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We introduce a measure of both quantum as well as classical correlations in a
quantum state, the entanglement of purification. We show that the~regularized!
entanglement of purification is equal to the entanglement cost of creating a stater
asymptotically from maximally entangled states, with negligible communication.
We prove that the classical mutual information and the quantum mutual informa-
tion divided by two are lower bounds for the regularized entanglement of purifica-
tion. We present numerical results of the entanglement of purification for Werner
states inH2^ H2 . © 2002 American Institute of Physics.
@DOI: 10.1063/1.1498001#

I. INTRODUCTION

The theory of quantum entanglement aims at quantifying and characterizing uniquely
tum correlations. It does so by analyzing how entangled quantum states can be process
transformed by quantum operations. A crucial role in the theory is played by the class of
operations and classical communication~LOCC!, since quantum entanglement is nonincreas
under these operations. Indeed, by considering this class of operations we are able to
distinguish between the quantum entanglement and the classical correlations that are prese
quantum state.

Given the success of this theory, we may be daring enough to ask whether we can sim
construct a theory of purely classical correlations in quantum states and their behavior unde
or nonlocal processing. At first sight, such an effort seems doomed to fail since merely
actions can convert quantum entanglement into classical correlations. Namely, Alice and Bo
possess an entangled stateuc&5( iAl i uai& ^ ubi& with Schmidt coefficientsl i can, by local mea-
surements, obtain a joint probability distribution with mutual information equal toH(l). Thus it
does not seem possible to separate the classical correlations from the entanglement if we t
this in an operational way. Note that it may be possible to separate quantum and classica
lations in a nonoperational way~see, for example, Ref. 1 or 2. The drawback of such an appro
is that no connection is made to the dynamical processing of quantum information, wh
precisely what has made the theory of quantum entanglement so elegant and innovati

a!Electronic mail: terhal@watson.ibm.com
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operational approach to the quantification of quantum and classical correlations was re
formulated in Ref. 3.

In this article we propose to treat quantum entanglement and classical correlation in a u
framework, namely we express both correlations in units of entanglement. Such a theory o
correlations may have potential applications outside quantum information theory as wel
searchers have started to look at entanglement properties of many-particle systems for exa
~quantum! phase transitions~see, for example, Ref. 4 and references therein!. Instead of consid-
ering the entanglement of formation in these studies, one may choose to look at the behav
complete correlation measure. In this article we introduce such a measure, called the entang
of purification. We would like to emphasize that our correlation measure isnot an entanglemen
measure, but a measure of correlations expressed in terms of the entanglement of a pure

It has been the experience in~quantum! information theory that questions in the asympto
approximate regime are easier to answer than exact nonasymptotic queries. Thus we ask
create a bipartite quantum stater in the asymptotic regime, allowing approximation, from
initial supply of EPR-pairs by means oflocal operations and asymptotically vanishing commu
cation. This latter class of operations will be denoted as LOq@local operations witho(n) com-
munication in the asymptotic regime# versus the class LO for strictly local operations. We c
properly define this formation costELOq as follows:

ELOq~r!5 lim
e→0

infH m

n U ' LLOq ,D~LLOq~ uC2&^C2u ^ m!,r ^ n!<eJ . ~1!

Here uC2& is the singlet state inH2^ H2 andLLOq is a local superoperator usingo(n) quantum
communication.D is the Bures distanceD(r,r8)52A12F(r,r8) and the square-root-fidelity is
defined asF(r,r8)5Tr(Ar1/2r8r1/2).5 We could have allowed classical instead of quantum co
munication in our definition~our results will not depend on this choice!, so we may as well call all
communication quantum communication.

Before we consider this entanglement cost for mixed states, we observe that by all
asymptotically vanishing communication, we have preserved the interconvertibility result for
states.6 This is due to the fact that both the process of entanglement dilution as well as ent
ment concentration can be accomplished with no more than asymptotically vanishing amo
communication, see Ref. 7.

