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Abstract

The support vector machine (SVM) is a widely used tool fossification. Many efficient imple-
mentations exist for fitting a two-class SVM model. The uszs to supply values for the tuning
parameters: the regularization cost parameter, and tinelkegarameters. It seems a common prac-
tice is to use a default value for the cost parameter, oftaditg to the least restrictive model.
In this paper we argue that the choice of the cost parametebearitical. We then derive an
algorithm that can fit the entire path of SVM solutions formvealue of the cost parameter, with
essentially the same computational cost as fitting one SVidahd/Ne illustrate our algorithm on
some examples, and use our representation to give furtsighirinto the range of SVM solutions.

Keywords: support vector machines, regularization, coefficient path

1. Introduction

In this paper we study the support vector machine (SVM)(Vapnik, 19@8)lkopf and Smola,
2001) for two-class classification. We have a set thining pairsx, y;, wherex; € RP is a p-vector
of real-valued predictors (attributes) for tith observation, ang € {—1,+1} codes its binary
response. We start off with the simple case of a linear classifier, whergoall is to estimate a
linear decision function

f(x) =Bo+Bx, 1)
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Figure 1: A simple example shows the elements of a SVM model. The “+1” poirtsalid,
the “-1” hollow. C = 2, and the width of the soft margin is/@B|| = 2 x 0.587. Two
hollow points{3,5} are misclassified, while the two solid point$0,12} are correctly
classified, but on the wrong side of their margitx) = +1; each of these h&s > 0. The
three square shaped poiq® 6,7} are exactly on the margin.

and its associated classifier
Clasgx) = signf (x)]. 2

There are many ways to fit such a linear classifier, including linear reigres-isher’s linear
discriminant analysis, and logistic regression (Hastie et al., 2001, Ch@ptérthe training data
are linearly separable, an appealing approach is to ask for the decmimldry{x: f(x) = 0}
that maximizes the margin between the two classes (Vapnik, 1996). Solvihgaguoblem is an
exercise in convex optimization; the popular setup is

ani[?%HBHZ subject to, for each iy (Bo+ X' B) > 1. (3)
0

A bit of linear algebra shows th 1”(BO+XTB) is the signed distance from to the decision
boundary. When the data are not separable, this criterion is modified to

min ||B||2+czlz., (4)

subjectto,foreach VilBo+xB) > 1-§&.
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Figure 2: The hinge loss penalizes observation margfiis) less than+1 linearly, and is indiffer-
ent to margins greater thapl. The negative binomial log-likelihood (deviance) has the
same asymptotes, but operates in a smoother fashion nealbtiveaty f(x) = 1.

Here theg; are non-negative slack variables that allow points to be on the wrong fsileio“soft
margin” (f (x) = £1), as well as the decision boundary, @& a cost parameter that controls the
amount of overlap. Figure 1 shows a simple example. If the data are bepadhen for sufficiently
large C the solutions to (3) and (4) coincide. If the data are not separabl€, gets large the
solution approaches the minimum overlap solution with largest margin, which iseattfor some
finite value ofC.

Alternatively, we can formulate the problem usind.ess+ Penaltycriterion (Wahba et al.,
2000; Hastie et al., 2001):

n
i3 (1w (Bo-+ 67+ HBIE ®
The regularization parameterin (5) corresponds to /C, with C in (4). Here thehinge loss
L(y, f(x)) = [1—yf(X)]+ can be compared to the negative binomial log-likelihadg, f (x)) =
log[1+ exp(—yf(x))] for estimating the linear function(x) = By + B x; see Figure 2.

This formulation emphasizes the role of regularization. In many situations wee dudficient
variables (e.g. gene expression arrays) to guarantee separatiomayVeevertheless avoid the
maximum margin separatok ( 0), which is governed by observations on the boundary, in favor of
a more regularized solution involving more observations.

This formulation also admits a class of more flexible, nonlinear generalizations

n
miny L(y;, f(x))+AJ(f), 6
min 3 L 1)) +A3() ®)
wheref (X) is an arbitrary function in some Hilbert spagg andJ(f) is a functional that measures
the “roughness” off in #.

The nonlineakernel SVMs arise naturally in this context. In this cabgx) = 3o + 9(x), and
J(f) =J(g) is a norm in a Reproducing Kernel Hilbert Space of functidiis generated by a
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Radial KernelC=2,y=1 Radial KernelC = 10,000,y =1

Training Error: 0.160 " P Training Error: 0.065
Test Error: ~ 0.218 o H : Test Error: ~ 0.307
Bayes Error:  0.210 SR Bayes Error:  0.210 0

Figure 3: Simulated data illustrate the need for regularization. The 200 disis poe generated
from a pair of mixture densities. The two SVM models used radial kernels wéthdhle
and cost parameters as indicated at the top of the plots. The thick bladscan the
decision boundaries, the dotted curves the margins. The less reguffrizedhe right
overfits the training data, and suffers dramatically on test error. THesbnpurple curve
is the optimal Bayes decision boundary.

positive-definite kerneK(x,x’). By the well-studied properties of such spaces (Wahba, 1990; Ev-
geniou et al., 1999), the solution to (6) is finite dimensional (evekifis infinite dimensional), in
this case with a representatidiix) = Bo + Y., 6iK(X,X). Consequently (6) reduces to the finite

form
n
lej

With L the hinge loss, this is an alternative route to the kernel SVM; see Hastie(@0al) for
more details.

