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Abstract

The support vector machine (SVM) is a widely used tool for classification. Many efficient imple-
mentations exist for fitting a two-class SVM model. The user has to supply values for the tuning
parameters: the regularization cost parameter, and the kernel parameters. It seems a common prac-
tice is to use a default value for the cost parameter, often leading to the least restrictive model.
In this paper we argue that the choice of the cost parameter can be critical. We then derive an
algorithm that can fit the entire path of SVM solutions for every value of the cost parameter, with
essentially the same computational cost as fitting one SVM model. We illustrate our algorithm on
some examples, and use our representation to give further insight into the range of SVM solutions.

Keywords: support vector machines, regularization, coefficient path

1. Introduction

In this paper we study the support vector machine (SVM)(Vapnik, 1996;Scḧolkopf and Smola,
2001) for two-class classification. We have a set ofn training pairsxi ,yi , wherexi ∈R

p is ap-vector
of real-valued predictors (attributes) for theith observation, andyi ∈ {−1,+1} codes its binary
response. We start off with the simple case of a linear classifier, where our goal is to estimate a
linear decision function

f (x) = β0 +βTx, (1)

c©2004 Trevor Hastie, Saharon Rosset, Robert Tibshirani and Ji Zhu.
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Figure 1: A simple example shows the elements of a SVM model. The “+1” points are solid,
the “-1” hollow. C = 2, and the width of the soft margin is 2/||β|| = 2× 0.587. Two
hollow points{3,5} are misclassified, while the two solid points{10,12} are correctly
classified, but on the wrong side of their marginf (x) = +1; each of these hasξi > 0. The
three square shaped points{2,6,7} are exactly on the margin.

and its associated classifier
Class(x) = sign[ f (x)]. (2)

There are many ways to fit such a linear classifier, including linear regression, Fisher’s linear
discriminant analysis, and logistic regression (Hastie et al., 2001, Chapter4). If the training data
are linearly separable, an appealing approach is to ask for the decision boundary{x : f (x) = 0}
that maximizes the margin between the two classes (Vapnik, 1996). Solving such a problem is an
exercise in convex optimization; the popular setup is

min
β0,β

1
2
||β||2 subject to, for each i:yi(β0 +xT

i β) ≥ 1. (3)

A bit of linear algebra shows that1||β||(β0 + xT
i β) is the signed distance fromxi to the decision

boundary. When the data are not separable, this criterion is modified to

min
β0,β

1
2
||β||2 +C

n

∑
i=1

ξi , (4)

subject to, for eachi: yi(β0 +xT
i β) ≥ 1−ξi .
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Figure 2: The hinge loss penalizes observation marginsy f(x) less than+1 linearly, and is indiffer-
ent to margins greater than+1. The negative binomial log-likelihood (deviance) has the
same asymptotes, but operates in a smoother fashion near theelbowaty f(x) = 1.

Here theξi are non-negative slack variables that allow points to be on the wrong side of their “soft
margin” (f (x) = ±1), as well as the decision boundary, andC is a cost parameter that controls the
amount of overlap. Figure 1 shows a simple example. If the data are separable, then for sufficiently
largeC the solutions to (3) and (4) coincide. If the data are not separable, asC gets large the
solution approaches the minimum overlap solution with largest margin, which is attained for some
finite value ofC.

Alternatively, we can formulate the problem using aLoss+ Penaltycriterion (Wahba et al.,
2000; Hastie et al., 2001):

min
β0,β

n

∑
i=1

[1−yi(β0 +βTxi)]+ +
λ
2
||β||2. (5)

The regularization parameterλ in (5) corresponds to 1/C, with C in (4). Here thehinge loss
L(y, f (x)) = [1− y f(x)]+ can be compared to the negative binomial log-likelihoodL(y, f (x)) =
log[1+exp(−y f(x))] for estimating the linear functionf (x) = β0 +βTx; see Figure 2.

This formulation emphasizes the role of regularization. In many situations we have sufficient
variables (e.g. gene expression arrays) to guarantee separation. Wemay nevertheless avoid the
maximum margin separator (λ ↓ 0), which is governed by observations on the boundary, in favor of
a more regularized solution involving more observations.

This formulation also admits a class of more flexible, nonlinear generalizations

min
f∈H

n

∑
i=1

L(yi , f (xi))+λJ( f ), (6)

where f (x) is an arbitrary function in some Hilbert spaceH , andJ( f ) is a functional that measures
the “roughness” off in H .