We see that the costELOq(r) of creating the stater is defined analogously to the entangleme
costEc(r),8,9 with the restriction that Alice and Bob can only do a negligible amount of com
nication. It is immediate thatELOq(r) will in general be larger thanEc(r). In particular, for a
separable density matrix,Ec(r)50, whereas we will show that for any correlated~i.e., not of the
form rAB5rA^ rB! density matrixELOq(r).0. The entanglement costEc was found9 to be equal
to

Ec~r!5 lim
n→`

Ef~r ^ n!

n
, ~2!

whereEf(r) is the entanglement of formation.8 We will similarly find an expression forELOq ,

ELOq5 lim
n→`

Ep~r ^ n!

n
[Ep

`~r!, ~3!

whereEp(r) is a new quantity, the entanglement of purification ofr.
Our article is organized in the following manner. We start by defining the entangleme

purification and deriving some basic properties of this new function, such as continuity
monotonicity under local operations. We will relate the entanglement of purification to the
lem of minimizing the entropy of a state under a local TCP~trace-preserving completely positive!
map. With these tools in hand, we can prove our main result, Theorem 2. Then we spend
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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time proving the mutual information lower bounds forELOq(r). We also compare our correlatio
measure with the induced Holevo correlation measuresCA/B that were introduced in Ref. 1. W
prove that for Bell-diagonal states the correlation measureCA is equal to the classical capacity o
the related one-qubit Pauli channel. At the end of the article we present our numerical resu
Ep(r) wherer is a Werner state onH2^ H2 . The proofs of the lemmas and theorems in th
article are all fairly straightforward and use many basic properties of entropy and mutual
mation ~concavity, subadditivity of entropy, nonincrease of mutual information under loca
tions, etc.!.

II. ENTANGLEMENT OF PURIFICATION

We define the entanglement of purification:
Definition 1: Letr be a bipartite density matrix onHA^ HB . Let uc&PHAA8^ HBB8 . The

entanglement of purification Ep(r) is defined as

Ep~r!5 min
c:TrA8B8uc&^cu5r

Ef~ uc&^cu!, ~4!

where Ef(uc&^cu) is the entanglement ofuc& which is equal to the von Neumann entrop
S(sBB8)52TrsBB8 logsBB8 where sBB85TrAA8uc&^cu. Let $l i ,uc i&% be the eigenvalues an
eigenvectors ofrAB . The ‘‘standard purification’’ ofr is defined as

ucs&5(
i

Al i uc i&AB^ u0&A8u i &B8 . ~5!

Every purification ofr can be written asuc&5(I AB^ UA8B8)ucs& for some unitary operatorUA8B8
on A8 andB8. Therefore, Eq.~4! can be rephrased as

Ep~r!5 min
UA8B8

E~~ I AB^ UA8B8!ucs&^csu~ I AB^ UA8B8!
†! ~6!

5 min
UA8B8

S~TrAA8~ I AB^ UA8B8!ucs&^csu~ I AB^ UA8B8!
†!)

5min
LB8

S~~ I B^ LB8!~mBB8~r!!!, ~7!

where we have taken the trace overA andA8 to obtain Eq.~7!,

mBB8~r!5TrAA8ucs&^csu, ~8!

andLB8(n)[TrA8UA8B8(nB8^ u0&^0uA8)UA8B8
† . The minimization in Eq.~7! is over all possible

TCP mapsLB8 since every TCP map can be implemented by performing a unitary transform
on the system and some ancilla and tracing over the ancilla. Note that the minimizations
UA8B8 and LB8 are equivalent. Equations~6! and ~7! provide two different formulations of the
same minimization. Conceptually the first formulation is based on purifications ofr and variation
over UA8B8 . The second formulation is based on extensions ofr, sABB8 , such that TrB8sABB8
5rAB , and variation overLB8(n). Both formulations will be used throughout the article.

The idea of bipartite purifications was considered in Ref. 10 where the authors prove
every correlated state has, in our language, a nonzero entanglement of purification. If we
have included mixed states in the minimization in Eq.~4! and used the entanglement of formatio
as the entanglement measure, then the defined quantity would be equal to the entangle
formation ofr, since the optimal extension ofr is r itself.

We put some simple bounds onEp(r). Intuitively, ‘‘the amount of quantum correlation in
state is smaller than or equal to the total amount of correlation,’’ orEf(r)<Ep(r). To prove this
lower bound, letucr&5( i , j u i &A8u j &B8^ uc i j & be the purification that achieves the minimum in E
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~4!. Alice and Bob locally measure the labelsi A8 and j B8 of the stateucr& such that they obtain
uc i j & with probability pi j 5^c i j uc i j &. Since entanglement is nonincreasing under local operati
we have

Ef~r!<(
i j

pi j ES uc i j &^c i j u
pi j

D<Ep~r!. ~9!