It seems that the regularization paramelefor A) is often regarded as a genuine “nuisance
in the community of SVM users. Software packages, such as the widelyygdd" (Joachims,
1999), provide default settings f@, which are then used without much further exploration. A
recent introductory document (Hsu et al., 2003) supporting.tilBSVM package does encourage
grid search foC.

Figure 3 shows the results of fitting two SVM models to the same simulated data sedafeh
are generated from a pair of mixture densities, described in detail in Haati€2001, Chapter 2.
The radial kernel functiok (x,x') = exp(—Y||x—X||?) was used, witly = 1. The model on the left
is more regularized than that on the riglit£€ 2 vsC = 10,000, orA = 0.5 vsA = 0.0001), and

>

min iL[yi,B(H— ieiK(xi,xj)] +%
= J:

0,0,/ K(xi,X,). 7
[3079i 1]](]]) ()

1. The actual training data and test distribution are available from
http:// wwestat.stanford. edu/ El enfSt at Lear n.
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Figure 4: Test error curves for the mixture example, using four difteralues for the radial kernel
parametery. Small values ofC correspond to heavy regularization, large value€ o6
light regularization. Depending on the valueywthe optimalC can occur at either end of
the spectrum or anywhere in between, emphasizing the need for ceebdation.

performs much better on test data. For these examples we evaluate theotdsy artegration over
the lattice indicated in the plots.

Figure 4 shows the test error as a functiol©dor these data, using four different values for the
kernel scale parametgr Here we see a dramatic range in the correct choic€ftar A = 1/C);
wheny = 5, the most regularized model is called for, and we will see in Section 6 th&\iMeis
really performing kernel density classification. On the other hand, whef.1, we would want to
choose among the least regularized models.

One of the reasons that investigators avoid extensive explorati@hisfthe computational
cost involved. In this paper we develop an algorithm which fits éhéire pathof SVM solu-
tions [Bo(C),B(C)], for all possible values df, with essentially the computational cost of fitting a
single model for a particular value @. Our algorithm exploits the fact that the Lagrange multi-
pliers implicit in (4) are piecewise-linear @. This also means that the coefficie{<) are also
piecewise-linear irC. This is true for all SVM models, both linear and nonlinear kernel-based
SVMs. Figure 8 on page 1406 shows these Lagrange paths for the mixameple. This work
was inspired by the related “Least Angle Regression” (LAR) algorithnfifing LASSO models
(Efron et al., 2004), where again the coefficient paths are piecewesrlin

These speedups have a big impact on the estimation of the accuracy ofdsiieriausing a
validation dataset (e.g. as in K-fold cross-validation). We can rapidly ctene fit for each test
data point for any and all values 6f and hence the generalization error for the entire validation set
as a function oC.

In the next section we develop our algorithm, and then demonstrate its capgbitittenumber
of examples. Apart from offering dramatic computational savings whempading multiple solu-
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tions (Section 4.3), the nature of the path, in particular at the boundanieds sight on the action
of the kernel SVM (Section 6).

2. Problem Setup

We use a criterion equivalent to (4), implementing the formulation in (5):
n A -
min i+ = 8
mir i;& -P'B 8
subjectto :-yif(x) <&; & >0; f(X) =Po+ I3TX-

Initially we consider only linear SVMs to get the intuitive flavor of our proceduve then general-
ize to kernel SVMs.
We construct the Lagrange primal function

n )\ n n
Lp: i;Ei+§BTB+i;ai(1—yif(xi)—Ei)—i;wii ©)
and set the derivatives to zero. This gives
d 12
B B= X'zlaiYiXi; (10)
0 A -
— i = 0, 11
0 1
g i 1-vi, (12)
along with the KKT conditions
ai(1-yif(x)—&) = 0, (13)
viéi = 0. (14)

We see that & a; < 1, witha; = 1 wheng; > 0 (which is whery; f (x;) < 1). Also wheny; f(x;) > 1,
& = 0 since no cost is incurred, ang= 0. Wheny; f (X)) = 1, a; can lie between 0 and?.

We wish to find the entire solution path for all valuesh\of 0. The basic idea of our algorithm
is as follows. We start with large and decrease it toward zero, keeping track of all the events that
occur along the way. A& decreaseg|f|| increases, and hence the width of the margin decreases
(see Figure 1). As this width decreases, points move from being insidédid@the margin. Their
correspondingi; change frono; = 1 when they are inside the margy{(x) < 1) toa; = 0 when
they are outside the margiy €(x) > 1). By continuity, points must linger on the marginf((x) =
1) while theira; decrease from 1 to 0. We will see that thg\) trajectories are piecewise-linear
in A, which affords a great computational savings: as long as we can eltdigibreak points, all

2. For readers more familiar with the traditional SVM formulation (4), wéerthat there is a simple connection be-
tween the corresponding Lagrange multipliers= aj/A = Ca;, and hence in that casg € [0,C]. We prefer our
formulation here since our; € [0, 1], and this simplifies the definition of the paths we define.
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values in between can be found by simple linear interpolation. Note that p@inteeturn to the
margin, after having passed through it.