The nonlinearkernelSVMs arise naturally in this context. In this casef (x) = β0 + g(x), and
J( f ) = J(g) is a norm in a Reproducing Kernel Hilbert Space of functionsHK generated by a
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Radial Kernel:C = 2, γ = 1
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Figure 3: Simulated data illustrate the need for regularization. The 200 data points are generated
from a pair of mixture densities. The two SVM models used radial kernels with the scale
and cost parameters as indicated at the top of the plots. The thick black curves are the
decision boundaries, the dotted curves the margins. The less regularizedfit on the right
overfits the training data, and suffers dramatically on test error. The broken purple curve
is the optimal Bayes decision boundary.

positive-definite kernelK(x,x′). By the well-studied properties of such spaces (Wahba, 1990; Ev-
geniou et al., 1999), the solution to (6) is finite dimensional (even ifHK is infinite dimensional), in
this case with a representationf (x) = β0 + ∑n

i=1 θiK(x,xi). Consequently (6) reduces to the finite
form

min
β0,θ

n

∑
i=1

L[yi ,β0 +
n

∑
j=1

θiK(xi ,x j)]+
λ
2

n

∑
j=1

n

∑
j ′=1

θ jθ j ′K(x j ,x
′
j). (7)

With L the hinge loss, this is an alternative route to the kernel SVM; see Hastie et al.(2001) for
more details.

It seems that the regularization parameterC (or λ) is often regarded as a genuine “nuisance”
in the community of SVM users. Software packages, such as the widely usedSVMlight (Joachims,
1999), provide default settings forC, which are then used without much further exploration. A
recent introductory document (Hsu et al., 2003) supporting theLIBSVM package does encourage
grid search forC.

Figure 3 shows the results of fitting two SVM models to the same simulated data set. The data
are generated from a pair of mixture densities, described in detail in Hastie et al. (2001, Chapter 2).1

The radial kernel functionK(x,x′) = exp(−γ||x−x′||2) was used, withγ = 1. The model on the left
is more regularized than that on the right (C = 2 vsC = 10,000, orλ = 0.5 vs λ = 0.0001), and

1. The actual training data and test distribution are available from
http:// www-stat.stanford.edu/ElemStatLearn.
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Figure 4: Test error curves for the mixture example, using four different values for the radial kernel
parameterγ. Small values ofC correspond to heavy regularization, large values ofC to
light regularization. Depending on the value ofγ, the optimalC can occur at either end of
the spectrum or anywhere in between, emphasizing the need for carefulselection.

performs much better on test data. For these examples we evaluate the test error by integration over
the lattice indicated in the plots.

Figure 4 shows the test error as a function ofC for these data, using four different values for the
kernel scale parameterγ. Here we see a dramatic range in the correct choice forC (or λ = 1/C);
whenγ = 5, the most regularized model is called for, and we will see in Section 6 that theSVM is
really performing kernel density classification. On the other hand, whenγ = 0.1, we would want to
choose among the least regularized models.

One of the reasons that investigators avoid extensive exploration ofC is the computational
cost involved. In this paper we develop an algorithm which fits theentire pathof SVM solu-
tions [β0(C),β(C)], for all possible values ofC, with essentially the computational cost of fitting a
single model for a particular value ofC. Our algorithm exploits the fact that the Lagrange multi-
pliers implicit in (4) are piecewise-linear inC. This also means that the coefficientsβ(C) are also
piecewise-linear inC. This is true for all SVM models, both linear and nonlinear kernel-based
SVMs. Figure 8 on page 1406 shows these Lagrange paths for the mixtureexample. This work
was inspired by the related “Least Angle Regression” (LAR) algorithm for fitting LASSO models
(Efron et al., 2004), where again the coefficient paths are piecewise linear.

These speedups have a big impact on the estimation of the accuracy of the classifier, using a
validation dataset (e.g. as in K-fold cross-validation). We can rapidly compute the fit for each test
data point for any and all values ofC, and hence the generalization error for the entire validation set
as a function ofC.

In the next section we develop our algorithm, and then demonstrate its capabilities on a number
of examples. Apart from offering dramatic computational savings when computing multiple solu-
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tions (Section 4.3), the nature of the path, in particular at the boundaries, sheds light on the action
of the kernel SVM (Section 6).

2. Problem Setup

We use a criterion equivalent to (4), implementing the formulation in (5):

min
β,β0

n

∑
i=1

ξi +
λ
2

βTβ (8)

subject to 1−yi f (xi) ≤ ξi ; ξi ≥ 0; f (x) = β0 +βTx.