It is immediate that we have equality between the entanglement of formation and the entang
of purification for pure states, where the optimal purification of a pure state is the pure state

An easy upper bound isEp(r)<E(ucs&^csu)5S(rA), whererA5TrB(r) is the reduced den
sity matrix inA. This corresponds toUA8B85I A8B8 or equivalentlyLB85I B8 on the rhs of Eq.~6!
or ~7!. Applying the same argument withAA8 andBB8 interchanged, we obtain

Ep~r!<min~S~rA!,S~rB!!, ~10!

where the purifications correspond to either completely purifying the state onA8 or on B8. In
general this is not the optimal purification, as we will see in Sec. V.

The entanglement of purification is neither convex nor concave, unlike the entanglem
formation. For instance, a mixture of product states, each with zero entanglement of purific
need not have zero entanglement of purification~for example, consider an equal mixture ofu00&
and u11&). On the other hand, the completely mixed state has zero entanglement of purifi
equal to zero yet it is a mixture of four Bell states, each with one ebit of entangleme
purification.

Before we present continuity bounds for the entanglement of purification, we analyz
optimization problem of Eq.~4! in more detail. We can omit doubly stochastic mapsLB8 in the
optimization in Eq.~7! since they never decrease the entropy. Furthermore, the von Neu
entropy is concave, so that the optimum in Eq.~7! can always be achieved whenLB8 is an
extremalTCP map. An extremal TCP map is a TCP map that cannot be expressed as a c
combination of other TCP maps. Choi11 has proved that an extremal TCP map with input dime
sion d has at mostd operation elements in its operator-sum representation. This result will a
us to upper bound the dimensions of the optimal purifying Hilbert spaces, as stated in the f
ing lemma.

Lemma 1: Letr act on a Hilbert space of dimension dAB5dAdB . The minimum of Eq. (4) can
always be achieved by a statec for which the dimension of A8 is dA85dAB and the dimension o
B8 is dB85dAB

2 ~or vice versa!.
Proof: We use the formulation of the entanglement of purification as an optimization of a

map in Eq.~7!. Since the density matrixmBB8(r) is on HdB
^ HdAB

, the optimal mapLB8 maps
HdAB

into a space of some unspecified dimension. The optimal mapLB8 can be assumed to b
extremal. Theorem 5 of Ref. 11 shows that an extremal TCP mapL:B(Hd1

)→B(Hd2
) ~Refs. 12

and 13! can be written with at mostd1 operations elements, that is, has the form

L~r!5(
i 51

d1

VirVi
† . ~11!

In our cased15dAB . Consider implementing the TCP map by applying a unitary operationU to
the input state with an ancilla appended. In our case, this ancilla can be taken as Alice’s pu
systemA8, andU acts onA8B8. The dimension of the ancillaA8 can always be taken to be th
number of operation elements. Thus we havedA85dAB . TheB8 dimension is equal to the outpu
dimensiond2 of the optimal mapL, which is unconstrained by the extremality condition. Ho
ever, we note that the operatorL(r) of Eq. ~11! has a rank of at mostdAB

2 . This is obtained by
observing that the range of this operator is exactly that of the vectors given by all the colum
the matricesVi for all i ~the Vi matrices haved1 columns andd2 rows!. Thus, there exists a
unitary operatorU that permits the construction of a new mapL85UL whose output is confined
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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to the firstd1
2 dimensions of the output space. The operatorU may be obtained explicitly via a

Gram–Schmidt procedure applied to the column vectors of theVi matrices.L8 is also optimal,
since the entropy of Eq.~7! is not changed by a unitary operation. Since the output space oL8
has dimensiond1

2, we conclude thatdB8 can be taken to bedB85dAB
2 . h

It is interesting to note that a similar minimization problem was encountered in Ref. 14. T
the goal was to use a set of noisy states for classical information transmission and we wa
minimize the coherent information divided by the entropy of a quantum state under the act
a local map.

Theorem 1 „continuity of the entanglement of purification…: Let r and s be two density
matrices onHdA

^ HdB
with Bures distance D(r,s)<e. Then

uEp~r!2Ep~s!u<20D~r,s!logdAB2D~r,s!logD~r,s!, ~12!

for small enoughe.
Proof: Let ucs8 & and ucr8& be the purifications ofr ands which achieve the maximum5 in

F~r,s!5 max
cs ,cr

u^csucr&u. ~13!