It is easy to show that if the;(A) are piecewise linear iN, then botha!(C) = Ca;(C) andB(C)
are piecewise linear i@. It turns out tha3p(C) is also piecewise linear i6. We will frequently
switch between these two representations.

We denote byl the set of indices correspondingyo= +1 points, there being; = |L| in
total. Likewise forI_ andn_. Our algorithm keeps track of the following sets (with names inspired
by the hinge loss function in Figure 2):

e £E={i:yif(x) =1, 0<a; <1}, E for Elbow,
o L={iyif(x)<1, a;=1}, L for Left of the elbow,
o R={iyif(x)>1, a;=0}, R for Right of the elbow.

3. Initialization

We need to establish the initial state of the sets defined above. Wisarery large ¢), from (10)
B =0, and the initial values dby and thea; depend on whethar_ = n, or not. If the classes are
balanced, one can directly find the initial configuration by finding the mostdrpoints in each
class. We will see that whemn. # n., this is no longer the case, and in order to satisfy the constraint
(11), a quadratic programming algorithm is needed to obtain the initial configuira

In fact, ourSvnPat h algorithm can be started at any intermediate solution of the SVM optimiza-
tion problem (i.e. the solution for an), since the values af; and f (x;) determine the sets, £
and®. We will see in Section 6 that if there is no intercept in the model, the initializationagag
trivial, no matter whether the classes are balanced or not. We have guesiane MPEG movies
to illustrate the two special cases detailed below. The movies can be dowlatte web site
http://wwe-stat.stanford. edu/ ~hasti e/ Papers/svm MV E .

3.1 Initialization: n_ =n_

Lemma 1 For A sufficiently large, all thex; = 1. The initial o € [—1,1] — any value gives the
same los§ ! & =n +n_.

Proof Our proof relies on the criterion and the KKT conditions in Section 2. Sined, f(x) = Po.
To minimize ¥, &, we should clearly restriflo to [—1,1]. Forfo € (—1,1), all the§; >0,y =0
in (12), and hence; = 1. Picking one of the endpoints, sfy = —1, causes; =1,i € I,, and
hence als@; =1, i € I_, for (11) to hold. |

We also have that for these early and large values of

1

B= XB* wheref3* = i;yixi. (15)

Now in order that (11) remain satisfied, we need that one or more positi/@egative examples
hit the elbowsimultaneouslyHence a3 decreases, we require thaty; f(x) <1 or

B*Txi
Nt Bo

Yi <1 (16)
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Figure 5: The initial paths of the coefficients in a small simulated datasetrwith n.. We see
the zone of allowable values f@p shrinking toward a fixed point (20). The vertical lines
indicate the breakpoints in the piecewise linear coefficient paths.

or

Bo < 1- B*;Xi forallie I, 17)

Bo > —-1- B*;Xi forallie I_. (18)
Pick i, = argmaxc;, B*'x andi_ = argminc; B*'x (for simplicity we assume that these are

unique). Then at this point of entry and beyond for a while we rave=a; , andf(x,) =1
andf(x_) = —1. This gives us two equations to solve for the initial point of eAgyandBo, with
solutions

Ty, _ Exly.
ho = PN 19
«To, «To,

Figure 5 (left panel) shows a trajectory B§(C) as a function ofC, for a small simulated data
set. These solutions were computed directly using a quadratic-programigorghan, using a
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Figure 6: The initial paths of the coefficients in a case where< n,.. All the n_ points are
misclassified, and start off with a margin efl.. Thea; remain constant until one of
the points inI_ reaches the margin. The vertical lines indicate the breakpoints in the
piecewise lineaB(C) paths. Note that the;(C) arenot piecewise linear ifC, but rather
inA=1/C.
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predefined grid of values fox. The arbitrariness of the initial values is indicated by the zig-zag
nature of this path. The breakpoints were found using our exact-paitithlg.

3.2 Initialization: ny > n_

In this case, whefd = 0, the optimal choice fog is 1, and the loss ig{‘zlii = n_. However, we
also require that (11) holds.