Initially we consider only linear SVMs to get the intuitive flavor of our procedure; we then general-
ize to kernel SVMs.

We construct the Lagrange primal function

LP :
n

∑
i=1

ξi +
λ
2

βTβ+
n

∑
i=1

αi(1−yi f (xi)−ξi)−
n

∑
i=1

γiξi (9)

and set the derivatives to zero. This gives

∂
∂β

: β =
1
λ

n

∑
i=1

αiyixi , (10)

∂
∂β0

:
n

∑
i=1

yiαi = 0, (11)

∂
∂ξi

: αi = 1− γi , (12)

along with the KKT conditions

αi(1−yi f (xi)−ξi) = 0, (13)

γiξi = 0. (14)

We see that 0≤αi ≤ 1, withαi = 1 whenξi > 0 (which is whenyi f (xi) < 1). Also whenyi f (xi) > 1,
ξi = 0 since no cost is incurred, andαi = 0. Whenyi f (xi) = 1, αi can lie between 0 and 1.2

We wish to find the entire solution path for all values ofλ ≥ 0. The basic idea of our algorithm
is as follows. We start withλ large and decrease it toward zero, keeping track of all the events that
occur along the way. Asλ decreases,||β|| increases, and hence the width of the margin decreases
(see Figure 1). As this width decreases, points move from being inside to outside the margin. Their
correspondingαi change fromαi = 1 when they are inside the margin (yi f (xi) < 1) to αi = 0 when
they are outside the margin (yi f (xi) > 1). By continuity, points must linger on the margin (yi f (xi) =
1) while theirαi decrease from 1 to 0. We will see that theαi(λ) trajectories are piecewise-linear
in λ, which affords a great computational savings: as long as we can establish the break points, all

2. For readers more familiar with the traditional SVM formulation (4), we note that there is a simple connection be-
tween the corresponding Lagrange multipliers,α′

i = αi/λ = Cαi , and hence in that caseα′
i ∈ [0,C]. We prefer our

formulation here since ourαi ∈ [0,1], and this simplifies the definition of the paths we define.
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values in between can be found by simple linear interpolation. Note that points can return to the
margin, after having passed through it.

It is easy to show that if theαi(λ) are piecewise linear inλ, then bothα′
i(C) = Cαi(C) andβ(C)

are piecewise linear inC. It turns out thatβ0(C) is also piecewise linear inC. We will frequently
switch between these two representations.

We denote byI+ the set of indices corresponding toyi = +1 points, there beingn+ = |I+| in
total. Likewise forI− andn−. Our algorithm keeps track of the following sets (with names inspired
by the hinge loss function in Figure 2):

• E = {i : yi f (xi) = 1, 0≤ αi ≤ 1}, E for Elbow,

• L = {i : yi f (xi) < 1, αi = 1}, L for Left of the elbow,

• R = {i : yi f (xi) > 1, αi = 0}, R for Right of the elbow.

3. Initialization

We need to establish the initial state of the sets defined above. Whenλ is very large (∞), from (10)
β = 0, and the initial values ofβ0 and theαi depend on whethern− = n+ or not. If the classes are
balanced, one can directly find the initial configuration by finding the most extreme points in each
class. We will see that whenn− 6= n+, this is no longer the case, and in order to satisfy the constraint
(11), a quadratic programming algorithm is needed to obtain the initial configuration.

In fact, ourSvmPath algorithm can be started at any intermediate solution of the SVM optimiza-
tion problem (i.e. the solution for anyλ), since the values ofαi and f (xi) determine the setsL , E

andR . We will see in Section 6 that if there is no intercept in the model, the initialization is again
trivial, no matter whether the classes are balanced or not. We have prepared some MPEG movies
to illustrate the two special cases detailed below. The movies can be downloaded at the web site
http://www-stat.stanford.edu/∼hastie/Papers/svm/MOVIE/.

3.1 Initialization: n− = n+

Lemma 1 For λ sufficiently large, all theαi = 1. The initial β0 ∈ [−1,1] — any value gives the
same loss∑n

i=1 ξi = n+ +n−.

Proof Our proof relies on the criterion and the KKT conditions in Section 2. Sinceβ = 0, f (x) = β0.
To minimize∑n

i=1 ξi , we should clearly restrictβ0 to [−1,1]. Forβ0 ∈ (−1,1), all theξi > 0, γi = 0
in (12), and henceαi = 1. Picking one of the endpoints, sayβ0 = −1, causesαi = 1, i ∈ I+, and
hence alsoαi = 1, i ∈ I−, for (11) to hold.