Let ufr& and ufs& correspond to the optimal purifications ofr ands with respect toEp . There
exists a unitary transformationU relating ucr8& to ufr&, i.e., (U ^ 1)ucr8&5ufr&. We define the
~nonoptimal! purification ucs& as (U ^ 1)ucs8 &5ucs&. Now we have

Ep~s!2Ep~r!5E~ ufs&^fsu!2E~ ufr&^fru!<E~ ucs&^csu!2E~ ufr&^fru!. ~14!

We use continuity of entanglement,15,16 Lemma 1~which indicates that the pure state has supp
on a space of dimension at mostdAB

4 !, and the fact thatu^csufr&u5u^cs8 ucr8&u5F(r,s) to bound

Ep~s!2Ep~r!<5D~r,s!logdAB
4 22D~r,s!logD~r,s! ~15!

for small enoughD(r,s). We can obtain the full bound in Eq.~12! by alternatively relatingucs8 &
to the optimal purificationufs& by a unitary transformationU. h

It is fairly straightforward to prove monotonicity of the entanglement of purification fr
monotonicity of entanglement:

Lemma 2 (monotonicity of the entanglement of purification): The entanglement of purific
of a density matrixr is nonincreasing under strictly local operations. Let Alice carry out a lo
TCP mapSA on the stater. We have

Ep~~SA^ 1!~r!!<Ep~r!. ~16!

Let Alice carry out a local measurement onr through which she obtains the stater i with prob-
ability pi . We have

(
i

piEp~r i !<Ep~r!. ~17!

Let LLOq be a local operation assisted by m qubits of communication. The entangleme
purification obeys the equation

Ep~LLOq~r!!<Ep~r!1m. ~18!

Proof: Let ucr& be the optimal purification ofr. This optimal purification is related tosome
purification of (SA^ 1)(r) by a unitary transformation on Alice’s system only. Then Eq.~16!
follows from the fact that entanglement is nonincreasing under local partial traces. The
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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uc i&5 Ai ^ I Buc&/A^cuAi
†Ai ^ I Buc&, whereAi corresponds to a measurement outcome of Alice

some purification ofr i . The entanglement is nonincreasing under local operations and thus

Ep~r!5E~ ucr&^cru!>(
i

piE~ uc i&^c i u!>(
i

piEp~r i !. ~19!

For the last inequality, let Alice and Bob start with the entangled stateucr& and carry out their LOq
protocol. By subadditivity of entropy, the entanglement of this state can increase by at mostm bits
when m qubits of communication are sent~back and forth!. Thus the entanglement of the fina
state which is some purification ofLLOq(r) is smaller than or equal toEp(r)1m. h

Now we are ready to prove our main theorem:
Theorem 2: The entanglement cost ofr on Hd^ Hd without classical communication equa

ELOq(r)5Ep
`(r).

Proof: The inequalityELOq(r)<Ep
`(r) uses entanglement dilution. Letk be the number of

copies ofr for which the regularized entanglement of purificationEp
` is achieved. One way o

making many (p) copies ofr ^ k out of EPR pairs ando(p)<o(pk) classical communication is to
first perform entanglement dilution on the EPR pairs so as to create~an approximation to! the
purification uc& ^ p and then trace over the additional registers to getr ^ kp. The other inequality
Ep

`(r)<ELOq(r) can be proved from monotonicity and continuity of the entanglement of pu
cation. We start withn EPR pairs which haveEp equal ton. The LOq process for creating a
approximationr̃k to r ^ k using o(k) qubits of communication increases the entanglemen
purification by at mosto(k) bits, see Lemma 2, orEp( r̃k)<n1o(k). Using the continuity of
Theorem 1 and dividing the last inequality byk and taking the limitk→` gives Ep

`(r)
<ELOq(r). h

III. MUTUAL INFORMATION LOWER BOUNDS

The entanglement costELOq is a measure of the quantum and classical correlations
quantum state. The quantum and classical mutual information of a quantum state are
measures that capture correlations in a quantum state. How do these measures relate to
correlation measure? The quantum mutual informationI q(rAB) is defined as

I q~rAB!5S~rA!1S~rB!2S~rAB!. ~20!

We define the classical mutual information of a quantum stateI c(rAB) as

I c~rAB!5 max
MA :pA ,MB :pB

H~pA!1H~pB!2H~pAB!. ~21!