Lemma 2 WithB*(a) = S, viaix;, let

{af} = argmin||p*(a)]f? (21)
st.ajc (0,1 foriec I;,0ai=1forie I ,andyc; aj=n_ (22)
Then for somé we have that for alA > Ao, aj = a;', andp = B*/A, with * = S, yia;'x;.
Proof The Lagrange dual corresponding to (9) is obtained by substituting({®)into (9) (Hastie
et al., 2001, Equation 12.13):

n n n

Lp=") Oi— 5 O Ot Y Yir Xi i - (23)
iz& i 2A-: . A YiIYiIr AN

Since we start witf3 = 0, Bo = 1, all the I_ points are misclassified, and hence we will have
a; = 1vi € I_, and hence from (113" ; a; = 2n_. This latter sum will remain2_ for a while as

3 grows away from zero. This means that during this phase, the first tetime ibagrange dual is
constant; the second term is equal—teﬁ%HB*(G)Hz, and since we maximize the dual, this proves
the result. |

We now establish the “starting poirky andBo when thea; start to change. Lgi* be the fixed
coefficient direction corresponding ¢d (as in (15)):

n

B = 3 aivix. (24)

1=
There are two possible scenarios:

1. There exist two or more elementsin with 0 < o < 1, or
2. af € {0,1} Vie L.

Consider the first scenario (depicted in Figure 6), and supppse (0,1) (on the margin). Let
i_ =argmine; B*Txi. Then since the point. remains on the margin until ah. point reaches its
margin, we can find
BTx, —B %
5
identical in form to to (19), as is the correspondhigto (20).
For the second scenario, it is easy to see that we find ourselves in thesgaat®n as in
Section 3.1—a point fron?_ and one of the points id; with o = 1 must reach the margin
simultaneously. Hence we get an analogous situation, except witharg max 1 B*Txi, where
11 is the subset of; with ai = 1.

Ao (25)

1400



SVM REGULARIZATION PATH

3.3 Kernels

The development so far has been in the original feature space, sin@agies to visualize. It is
easy to see that the entire development carries through with “kernelsglasimwthis casef (x) =
Bo+ g(x), and the only change that occurs is that (10) is changed to

n
Z iViK(6, %), i=1,...,n, (26)

>‘|l—‘

or 8j(A) = ajy;/A using the notation in (7).
Our initial conditions are defined in terms of expressiﬁhEx-

i, for example, and again it is
easy to see that the relevant quantities are

n
g (%) = Y @ik, ), 27)
=1

where the; are all 1 in Section 3.1, and defined by Lemma 2 in Section 3.2.
Hereafter we will develop our algorithm for this more general kerned cas

4. The Path

The algorithm hinges on the set of poirfssitting at the elbow of the loss function — i.e on the
margin. These points hawef (xi) = 1 anda; € [0,1]. These are distinct from the poing to the
right of the elbow, withy; f(x) > 1 anda; = 0, and those pointg to the left withy; f(x) < 1 and

a; = 1. We consider this set at the point that an event has occurred. €hean be either:

1. The initial event, which means 2 or more points start at the elbow, with their etiaes of
a e [0,1].

2. A point from £ has just entered:, with its value ofa; initially 1.
3. A point from®_has reentered, with its value ofq; initially O.
4. One or more points i has left the set, to join eithe® or L.

Whichever the case, for continuity reasons this set will stay stable untilekteerent occurs,
since to pass throughi, a point'sa; must change from 0 to 1 or vice versa. Since all point&in
havey; f (x;) = 1, we can establish a path for their.

Event 4 allows for the possibility that becomes empty whil& is not. If this occurs, then
the KKT condition (11) implies thaL is balanced w.r.t. +1s and -1s, and we resort to the initial
condition as in Section 3.1.

We use the subscrigtto index the sets above immediately after e event has occurred.
Suppos€Z/| = m, and letaf, B andA, be the values of these parameters at the point of entry.
Likewise f¢ is the function at this point. For convenience we defige= Ao, and hence(‘é = )\gBé.

Since
1 n
f(x):—( yjoiK (X xj) +a >, (28)
by gl iYj i 0

1401



HASTIE, ROSSET TIBSHIRANI AND ZHU

for Ay > A > Ay 1 We can write

f(x) = [f(x)—%fg(x)}jL%fé(x)
— )% [Z (o —G?)yjK(X,Xj)—F(Go—dé)—i—)\gfe(X)] : (29)
IEE

The second line follows because all the observationg ihave theira; = 1, and those iR, have
theira; = 0, for this range oh. Since each of the pointsx; € £, are to stay at the elbow, we have
that

)—1\ Lzﬂ(aj —a)yiyiK (%, X}) +Yi(ao—ap) + A, | =1, Vi € . (30)
Writing 8; = a — aj, from (30) we have
z OiviyiK(Xi,Xj) +V¥ido =A,—A, Vie E. (31)
J€E
Furthermore, since at all timé&g'_; yia; = 0, we have that
> % =0. (32)

JE€E

Equations (31) and (32) constitute+ 1 linear equations im-+ 1 unknownsd;, and can be solved.
Denoting byKj; the mx m matrix with ijth entryy,y;K(x;,X;) for i andj in £, we have from
(31) that
K73+80yr = (Ar—A)1, (33)

wherey, is themvector with entriey;, i € £,. From (32) we have
y;6=0. (34)

We can combine these two into one matrix equation as follows. Let

_ 0 WT a _ 60 a__ 0
A(—(yé KZ), 6_(6>,and 1% = 1) (35)

then (34) and (33) can be written

A% = (N —N)12 (36)
If A, has full rank, then we can write
ba _ Ag—lla7 (37)
and hence
aj=ai— (A —A)bj, j € {0}UE. (38)