We also have that for these early and large values ofλ

β =
1
λ

β∗ whereβ∗ =
n

∑
i=1

yixi . (15)

Now in order that (11) remain satisfied, we need that one or more positive and negative examples
hit the elbowsimultaneously. Hence asλ decreases, we require that∀i yi f (xi) ≤ 1 or

yi

[

β∗Txi

λ
+β0

]

≤ 1 (16)
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Figure 5: The initial paths of the coefficients in a small simulated dataset withn− = n+. We see
the zone of allowable values forβ0 shrinking toward a fixed point (20). The vertical lines
indicate the breakpoints in the piecewise linear coefficient paths.

or

β0 ≤ 1−
β∗Txi

λ
for all i ∈ I+ (17)

β0 ≥ −1−
β∗Txi

λ
for all i ∈ I−. (18)

Pick i+ = argmaxi∈I+ β∗Txi and i− = argmini∈I− β∗Txi (for simplicity we assume that these are
unique). Then at this point of entry and beyond for a while we haveαi+ = αi− , and f (xi+) = 1
and f (xi−) = −1. This gives us two equations to solve for the initial point of entryλ0 andβ0, with
solutions

λ0 =
β∗Txi+ −β∗Txi−

2
, (19)

β0 = −

(

β∗Txi+ +β∗Txi−

β∗Txi+ −β∗Txi−

)

. (20)

Figure 5 (left panel) shows a trajectory ofβ0(C) as a function ofC, for a small simulated data
set. These solutions were computed directly using a quadratic-programming algorithm, using a
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Figure 6: The initial paths of the coefficients in a case wheren− < n+. All the n− points are
misclassified, and start off with a margin of−1. Theα∗

i remain constant until one of
the points inI− reaches the margin. The vertical lines indicate the breakpoints in the
piecewise linearβ(C) paths. Note that theαi(C) arenot piecewise linear inC, but rather
in λ = 1/C.
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predefined grid of values forλ. The arbitrariness of the initial values is indicated by the zig-zag
nature of this path. The breakpoints were found using our exact-path algorithm.

3.2 Initialization: n+ > n−

In this case, whenβ = 0, the optimal choice forβ0 is 1, and the loss is∑n
i=1 ξi = n−. However, we

also require that (11) holds.

Lemma 2 With β∗(α) = ∑n
i=1yiαixi , let

{α∗
i } = argmin

α
||β∗(α)||2 (21)

s.t. αi ∈ [0,1] for i ∈ I+, αi = 1 for i ∈ I−, and∑i∈I+
αi = n− (22)

Then for someλ0 we have that for allλ > λ0, αi = α∗
i , andβ = β∗/λ, with β∗ = ∑n

i=1yiα∗
i xi .

Proof The Lagrange dual corresponding to (9) is obtained by substituting (10)–(12) into (9) (Hastie
et al., 2001, Equation 12.13):

LD =
n

∑
i=1

αi −
1
2λ

n

∑
i=1

n

∑
i′=1

αiαi′yiyi′xixi′ . (23)

Since we start withβ = 0, β0 = 1, all the I− points are misclassified, and hence we will have
αi = 1∀i ∈ I−, and hence from (11)∑n

i=1 αi = 2n−. This latter sum will remain 2n− for a while as
β grows away from zero. This means that during this phase, the first term inthe Lagrange dual is
constant; the second term is equal to− 1

2λ ||β
∗(α)||2, and since we maximize the dual, this proves

the result.

We now establish the “starting point”λ0 andβ0 when theαi start to change. Letβ∗ be the fixed
coefficient direction corresponding toα∗

i (as in (15)):

β∗ =
n

∑
i=1

α∗
i yixi . (24)

There are two possible scenarios:

1. There exist two or more elements inI+ with 0 < α∗
i < 1, or

2. α∗
i ∈ {0,1} ∀i ∈ I+.