Here local measurementsMA andMB give rise to local probability distributionspA andpB . The
classical mutual information of a quantum state is the maximum classical mutual informatio
can be obtained by local measurements by Alice and Bob. Both quantum as well as cl
mutual information share the important property that they are nonincreasing under local ope
~LO! by Alice and Bob. For the classical mutual information, this basically follows from
definition Eq.~21!. The definition itself as a maximum over local measurements makes sense
the classical mutual information of a probability distribution is nonincreasing under local ma
lations of the distribution. The proof of this well known fact is analogous to the proof for
quantum mutual information which we will give here for completeness.

We can write the quantum mutual information as

I q~rAB!5S~rABuurA^ rB!, ~22!

whereS(.uu.) is the relative entropy. The relative entropy is nonincreasing under any mapL ~cf.
Ref. 17!, i.e.,
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S~L~rAB!uuL~rA^ rB!!<S~rABuurA^ rB!. ~23!

When L is of a local form, i.e.,LA^ LB , the lhs of this equation equals the quantum mut
information of the state (LA^ LB)(rAB) and thus the inequalityI q((LA^ LB)(rAB))<I q(rAB) is
proved.

Proof of lower bounds

We show that the quantitiesI q(r)/2 and the regularized classical informationI c
`(r)

5 limn→` (I c(r
^ n)/n) are both lower bounds for the entanglement costELOq . The argument is

similar to the proof of theEp
` lower bound onELOq in Theorem 2.@The reasoning is in fact a

special case of Theorem 4 in Ref. 18~cf. Ref. 19! applied to the class LOq instead of the origin
LOCC.#

We start with a number, sayk, of EPR pairs which haveI q52k and I c equal tok.20 In the
limit of large n, the ratiok/n is the entanglement costELOq(r). We apply the LOq mapL which
useso(n) communication to obtain an approximationr̃n to r ^ n. Since the quantum mutua
information and the classical mutual information can only increase byo(n) by the processL
applied to the initial EPR pairs, see Lemma 3, it follows that

I q~ r̃n!<o~n!12k, ~24!

and similarly

I c~ r̃n!<o~n!1k. ~25!

The last step is to relate the mutual informations ofr̃n to the mutual information ofr ^ n. For this,
we need a continuity result of the form

uI q/c~s!2I q/c~r!u<C logdir2si11O~1! ~26!

for r, s on Hd , ir2si1 sufficiently small andC is some constant.21 Below we will prove these
desired continuity results. We can divide Eqs.~24! and~25! by n and take the limit of largen. We
use the continuity relation of Eq.~26! and the fact that in the largen limit r̃n tends tor ^ n. Thus
we have

lim
n→`

I q~r ^ n!

n
5I q~r!<2ELOq~r!, ~27!

where we used that the quantum mutual information is additive, and similarly

I c
`~r!<ELOq~r!. ~28!

What remains is to prove the continuity relations and the nonincrease moduloo(n) under LOq
operations.

Continuity of mutual information

The continuity of the quantum mutual informationI q(r) can be proved by invoking Fanne
inequality22 and Ruskai’s proof of nonincrease of the trace-distance under TCP maps.23 Let r and
s be two density matrices which are close, i.e.,ir2si15Trur2su<e for sufficiently smalle. We
have

uI q~rAB!2I q~sAB!u<uS~rA!2S~sA!u1uS~rB!2S~sB!u1uS~sAB!2S~rAB!u, ~29!

which can be bounded as

uI q~rAB!2I q~sAB!u<3 logdABirAB2sABi113h~ irAB2sABi1!, ~30!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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whereh(x)52x logx and ir2si1< 1
3.

It is not hard to prove the continuity of the classical information of a quantum state, a
using the nonincrease ofi .i1 under TCP maps. LetMA

r and MB
r be the optimal measuremen

achieving the classical mutual informationI c(r). Under this measurement the statesr and s,
which is, say, close tor, go to probability distributionspr( i , j ) andps( i , j ) which are close again
i.e., ipr2psi1<ir2si1 . We have that

I c~s!2I c~r!<I ~ps!2I ~pr!< logkipr2psi11O~1!, ~31!

where k is the number of joint outcomes in the optimal measurement (MA
r ,MB

r ) and I is the
classical mutual information of a joint probability distribution. The last inequality in Eq.~31!
could in principle be derived from Fannes’ inequality, using diagonal matrices, but it is a sta
continuity result in information theory24 as well. To finish the argument, we should argue thatk,
the number of joint measurement outcomes, is bounded. The classical mutual informationI is a
concave function of the joint probabilityp( i , j ).24 Therefore only extremal measurementsMA and
MB need to be considered in the optimization over measurements. An extremal measurem
at mostd2 outcomes when acting on a space of dimensiond ~Ref. 25! and thusk<dAB

2 . The same
argument, interchangings andr, can be used to upperboundI c(r)2I c(s).