Hence forA,. 1 < A <A, thea; for points at the elbow procedihearly in A. From (29) we have

100 = 2 [100 ~ (9] +1 (0, (39)
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where
h'() =3 yibiK(x,x)) + bo. (40)
J€E

Thus the function itself changes in a piecewise-inverse manner in

If A, does not have full rank, then the solution paths for some ofaith@re not unique, and
more care has to be taken in solving the system (36). This occurs, fopéxawhen two training
observations are identical (tiedxrandy). Other degeneracies can occur, but rarely in practice, such
as three different points on the same margiiRfh These issues and some of the related updating
and downdating schemes are an area we are currently researchinglld® reported elsewhere.

4.1 FindingAs11

The paths (38)—(39) continue until one of the following events occur:

1. One of thay; for i € £, reaches a boundary (0 or 1). For eathe value ofA for which this
occurs is easily established from (38).

2. One of the points i’ or R * attainsy; f (x;) = 1. From (39) this occurs for poitat

F(x) —h'(x)
(S s

By examining these conditions, we can establish the ladgesh, for which an event occurs, and
hence establish, 1 and update the sets.

One special case not addressed above is when tielsetomes empty during the course of the
algorithm. In this case, we revert to an initialization setup using the points ihmust be the case
that these points have an equal number of +1's as -1's, and so wetheebalanced situation as in

3.1.
By examining in detail the linear boundary in examples where 2, we observed several

different types of behavior:

1. If |’E] = 0, than as\ decreases, the orientation of the decision boundary stays fixed, but the
margin width narrows ak decreases.

2. If |E| =1 or |E| = 2, but with the pair of points of opposite classes, then the orientation
typically rotates as the margin width gets narrower.

3. If |’E| = 2, with both points having the same class, then the orientation remains fixed, with
the one margin stuck on the two points as the decision boundary gets shwarkl io

4. If |’E| > 3, then the margins and hen€gx) remains fixed, as the;j(A) change. This implies
thath’ = f*in (39).

4.2 Termination

In the separable case, we terminate whigmecomes empty. At this point, all tigin (8) are zero,
and further movement increases the nornd ohnecessarily.

In the non-separable cask,runs all the way down to zero. For this to happen withdut
“pblowing up” in (39), we must havef‘ — h! = 0, and hence the boundary and margins remain
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fixed at a point wherg; §; is as small as possible, and the margin is as wide as possible subject to
this constraint.

4.3 Computational Complexity

At any update event along the path of our algorithm, the main computational burden is solving
the system of equations of sin@ = | Z,|. While this normally involve©O(m?) computations, since
Er11 differs from £, by typically one observation, inverse updating/downdating can reduce the
computations th(m,%). The computation ofi’(x;) in (40) requiresO(nimy) computations. Beyond
that, several checks of coS(n) are needed to evaluate the next move.

100
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gy, P !*?1;@1
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¥ "b‘i‘h;ge?@i?‘&é
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\ .
T
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le-04 1le-02

Figure 7: The elbow sized<€,| as a function o, for different values of the radial-kernel parameter
y. The vertical lines show the positions used to compare the timed wigwvm

We have explored using partitioned inverses for updating/downdatin@lingoss to the elbow
equations (for the nonsingular case), and our experiences are mixedir R implementations,
the computational savings appear negligible for the problems we have taekigdfter repeated
updating, rounding errors can cause drift. At the time of this publicationijnwact do not use
updating at all, and simply solve the system each time. We are currently explumerically
stable ways for managing these updates.

Although we have no hard results, our experience so far suggestthéhaital numben\ of
moves isO(kmin(n,,n_)), for k around 4- 6; hence typically some small multipteof n. If the
average size of, is m, this suggests the total computational burde®(sr’m+ nn¥), which is
similar to that of a single SVM fit.

Our R functionSvPat h computes all 632 steps in the mixture example £ n_ = 100, radial
kernel,y=1) in 1.44(0.02) secs on a Pentium 4, 2Ghz Linux machinestgunction (using the
optimized codé i bsvm from the R librarye1071) takes 9.28(0.06) seconds to compute the solution
at 10 points along the path. Hence it takes our procedure about 50%imern® compute the entire
path, than it costki bsvmto compute a typical single solution.
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We often wish to make predictions at new inputs. We can also do this efficiemtblifvalues
of A, because from (28) we see that (moduj@}. these also change in a piecewise-linear fashion
in A. Hence we can compute the entire fit path for a single ingatO(n) calculations, plus an
additionalO(nq) operations to compute the kernel evaluations (assuming it Egsfisoperations
to computeK (X, X)).

5. Examples

In this section we look at three examples, two synthetic and one real. We exaarirunning mix-
ture example in some more detail, and expose the nature of quadratic regidarin the kernel
feature space. We then simulate and examine a scaled-down versionpogtimeproblem—many
more inputs than samples. Despite the fact that perfect separation islpegsiiblarge margins, a
heavily regularized model is optimal in this case. Finally we fit SVM path modelgrtesnicroar-
ray cancer data.