Consider the first scenario (depicted in Figure 6), and supposeα∗
i+ ∈ (0,1) (on the margin). Let

i− = argmini∈I− β∗Txi . Then since the pointi+ remains on the margin until anI− point reaches its
margin, we can find

λ0 =
β∗Txi+ −β∗Txi−

2
, (25)

identical in form to to (19), as is the correspondingβ0 to (20).
For the second scenario, it is easy to see that we find ourselves in the samesituation as in

Section 3.1—a point fromI− and one of the points inI+ with α∗
i = 1 must reach the margin

simultaneously. Hence we get an analogous situation, except withi+ = argmaxi∈I 1
+

β∗Txi , where

I 1
+ is the subset ofI+ with α∗

i = 1.
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3.3 Kernels

The development so far has been in the original feature space, since it iseasier to visualize. It is
easy to see that the entire development carries through with “kernels” as well. In this casef (x) =
β0 +g(x), and the only change that occurs is that (10) is changed to

g(xi) =
1
λ

n

∑
j=1

α jy jK(xi ,x j), i = 1, . . . ,n, (26)

or θ j(λ) = α jy j/λ using the notation in (7).
Our initial conditions are defined in terms of expressionsβ∗Txi+ , for example, and again it is

easy to see that the relevant quantities are

g∗(xi+) =
n

∑
j=1

α∗
j y jK(xi+ ,x j), (27)

where theα∗
i are all 1 in Section 3.1, and defined by Lemma 2 in Section 3.2.

Hereafter we will develop our algorithm for this more general kernel case.

4. The Path

The algorithm hinges on the set of pointsE sitting at the elbow of the loss function — i.e on the
margin. These points haveyi f (xi) = 1 andαi ∈ [0,1]. These are distinct from the pointsR to the
right of the elbow, withyi f (xi) > 1 andαi = 0, and those pointsL to the left withyi f (xi) < 1 and
αi = 1. We consider this set at the point that an event has occurred. The event can be either:

1. The initial event, which means 2 or more points start at the elbow, with their initial values of
α ∈ [0,1].

2. A point fromL has just enteredE , with its value ofαi initially 1.

3. A point fromR has reenteredE , with its value ofαi initially 0.

4. One or more points inE has left the set, to join eitherR or L .

Whichever the case, for continuity reasons this set will stay stable until the next event occurs,
since to pass throughE , a point’sαi must change from 0 to 1 or vice versa. Since all points inE

haveyi f (xi) = 1, we can establish a path for theirαi .
Event 4 allows for the possibility thatE becomes empty whileL is not. If this occurs, then

the KKT condition (11) implies thatL is balanced w.r.t. +1s and -1s, and we resort to the initial
condition as in Section 3.1.

We use the subscript̀ to index the sets above immediately after the`th event has occurred.
Suppose|E`| = m, and letα`

i , β`
0 andλ` be the values of these parameters at the point of entry.

Likewise f ` is the function at this point. For convenience we defineα0 = λβ0, and henceα`
0 = λ`β`

0.
Since

f (x) =
1
λ

(

n

∑
j=1

y jα jK(x,x j)+α0

)

, (28)
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for λ` > λ > λ`+1 we can write

f (x) =

[

f (x)−
λ`

λ
f `(x)

]

+
λ`

λ
f `(x)

=
1
λ

[

∑
j∈E`

(α j −α`
j)y jK(x,x j)+(α0−α`

0)+λ` f `(x)

]

. (29)

The second line follows because all the observations inL` have theirαi = 1, and those inR` have
theirαi = 0, for this range ofλ. Since each of thempointsxi ∈ E` are to stay at the elbow, we have
that

1
λ

[

∑
j∈E`

(α j −α`
j)yiy jK(xi ,x j)+yi(α0−α`

0)+λ`

]

= 1, ∀i ∈ E`. (30)

Writing δ j = α`
j −α j , from (30) we have

∑
j∈E`

δ jyiy jK(xi ,x j)+yiδ0 = λ`−λ, ∀i ∈ E`. (31)

Furthermore, since at all times∑n
i=1yiαi = 0, we have that

∑
j∈E`

y jδ j = 0. (32)

Equations (31) and (32) constitutem+1 linear equations inm+1 unknownsδ j , and can be solved.
Denoting byK ∗

` them×m matrix with i j th entryyiy jK(xi ,x j) for i and j in E`, we have from
(31) that

K ∗
`δ+δ0y` = (λ`−λ)1, (33)

wherey` is themvector with entriesyi , i ∈ E`. From (32) we have

yT
` δ = 0. (34)

We can combine these two into one matrix equation as follows. Let

A` =

(

0 y`
T

y` K ∗
`

)

, δa =

(

δ0

δ

)

, and 1a =

(

0
1

)

, (35)

then (34) and (33) can be written
A`δa = (λ`−λ)1a. (36)

