wh (39)

whereoy=1, ando, , 3 are the three Pauli matrices. It is knotnhat all two qubit states with
maximally mixed subsystems are Bell-diagonal, up to a unitary transformdfienJg . From the
isomorphism between states and chanf&t€8it follows that all unital channels are of the form
(38) (cf. Ref. 29, up to unitary transformations applied before and after the action of the channel.
The classical one-shot capacity of the quantum channisl given by%3!

Cl(A): SupX({qi ,A(P|)}), (39)

{9 .pi}

wherey is the Holevo function of the ensemble

x({9i,pi})=S

Zi dipi

—Zmam. (40)

The optimal statep; that achieve the capacit@; are always pure states, moreover it can be
showrt® that the ensemblég; ,|#)} that achieve<, for unital one-qubit channels satisfies

1
Z Qi|¢i><'/fi|=§1- (41

Let us argue tha€a(p)=C4(A) for a Bell-diagonal stat@ge;=(1a@A,)(|Vo)(¥o|). Al-
ice's POVM measurement on this state commutes with the channeBy doing a measurement
on|W¥,) she can create any pure-state-ensemble on syBtewheying the relation Eq41). This
ensemble is then sent through the chankgl If the ensemble is optimal faC,, then its Holevo
information y equalsC; and thusC,=C;.

For unital one-qubit channel8, is given by°32

C1(A)=1—minS(A([p) (). (42
v

We can perform the minization in the last inequality and we obtain the following formula for the
capacity of a Pauli channel or the induced Holevo information of the Bell-diagonal states,

Calpgen)=Ci(A,)=1-H(1—-N\), (43

where \ is the sum of the two largest probabilitigs and H(.) is the binary entropy function
H(x) = —xlogx—(1—x)log(1—X). For two-qubit Werner states of the form

3

pw=e[Wo)(Wol +(1-e)/32, [W;) (Wi, (44)
we obtain
c—1n 1+2e f 11
A=1- 3 or ee it
(45)
Cam1-t| 2228 ¢ ol
A=1— 3 or ee 7l
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FIG. 1. Numerical bounds oE, for Werner states. In the upper curve we restrict to dif)dim(B')=2; for the next
curve, we permit dimf’)=dim(B’)=4. The inset shows the curious behaviorgf around the point where the eigen-
value of| W) approaches zero. The dotted curve is@gower bound of Sec. IV A. The dashed curve is the entanglement

of formation lower bound which vanishes when the eigenvalue is smaller than or eqijal to

It was shown by King that the classical capacity of unital one-qubit channels is equal to the
one shot capacity, d€,=C7=lim,_,.. (1/n) C1(p®"). ThereforeC,=C,=C,, which is a lower
bound onE, oq-

V. WERNER STATES

A numerical minimization based on E(f) was performed for the Werner states E4g) for
E,. We plot the results as a function of th&,) eigenvaluee in Fig. 1. We permitted various
output dimensions; The two curves shown have dimEdim(B')=2 and dim@A’)=dim(B")
=4. In the first case, the initial variable of the minimization was determined by a rando#n 4
unitary U /g, picked according to the Haar measure. In the second case, the initial point was
determined by a random ¥& isometry picked according to a parameterization derived from Ref.
33. We did not explore the largest dimensions permitted by Lemma 1, which would have required
an optimization over a 644 isometry.

It is evident from the numerics presented in the figure thatQheoound of Eq.(45) is not
achieved for the Werner states: t8g lower bound is only tight at the trivial points=; ande
=1. Our results indicate thd, is a very complex function, neither concave nor convex, with
several distinct regimes. In fact, we find four different regimes in our numeiick this regime
the standard purification of E€5) appears to be optimal, so the of Eq. (6) is the identity, and
the purifying dimensions are dirA() =1 and dimB’)=4. This regime only extends over a tiny
range, approximately€e<0.005. (1) In the range 0.005e<0.25 we find an optimal purifica-
tion of the form

l1—e
\/é|‘1’o>AB|‘I’o>A'B/Jr \/T(|q’1>AB|q’1>A'B'+|‘P2>A5|q’2>A'B'+|‘I’3>AB|‘I’3>A'B')-
(46)

In this region theE, curve is given byE,= —xlogx—(1—-x)log((1-x)/3), with x=(1+2e
—2v3./e(1—e))/12. Here the purifying dimensions are difi)=2 and dimB')=2. Of course
E, drops to zero for the completely mixed stateeats. (Ill) In the range 0.25e<0.69 we also
find purifying dimensions dim§’)=2 and dimB’)=2, but we were unable to determine the
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analytical form of the purifying state or dg,. (IV) In the range 0.6&e<1 the purifying
dimensions were din’)=2 and dim@') = 3. Again, we were unable to come to any analytical
understanding of the result. Of courde,=1 for e=1, corresponding to the pure maximally
entangled state.

VI. CONCLUSION

We have shown that the entanglement d&st(p) is equal to the regularized entanglement
of purification. It is an open question whether the entanglement of purification is additive:

?

Ep(p®p)=Ep(p) +Ey(p). (47)
In the alternative formulation using the stai€p) the additivity question is the following. Is the
minimum in
MINS((1ag® Acp) (#ac® HeD)), (48)
Acp

achieved by a TCP mapcp=5S®S8? This problem is similar again to the additivity question
encountered in Ref. 14 where a local map could possibly lower the ratio of the coherent informa-
tion and the entropy of many copies of a state together.

It is interesting not only to ask the formation question with respect to this class LOq, but also
consider “the distillation” question. One can consider different versions. For example, how much
entanglement can we distill fromp using o(n) communication? One would expect that this
quantity D o4(p) is always zero for states for which the entanglement EgstusingLOCC) is
lower than the distillable entanglemebt We do not have a proof of this statement, relating
irreversibility to a need for classical communication.

Instead of trying to convert the correlations gnback to entanglement, we may ask what
classical correlations Alice and Bob can establish ugingVe could allow Alice and Bob to
perform an asymptotically vanishing amount of communication in this extraction process. A little
bit of communication could potentially increase the classical mutual information in a quantum
state by a large amoufivhen the classical correlation is initially “hiddeh"thus this may not be
the best problem to pose. ResearcHfetthave investigated the possibly more interesting problem
of the secretkey K that Alice and Bob can establish giverwhere one allows arbitrary public
classical communication between the parties. There is again more than one version of this prob-
lem, one in which Eve possesses the purification of the density rifaarixi a situation in which
Eve is initially uncorrelated with the density matrix. In Ref. 36 a general framework is developed
to address these issues also in the multipartite setting.

Quite recently, entanglement properties of bipartite density matrices were studied by looking
at mixed extensions of the density mattixlt would be interesting to explore the connection
between our results here on the entanglement of purification and this other approach.
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