Lemma 3 (monotonicity properties of mutual information): LetL consist of a series of loca
operations assisted by m qubits of two-way communication. The quantum mutual inform
obeys the inequality

I q~L~s!!<I q~s!12m, ~32!

for all statess. For the classical mutual information we have

I c~L~ uc&^cu!<I c~ uc&^cu!1m, ~33!

for all pure statesuc&.
Proof: Let us first consider the quantum mutual information. We can decompose the two

schemeL into a sequence of one-way schemes. It is sufficient to prove for such a one-way s
usingm qubits of communication, say from Alice to Bob, that

I q~L~s!!<I q~s!12m. ~34!

Alice’s local action can consist of adding an ancillaA8 in some state and apply a TCP map to t
systemsAA8 thus obtaining the statesAA8:B . Such an action does not increase the quantum
classical mutual information as we showed before. Now Alice sends systemA8 to Bob. We have

I q~sAB!>I q~sAA8:B!5S~AA8!1S~B!2S~AA8B!

>S~AA8!2S~A8!1S~BA8!2S~AA8B!

>S~A!22S~A8!1S~BA8!2S~AA8B!

5I q~sA:BA8!22S~A8!, ~35!

where we useduS(A)2S(B)u<S(AB)<S(A)1S(B). The quantum mutual information of th
final state isI q(sA:BA8). SinceS(A8)<m, we obtain the needed inequality. Alice could send o
a part of ancillaA8, but this does not change the bound.

Let us now consider the classical mutual information. We may convert the entire procL
into a coherent processL where all the measurements are deferred to the end; this does not c
the amount of communication that Alice and Bob carry out. Thus, prior to the measurements
and Bob have converted the pure stateuc& into some pure stateuf& whose local entropy is at mos
E1m whereE is the entanglement of the stateuc&, which is equal toI c(uc&^cu) ~see Ref. 20!.
Now Alice and Bob locally measure and/or trace out some registers which are operations t
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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not increase the classical mutual information. Therefore the final stateL(uc&^cu) has a classica
mutual information that is bounded by the initial classical mutual information plusm. h

Remark:Note that Eq.~32! for the quantum mutual information applies to both pure a
mixed states while we have found mixed states that violate Eq.~33! for the classical mutua
information.

Let us state the final result once more:
Corollary 1: ELOq(r)>I q(r)/2 and ELOq>I c

`(r).
With this corollary we can show that the LOq-entanglement cost of any correlated de

matrix r is nonzero.26 Indeed, the quantum mutual informationI q(r) of a correlated density
matrix is strictly larger than zero, sinceS(rAB) is strictly less thanS(rA)1S(rB) ~equality is only
obtained whenrAB5rA^ rB! and thereforeELOq(r).0.

We present a simple example for whichELOq(r)5Ep
`(r).I q(r)/2.

Example 1 (All correlation is classical correlation): Consider the separable stater
5( i pi uai&^ai u ^ ubi&^bi u where ^ai uaj&5d i j and ^bi ubj&5d i j . In this case Iq(r)/25H(p)/2.
However, we can show that Ep(r)>H(p). We have@cf. Eq. (8)# m(r)5( i pi ubi&^bi u ^ u i &^ i u.
Under some local TCP mapL we obtain a statem85( i pi ubi&^bi u ^ r i where r i are density
matrices. The entropy ofm8 equals S(m8)5( i piS(r i)1H(p)>H(p). The entanglement of pu
rification Ep(r) may be nonadditive, so we have to consider Ep(r ^ n). We havem(r ^ n)5m ^ n

and nowm85( i 1 ,...,i n
pi 1

¯pi n
u i 1 ,...,i n&^ i 1 ,...,i nu ^ r i 1 ,...,i n

. Again the von Neumann entropy o

m8 is larger than or equal to nH(p). Note that in this example we do achieve the classical mu
information lower bound.

Here is an example where the upper and lower bounds fix the~regularized! entanglement of
purification:

Example 2: Letr be an equal mixture of the stateuC0&5 (1/&) (u00&1u11&) and uC1&
5 (1/&) (u00&2u11&). Alice and Bob can get one bit of classical mutual information by b
measuring in the$0,1% basis. Thus ELOq(r)>I c(r)51, but ELOq(r)<S(rA)<1, Eq. (10). There-
fore ELOq51.