If A` has full rank, then we can write
ba = A`

−11a, (37)

and hence
α j = α`

j − (λ`−λ)b j , j ∈ {0}∪E`. (38)

Hence forλ`+1 < λ < λ`, theα j for points at the elbow proceedlinearly in λ. From (29) we have

f (x) =
λ`

λ

[

f `(x)−h`(x)
]

+h`(x), (39)
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where
h`(x) = ∑

j∈E`

y jb jK(x,x j)+b0. (40)

Thus the function itself changes in a piecewise-inverse manner inλ.
If A` does not have full rank, then the solution paths for some of theαi are not unique, and

more care has to be taken in solving the system (36). This occurs, for example, when two training
observations are identical (tied inx andy). Other degeneracies can occur, but rarely in practice, such
as three different points on the same margin inR

2. These issues and some of the related updating
and downdating schemes are an area we are currently researching, and will be reported elsewhere.

4.1 Finding λ`+1

The paths (38)–(39) continue until one of the following events occur:

1. One of theαi for i ∈ E` reaches a boundary (0 or 1). For eachi the value ofλ for which this
occurs is easily established from (38).

2. One of the points inL` or R ` attainsyi f (xi) = 1. From (39) this occurs for pointi at

λ = λ`

(

f `(xi)−h`(xi)

yi −h`(xi)

)

. (41)

By examining these conditions, we can establish the largestλ < λ` for which an event occurs, and
hence establishλ`+1 and update the sets.

One special case not addressed above is when the setE becomes empty during the course of the
algorithm. In this case, we revert to an initialization setup using the points inL . It must be the case
that these points have an equal number of +1’s as -1’s, and so we are inthe balanced situation as in
3.1.

By examining in detail the linear boundary in examples wherep = 2, we observed several
different types of behavior:

1. If |E | = 0, than asλ decreases, the orientation of the decision boundary stays fixed, but the
margin width narrows asλ decreases.

2. If |E | = 1 or |E | = 2, but with the pair of points of opposite classes, then the orientation
typically rotates as the margin width gets narrower.

3. If |E | = 2, with both points having the same class, then the orientation remains fixed, with
the one margin stuck on the two points as the decision boundary gets shrunk toward it.

4. If |E | ≥ 3, then the margins and hencef (x) remains fixed, as theαi(λ) change. This implies
thath` = f ` in (39).

4.2 Termination

In the separable case, we terminate whenL becomes empty. At this point, all theξi in (8) are zero,
and further movement increases the norm ofβ unnecessarily.

In the non-separable case,λ runs all the way down to zero. For this to happen withoutf
“blowing up” in (39), we must havef ` − h` = 0, and hence the boundary and margins remain

1403



HASTIE, ROSSET, TIBSHIRANI AND ZHU

fixed at a point where∑i ξi is as small as possible, and the margin is as wide as possible subject to
this constraint.

4.3 Computational Complexity

At any update event̀ along the path of our algorithm, the main computational burden is solving
the system of equations of sizem` = |E`|. While this normally involvesO(m3

`) computations, since
E`+1 differs from E` by typically one observation, inverse updating/downdating can reduce the
computations toO(m2

`). The computation ofh`(xi) in (40) requiresO(nm̀ ) computations. Beyond
that, several checks of costO(n) are needed to evaluate the next move.
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Figure 7: The elbow sizes|E`| as a function ofλ, for different values of the radial-kernel parameter
γ. The vertical lines show the positions used to compare the times withlibsvm.

We have explored using partitioned inverses for updating/downdating the solutions to the elbow
equations (for the nonsingular case), and our experiences are mixed.In our R implementations,
the computational savings appear negligible for the problems we have tackled, and after repeated
updating, rounding errors can cause drift. At the time of this publication, wein fact do not use
updating at all, and simply solve the system each time. We are currently exploring numerically
stable ways for managing these updates.

Although we have no hard results, our experience so far suggests thatthe total numberΛ of
moves isO(kmin(n+,n−)), for k around 4−6; hence typically some small multiplec of n. If the
average size ofE` is m, this suggests the total computational burden isO(cn2m+ nm2), which is
similar to that of a single SVM fit.