5.1 Mixture Simulation

In Figure 4 we show the test-error curves for a large number of valugsamd four different values
for y for the radial kernel. Thesk; are in fact theentire collection of change points as described
in Section 4. For example, for the second panel, with1, there are 623 change points. Figure 8
[upper plot] shows the paths of all tiog(A), as well as [lower plot] a few individual examples. An
MPEG movie of the sequence of models can be downloaded from the finstrsuvebsite.

We were at first surprised to discover that not all these sequenbieved zero training errors
on the 200 training data points, at their least regularized fit. In fact the mitrenaing errors, and
the corresponding values fgrare summarized in Table 1. It is sometimes argued that the implicit

y | 5 1 05 01]
Training Errors| 0 12 21 33
Effective Rank | 200 177 143 7

Table 1: The number of minimal training errors for different values of tdial kernel scale pa-
rametery, for the mixture simulation example. Also shown is the effective rank of the
200x 200 Gram matrixy.

feature space is “infinite dimensional” for this kernel, which suggests thdeg separation is
always possible. The last row of the table shows the effective rankedkemelGram matrix K
(which we defined to be the number of singular values greater thalf)L0rhis 200x 200 matrix
has element&; ; = K(x;,Xj), i,j =1,...,n. In general a full rankK is required to achieve perfect
separation. Similar observations have appeared in the literature (Bacbraiath J2002; Williams
and Seeger, 2000).

This emphasizes the fact that not all features in the feature map impliéd dne of equal
stature; many of them are shrunk way down to zero. Alternatively, thdaggation in (6) and (7)
penalizes unit-norm features by the inverse of their eigenvalues, wifiédtieely annihilates some,
depending ory. Smally implies wide, flat kernels, and a suppression of wiggly, “rough” fun&ion
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Writing (7) in matrix form,
A
minL[y,K6]+=6"K®, 42
8079 [y’ ] + 2 ( )
we reparametrize using the eigen-decompositioi ef UDUT. Let K8 = UB* where®* = DUT6.
Then (42) becomes

. * A «Ty—1p*
L — D . 4
min [y, U6+ 78 0 (43)

Now the columns olJ are unit-norm basis functions (iR?) spanning the column space kf

1e-03 le+01

Eigenvalue
1e-07

le-11

le-15

0 50 100 150 200

Eigenvalue Sequence

Figure 9: The eigenvalues (on the log scale) for the kernel matkigesorresponding to the four
values ofy as in Figure 4. The larger eigenvalues correspond in this case to smoother
eigenfunctions, the small ones to rougher. The rougher eigenfungenzenalized ex-
ponentially more than the smoother ones. For smaller valugslud effective dimension
of the space is truncated.

from (43) we see that those members corresponding to near-zerovaliges (the elements of the
diagonal matriXD) get heavily penalized and hence ignored. Figure 9 shows the elemdht®iof
the four values of. See Hastie et al. (2001, Chapter 5) for more details.

5.2 p>n Simulation

The SVM is popular in situations where the number of features exceedartiigen of observations.
Gene expression arrays are a leading example, where a typical dratsiset 10,000 whilen < 100.
Here one typically fits a linear classifier, and since it is easy to separatatenelte optimal marginal
classifier is thele factochoice. We argue here that regularization can play an important rolesfee th
kinds of data.
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We mimic a simulation found in Marron (2003). We hgve- 50 andn = 40, with a 20-20 split
of “+” and “-" class members. Thg; are all iid realizations from &l(0, 1) distribution, except for
the first coordinate, which has mean +2 and -2 in the respective cfskes Bayes classifier in
this case uses only the first coordinatexofvith a threshold at 0. The Bayes risk i®02. Figure 10
summarizes the experiment. We see that the most regularized models do tiereestot the
maximal margin classifier.

Although the most regularized linear SVM is the best in this example, we noticstating
aspect of its endpoint behavior in the top-right plot. Althofgk determined by all the points, the
threshold3 is determined by the two most extreme points in the two classes (see Sectiontssl). T
can lead to irregular behavior, and indeed in some realizations from thid thaeas the case. For
values ofA larger than the initial valua1, we saw in Section 3 that the endpoint behavior depends
on whether the classes are balanced or not. In either casénaeases, the error converges to the
estimated null error rateqmin/n.

This same objection is often made at the other extreme of the optimal margin; émpvteypi-
cally involves more support points (19 points on the margin here), and tertsmore stable (but
still no good in this case). For solutions in the interior of the regularization, pla¢ise objections
no longer hold. Here the regularization forces more points to overlap thginm@upport points),
and hence determine its orientation.

Included in the figures are regularized linear discriminant analysis amtitogegression mod-
els (using the sam®, sequence as the SVM). Both show similar behavior to the regularized SVM,
having the most regularized solutions perform the best. Logistic regnesaibbe seen to assign
weightspi(1— p;) to observations in the fitting of its coefficierfisand o, where

B 1
14 e BB
is the estimated probability of 1 occurring at; (Hastie and Tibshirani, 1990, e.g.).