IV. OTHER CORRELATION MEASURES: THE LOCALLY INDUCED HOLEVO
INFORMATION

In Ref. 1 the authors considered the locally induced Holevo information as a measu
classical correlations in the state. It is defined either with respect to Alice’s measurement (CA) or
Bob’s measurement (CB)

CA/B~r!5 max
MA /MB

SS (
i

pi
B/Ar i

B/AD 2(
i

pi
B/AS~r i

B/A!, ~36!

whereMA(MB) on r gives reduced density matricesr i
B(r i

A) with probability pi
B(pi

A). The clas-
sical mutual informationI c

`(r) will in general be less than these quantities, since to achieve
Holevo information one may have to do coding. In Ref. 1 it was shown thatCA/B are nonincreas-
ing under local operations. We leave it as an exercise for the reader to prove continuit
nonincrease moduloo(n) under LOq operations~applied to some pure state!, thus showing that
the regularized versions of these two quantities are also lower bounds forELOq .

Bell-diagonal states

We show that for Bell-diagonal statesrBell the quantityCA ~equal toCB by symmetry of the
Bell-diagonal states! is equal to the classical capacity of the corresponding qubit channels. B
previous arguments this give us some lower bounds on the regularized entanglement of p
tion of these states. The Bell-diagonal states are of the following form,

rBell5(
i

pi uC i&^C i u, ~37!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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whereC0...3 are the four Bell states whereuC0& is (1/&) (u00&1u11&). The corresponding chan
nel, the so called generalized depolarizing channel, or Pauli channel, is of the form

Lr~• !5(
i

pis i~• !s i , ~38!

wheres051, ands1,2,3 are the three Pauli matrices. It is known27 that all two qubit states with
maximally mixed subsystems are Bell-diagonal, up to a unitary transformationUA^ UB . From the
isomorphism between states and channels,8,11,28it follows that all unital channels are of the form
~38! ~cf. Ref. 29!, up to unitary transformations applied before and after the action of the cha
The classical one-shot capacity of the quantum channelL is given by30,31

C1~L!5 sup
$qi ,r i %

x~$qi ,L~r i !%!, ~39!

wherex is the Holevo function of the ensemble

x~$qi ,r i%!5SS (
i

qir i D 2(
i

qiS~r i !. ~40!

The optimal statesr i that achieve the capacityC1 are always pure states, moreover it can
shown29 that the ensemble$qi ,uc i&% that achievesC1 for unital one-qubit channels satisfies

(
i

qi uc i&^c i u5
1

2
1. ~41!

Let us argue thatCA(r)5C1(L) for a Bell-diagonal staterBell5(1A^ Lr)(uC0&^C0u). Al-
ice’s POVM measurement on this state commutes with the channelLr . By doing a measuremen
on uC0& she can create any pure-state-ensemble on systemB, obeying the relation Eq.~41!. This
ensemble is then sent through the channelLr . If the ensemble is optimal forC1 , then its Holevo
informationx equalsC1 and thusCA5C1 .

For unital one-qubit channelsC1 is given by29,32

C1~L!512min
c

S~L~ uc&^cu!!. ~42!

We can perform the minization in the last inequality and we obtain the following formula fo
capacity of a Pauli channel or the induced Holevo information of the Bell-diagonal states,

CA~rBell!5C1~Lr!512H~12l!, ~43!

wherel is the sum of the two largest probabilitiespi and H(.) is the binary entropy function
H(x)52x logx2(12x)log(12x). For two-qubit Werner states of the form

rW5euC0&^C0u1~12e!/3(
i 51

3

uC i&^C i u, ~44!

we obtain

CA512HS 112e

3 D for ePF1

4
,1G ,

~45!

CA512HS 222e

3 D for ePF0,
1

4G .
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It was shown by King32 that the classical capacity of unital one-qubit channels is equal to
one shot capacity, orC15C1

`[ limn→` (1/n) C1(r ^ n). ThereforeCA5CA
`5C1 , which is a lower

bound onELOq .