Our R functionSvmPath computes all 632 steps in the mixture example (n+ = n− = 100, radial
kernel,γ = 1) in 1.44(0.02) secs on a Pentium 4, 2Ghz Linux machine; thesvm function (using the
optimized codelibsvm, from the R librarye1071) takes 9.28(0.06) seconds to compute the solution
at 10 points along the path. Hence it takes our procedure about 50% moretime to compute the entire
path, than it costslibsvm to compute a typical single solution.
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We often wish to make predictions at new inputs. We can also do this efficiently for all values
of λ, because from (28) we see that (modulo 1/λ), these also change in a piecewise-linear fashion
in λ. Hence we can compute the entire fit path for a single inputx in O(n) calculations, plus an
additionalO(nq) operations to compute the kernel evaluations (assuming it costsO(q) operations
to computeK(x,xi)).

5. Examples

In this section we look at three examples, two synthetic and one real. We examine our running mix-
ture example in some more detail, and expose the nature of quadratic regularization in the kernel
feature space. We then simulate and examine a scaled-down version of thep� n problem—many
more inputs than samples. Despite the fact that perfect separation is possible with large margins, a
heavily regularized model is optimal in this case. Finally we fit SVM path models to some microar-
ray cancer data.

5.1 Mixture Simulation

In Figure 4 we show the test-error curves for a large number of values of λ, and four different values
for γ for the radial kernel. Theseλ` are in fact theentirecollection of change points as described
in Section 4. For example, for the second panel, withγ = 1, there are 623 change points. Figure 8
[upper plot] shows the paths of all theαi(λ), as well as [lower plot] a few individual examples. An
MPEG movie of the sequence of models can be downloaded from the first author’s website.

We were at first surprised to discover that not all these sequences achieved zero training errors
on the 200 training data points, at their least regularized fit. In fact the minimaltraining errors, and
the corresponding values forγ are summarized in Table 1. It is sometimes argued that the implicit

γ 5 1 0.5 0.1
Training Errors 0 12 21 33
Effective Rank 200 177 143 76

Table 1: The number of minimal training errors for different values of the radial kernel scale pa-
rameterγ, for the mixture simulation example. Also shown is the effective rank of the
200×200 Gram matrixK γ.

feature space is “infinite dimensional” for this kernel, which suggests that perfect separation is
always possible. The last row of the table shows the effective rank of the kernelGram matrix K
(which we defined to be the number of singular values greater than 10−12). This 200×200 matrix
has elementsK i, j = K(xi ,x j), i, j = 1, . . . ,n. In general a full rankK is required to achieve perfect
separation. Similar observations have appeared in the literature (Bach and Jordan, 2002; Williams
and Seeger, 2000).

This emphasizes the fact that not all features in the feature map implied byK are of equal
stature; many of them are shrunk way down to zero. Alternatively, the regularization in (6) and (7)
penalizes unit-norm features by the inverse of their eigenvalues, which effectively annihilates some,
depending onγ. Smallγ implies wide, flat kernels, and a suppression of wiggly, “rough” functions.
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Figure 8: [Upper plot] The entire collection of piece-wise linear pathsαi(λ), i = 1, . . . ,N, for the
mixture example. Note:λ is plotted on the log-scale. [Lower plot] Paths for 5 selected
observations;λ is not on the log scale.

1406



SVM REGULARIZATION PATH

Writing (7) in matrix form,

min
β0,θ

L[y,Kθ]+
λ
2

θTKθ, (42)

we reparametrize using the eigen-decomposition ofK = UDUT . Let Kθ = Uθ∗ whereθ∗ = DUTθ.
Then (42) becomes

min
β0,θ∗

L[y,Uθ∗]+
λ
2

θ∗TD−1θ∗. (43)

Now the columns ofU are unit-norm basis functions (inR2) spanning the column space ofK ;
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Figure 9: The eigenvalues (on the log scale) for the kernel matricesK γ corresponding to the four
values ofγ as in Figure 4. The larger eigenvalues correspond in this case to smoother
eigenfunctions, the small ones to rougher. The rougher eigenfunctionsget penalized ex-
ponentially more than the smoother ones. For smaller values ofγ, the effective dimension
of the space is truncated.

from (43) we see that those members corresponding to near-zero eigenvalues (the elements of the
diagonal matrixD) get heavily penalized and hence ignored. Figure 9 shows the elements ofD for
the four values ofγ. See Hastie et al. (2001, Chapter 5) for more details.