Pi (44)

¢ Since the decision boundary correspondg(tg = 0.5, these weights can be seen to die down
in a quadratic fashion from/#, as we move away from the boundary.

e The rate at which the weights die down with distance from the boundanndsye||B||; the

smaller this norm, the slower the rate.

It can be shown, for separated classes, that the limiting soluNanQ) for the regularized
logistic regression model is identical to the SVM solution: the maximal margin aepaRosset
et al., 2003).

Not surprisingly, given the similarities in their loss functions (Figure 2), betfularized SVMs
and logistic regression involve more or less observations in determining theiiosis, depending
on the amount of regularization. This “involvement” is achieved in a smoo#sidn by logistic
regression.

5.3 Microarray Classification

We illustrate our algorithm on a large cancer expression data set (Ramgstal., 2001). There
are 144 training tumor samples and 54 test tumor samples, spanning 14 commonlasses that

3. Here we have one important feature; the remaining 49 are noise. Wthssion arrays, the important features
typically occur in groups, but the total numbgers much larger.
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Figure 10: p > n simulation. [Top Left] The training data projected onto the space spanntgkby
(known) optimal coordinate 1, and the optimal margin coefficient vectardday a non-
regularized SVM. We see the large gap in the margin, while the Bayes-oplasalfter
(vertical red line) is actuallgxpectedo make a small number of errors. [Top Right] The
same as the left panel, except we now project onto the most regulari2da&afficient
vector. This solution is closer to the Bayes-optimal solution. [Lower Lefg @hgles
between the Bayes-optimal direction, and the directions found by the SYMdfg the
regularized path. Included in the figure are the corresponding deeffidor regularized
LDA (R)(Hastie et al., 2001, Chapter 4) and regularized logistic regmeds.)(Zhu
and Hastie, 2004), using the same quadratic penalties. [Lower Right] $herters
corresponding to the three paths. The horizontal line is the estimated Rdgassing
only the first coordinate.

1409



HASTIE, ROSSET TIBSHIRANI AND ZHU

account for 80% of new cancer diagnoses in the U.S.A. There are 1§é0&3 for each sample.
Hencep = 16,063 andn = 144. We denote the number of classeby: 14. A goal is to build a
classifier for predicting the cancer class of a new sample, given itsssiprevalues.

We used a common approach for extending the SVM from two-class to mulsi-classifica-
tion:

1. FitK different SVM models, each one classifying a single cancer class @rsus the rest
(-1).

2. Let[f}(x),..., f(x)] be the vector of evaluations of the fitted functions (with parametet
a test observatior

3. ClassifyC(x) = argmax f (x).

Other, more direct, multi-class generalizations exist (Rosset et al., 2088oWand Watkins,
1998); although exact path algorithms are possible here too, we wer¢oabiplement our ap-
proach most easily with the “one vs all” strategy above. Figure 11 showsetudts of fitting
this family of SVM models. Shown are the training error, test error, as vee8-#old balanced
cross-validatiorf. The training error is zero everywhere, but both the test and CV ercoease
sharply when the model is too regularized. The right plot shows similaltsassing quadratically
regularized multinomial regression (Zhu and Hastie, 2004).

Although the least regularized SVM and multinomial models do the best, this is dtidenp
good. With fourteen classes, this is a tough classification problem.

It is worth noting that:

e The 14 different classification problems are very “lop-sided”; in marsesa& observations
in one class vs the 136 others. This tends to produce solutions with all meaiteessmall
class on the boundary, a somewhat unnatural situation.

e For both the SVM and the quadratically regularized multinomial regressi@can reduce
the logistics by pre-transforming the data.Xfis then x p data matrix, withp > n, let its
singular-value decomposition kilDVT. We can replacX by then x n matrixXV = UD =R
and obtain identical results (Hastie and Tibshirani, 2003). The samedrarafonV is
applied to the test data. This transformation is applied once upfront, anétisdrmed data
is used in all subsequent analyses (i.e. K-fold cross-validation as well).

6. No Intercept and Kernel Density Classification
Here we consider a simplification of the models (6) and (7) where we leawh®intercept term
Bo. Itis easy to show that the solution fgfx) has the identical form as in (26):

90 = % ZIO‘JWK(X’XJ)' (45)
=

However, f(x) = g(x) (or f(x) = B"xin the linear case), and we lose the constraint (11) due to the
intercept term.
This also adds considerable simplification to our algorithm, in particular the initraditions.