V. WERNER STATES

A numerical minimization based on Eq.~6! was performed for the Werner states Eq.~44! for
Ep . We plot the results as a function of theuC0& eigenvaluee in Fig. 1. We permitted various
output dimensions; The two curves shown have dim(A8)5dim(B8)52 and dim(A8)5dim(B8)
54. In the first case, the initial variable of the minimization was determined by a random34
unitary UA8B8 picked according to the Haar measure. In the second case, the initial poin
determined by a random 1634 isometry picked according to a parameterization derived from R
33. We did not explore the largest dimensions permitted by Lemma 1, which would have req
an optimization over a 6434 isometry.

It is evident from the numerics presented in the figure that theCA bound of Eq.~45! is not
achieved for the Werner states: theCA lower bound is only tight at the trivial pointse5 1

4 ande
51. Our results indicate thatEp is a very complex function, neither concave nor convex, w
several distinct regimes. In fact, we find four different regimes in our numerics:~I! In this regime
the standard purification of Eq.~5! appears to be optimal, so theU of Eq. ~6! is the identity, and
the purifying dimensions are dim(A8)51 and dim(B8)54. This regime only extends over a tin
range, approximately 0<e<0.005. ~II ! In the range 0.005<e<0.25 we find an optimal purifica-
tion of the form

AeuC0&ABuC0&A8B81A12e

3
~ uC1&ABuC1&A8B81uC2&ABuC2&A8B81uC3&ABuC3&A8B8).

~46!

In this region theEp curve is given byEp52x logx2(12x)log((12x)/3), with x5(112e
22)Ae(12e))/12. Here the purifying dimensions are dim(A8)52 and dim(B8)52. Of course
Ep drops to zero for the completely mixed state ate5 1

4. ~III ! In the range 0.25<e<0.69 we also
find purifying dimensions dim(A8)52 and dim(B8)52, but we were unable to determine th

FIG. 1. Numerical bounds onEp for Werner states. In the upper curve we restrict to dim(A8)5dim(B8)52; for the next
curve, we permit dim(A8)5dim(B8)54. The inset shows the curious behavior ofEp around the point where the eigen
value ofuC0& approaches zero. The dotted curve is theCA lower bound of Sec. IV A. The dashed curve is the entanglem

of formation lower bound which vanishes when the eigenvalue is smaller than or equal to
1
2.
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analytical form of the purifying state or ofEp . ~IV ! In the range 0.69<e<1 the purifying
dimensions were dim(A8)52 and dim(B8)53. Again, we were unable to come to any analytic
understanding of the result. Of course,Ep51 for e51, corresponding to the pure maximal
entangled state.

VI. CONCLUSION

We have shown that the entanglement costELOq(r) is equal to the regularized entangleme
of purification. It is an open question whether the entanglement of purification is additive:

Ep~r ^ r!5
?

Ep~r!1Ep~r!. ~47!

In the alternative formulation using the statem(r) the additivity question is the following. Is the
minimum in

min
LCD

S~~ I AB^ LCD!~mAC^ mBD!!, ~48!

achieved by a TCP mapLCD5S^ S? This problem is similar again to the additivity questio
encountered in Ref. 14 where a local map could possibly lower the ratio of the coherent inf
tion and the entropy of many copies of a state together.

It is interesting not only to ask the formation question with respect to this class LOq, bu
consider ‘‘the distillation’’ question. One can consider different versions. For example, how m
entanglement can we distill fromr using o(n) communication? One would expect that th
quantityDLOq(r) is always zero for states for which the entanglement costEc ~usingLOCC! is
lower than the distillable entanglementD. We do not have a proof of this statement, relati
irreversibility to a need for classical communication.

Instead of trying to convert the correlations inr back to entanglement, we may ask wh
classical correlations Alice and Bob can establish usingr. We could allow Alice and Bob to
perform an asymptotically vanishing amount of communication in this extraction process. A
bit of communication could potentially increase the classical mutual information in a qua
state by a large amount~when the classical correlation is initially ‘‘hidden’’!, thus this may not be
the best problem to pose. Researchers34,35have investigated the possibly more interesting probl
of the secretkey K that Alice and Bob can establish givenr where one allows arbitrary public
classical communication between the parties. There is again more than one version of thi
lem, one in which Eve possesses the purification of the density matrix34 and a situation in which
Eve is initially uncorrelated with the density matrix. In Ref. 36 a general framework is devel
to address these issues also in the multipartite setting.

Quite recently, entanglement properties of bipartite density matrices were studied by lo
at mixed extensions of the density matrix.37 It would be interesting to explore the connectio
between our results here on the entanglement of purification and this other approach.
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