4. By balanced we mean the 14 cancer classes were representdlgl egaach of the folds; 8 folds were used to
accommodate this balance, since the class sizes in the training set werdasoftid.
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Figure 11: Misclassification rates for cancer classification by genessign measurements. The
left panel shows the the training (lower green), cross-validation (midiiekpbwith
standard errors) and test error (upper blue) curves for the entiveath. Although the
CV and test error curves appear to have quite different levels, thenref interesting
behavior is the same (with a curious dip at abbdut 3000). Seeing the entire path
leaves no guesswork as to where the region of interest might be. Theagel shows
the same for the regularized multiple logistic regression model. Here we davegin
exact path algorithm, so a grid of 15 values\aé used (on a log scale).

e It is easy to see that initiallg; = 1Vi, sincef(x) is close to zero for largg, and hence all
points are inL. This is true whether or nat_ = n, unlike the situation when an intercept is
present (Section 3.2).

o With f*(x) = ¥[_1yjK(x,xj), the first element ofE is i* = argmax|f*(x)|, with Ay =
| T*(X«)|. FOrA € [A1,0), f(x) = f*(x)/A.

e The linear equations that govern the point&imre similar to (33):

Kid= (A — M1, (46)

We now show that in the most regularized case, these no-intercepl keodels are actually
performing kernel density classification. Initially, for> A1, we classify to class +1 if*(x) /A > 0,
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else to class -1. But

00 = 3 KOxj) = Y Kxx))

jELL jel-
1 _ 1
0 The(X)—TCh (). (48)

In other words, this is the estimated Bayes decision rule, lwittihe kernel density (Parzen window)
estimate for the + classt, the sample prior, and likewise fbr (x) andrt_. A similar observation

is made in Scilkopf and Smola (2001), for the model with intercept. So at this end of thdae
ization scale, the kernel parametgplays a crucial role, as it does in kernel density classification.
Asyincreases, the behavior of the classifier approaches that of thedsheaighbor classifier. For
very smally, or in fact a linear kernel, this amounts to closest centroid classification.

As A is relaxed, thex; (M) will change, giving ultimately zero weight to points well within their
own class, and sharing the weights among points near the decision baumddhe context of
nearest neighbor classification, this has the flavor of “editing”, a walyinhing out the training set
retaining only those prototypes essential for classification (Ripley, 1996)

All these interpretations get blurred when the interdgpt present in the model.

For the radial kernel, a constant term is included in §pa®, X ) }1, so itis not strictly necessary
to include one in the model. However, it will get regularized (shrunk tovzard) along with all
the other coefficients, which is usually why these intercept terms areategaiut and freed from
regularization. Adding a constabft to K(-,-) will reduce the amount of shrinking on the intercept
(since the amount of shrinking of an eigenfunctiorkois inversely proportional to its eigenvalue;
see Section 5). For the linear SVM, we can augmenkithvectors with a constant elememntand
then fit the no-intercept model. The lardgethe closer the solution will be to that of the linear SVM
with intercept.

7. Discussion

Our work on the SVM path algorithm was inspired by earlier work on exath plgorithms in
other settings. “Least Angle Regression” (Efron et al., 2002) shoafsttie coefficient path for
the sequence of “lasso” coefficients (Tibshirani, 1996) is piecewisarlin€he lasso solves the
following regularized linear regression problem,

n

Elf?i;(y‘ —Bo— X B)2+ABI, (49)

where|B| = Z?:l IBj| is theL1 norm of the coefficient vector. This, constraint delivers a sparse
solution vecto3,; the largem\, the more elements @, are zero, the remainder shrunk toward zero.
In fact, any model with aih; constraint and a quadratic, piecewise quadratic, piecewise linear, or
mixed quadratic and linear loss function, will have piecewise linear coeffipigths, which can be
calculated exactly and efficiently for all values){Rosset and Zhu, 2003). These models include,
among others,

e Arobust version of the lasso, using a “Huberized” loss function.
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e Thel; constrained support vector machine (Zhu et al., 2003).

The SVM model has a quadratic constraint and a piecewise linear (“hitags’function. This
leads to a piecewise linear path in the dual space, hence the Lagraffijgerts a; are piecewise
linear.

Other models that would share this property include

e Thee-insensitive SVM regression model

e Quadratically regularizeld; regression, including flexible models based on kernels or smooth-
ing splines.

Of course, quadratic criterion + quadratic constraints also lead to eadtsplutions, as in the
classic case of ridge regression, since a closed form solution is obtamdide SVD. However,
these paths are nonlinear in the regularization parameter.

For general non-quadratic loss functions dndconstraints, the solution paths are typically
piecewise non-linear. Logistic regression is a leading example. In this appeoximate path-
following algorithms are possible (Rosset, 2005).

The general techniques employed in this paper are known as paramegiam@pming via active
sets in the convex optimization literature (Allgower and Georg, 1992). Tisestave have seen to
our work in the literature employ similar techniques in incremental learning foM$S{Fine and
Scheinberg, 2002; Cauwenberghs and Poggio, 2001; DeCoste agstaff, 2000). These authors
do not, however, construct exact paths as we do, but rather fecupdating and downdating the
solutions as more (or less) data arises. Diehl and Cauwenberghs) @088 for updating the
parameters as well, but again do not construct entire solution paths. drkeoivPontil and Verri
(1998) recently came to our notice, who also observed that the lagrarigpliens for the margin
vectors change in a piece-wise linear fashion, while the others remaitaotns

TheSvnPat h has been implemented in tReomputing environment (contributed libragynpat h
at CRAN), and is available from the first author’s website.
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