5.2 p�n Simulation

The SVM is popular in situations where the number of features exceeds the number of observations.
Gene expression arrays are a leading example, where a typical datasethasp> 10,000 whilen< 100.
Here one typically fits a linear classifier, and since it is easy to separate the data, the optimal marginal
classifier is thede factochoice. We argue here that regularization can play an important role for these
kinds of data.
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We mimic a simulation found in Marron (2003). We havep = 50 andn = 40, with a 20-20 split
of “+” and “-” class members. Thexi j are all iid realizations from aN(0,1) distribution, except for
the first coordinate, which has mean +2 and -2 in the respective classes.3 The Bayes classifier in
this case uses only the first coordinate ofx, with a threshold at 0. The Bayes risk is 0.012. Figure 10
summarizes the experiment. We see that the most regularized models do the besthere, not the
maximal margin classifier.

Although the most regularized linear SVM is the best in this example, we notice a disturbing
aspect of its endpoint behavior in the top-right plot. Althoughβ is determined by all the points, the
thresholdβ0 is determined by the two most extreme points in the two classes (see Section 3.1). This
can lead to irregular behavior, and indeed in some realizations from this model this was the case. For
values ofλ larger than the initial valueλ1, we saw in Section 3 that the endpoint behavior depends
on whether the classes are balanced or not. In either case, asλ increases, the error converges to the
estimated null error ratenmin/n.

This same objection is often made at the other extreme of the optimal margin; however, it typi-
cally involves more support points (19 points on the margin here), and tendsto be more stable (but
still no good in this case). For solutions in the interior of the regularization path, these objections
no longer hold. Here the regularization forces more points to overlap the margin (support points),
and hence determine its orientation.

Included in the figures are regularized linear discriminant analysis and logistic regression mod-
els (using the sameλ` sequence as the SVM). Both show similar behavior to the regularized SVM,
having the most regularized solutions perform the best. Logistic regression can be seen to assign
weightspi(1− pi) to observations in the fitting of its coefficientsβ andβ0, where

pi =
1

1+e−β0−βTxi
(44)

is the estimated probability of+1 occurring atxi (Hastie and Tibshirani, 1990, e.g.).

• Since the decision boundary corresponds top(x) = 0.5, these weights can be seen to die down
in a quadratic fashion from 1/4, as we move away from the boundary.

• The rate at which the weights die down with distance from the boundary depends on||β||; the
smaller this norm, the slower the rate.

It can be shown, for separated classes, that the limiting solution (λ ↓ 0) for the regularized
logistic regression model is identical to the SVM solution: the maximal margin separator (Rosset
et al., 2003).

Not surprisingly, given the similarities in their loss functions (Figure 2), bothregularized SVMs
and logistic regression involve more or less observations in determining their solutions, depending
on the amount of regularization. This “involvement” is achieved in a smoother fashion by logistic
regression.

5.3 Microarray Classification

We illustrate our algorithm on a large cancer expression data set (Ramaswamy et al., 2001). There
are 144 training tumor samples and 54 test tumor samples, spanning 14 common tumor classes that

3. Here we have one important feature; the remaining 49 are noise. With expression arrays, the important features
typically occur in groups, but the total numberp is much larger.
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Figure 10: p� n simulation. [Top Left] The training data projected onto the space spanned bythe
(known) optimal coordinate 1, and the optimal margin coefficient vector found by a non-
regularized SVM. We see the large gap in the margin, while the Bayes-optimal classifier
(vertical red line) is actuallyexpectedto make a small number of errors. [Top Right] The
same as the left panel, except we now project onto the most regularized SVM coefficient
vector. This solution is closer to the Bayes-optimal solution. [Lower Left] The angles
between the Bayes-optimal direction, and the directions found by the SVM (S) along the
regularized path. Included in the figure are the corresponding coefficients for regularized
LDA (R)(Hastie et al., 2001, Chapter 4) and regularized logistic regression (L)(Zhu
and Hastie, 2004), using the same quadratic penalties. [Lower Right] The test errors
corresponding to the three paths. The horizontal line is the estimated Bayes rule using
only the first coordinate.
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account for 80% of new cancer diagnoses in the U.S.A. There are 16,063genes for each sample.
Hencep = 16,063 andn = 144. We denote the number of classes byK = 14. A goal is to build a
classifier for predicting the cancer class of a new sample, given its expression values.

We used a common approach for extending the SVM from two-class to multi-class classifica-
tion:

1. Fit K different SVM models, each one classifying a single cancer class (+1) versus the rest
(-1).

2. Let [ f λ
1 (x), . . . , f λ

K(x)] be the vector of evaluations of the fitted functions (with parameterλ) at
a test observationx.

3. ClassifyCλ(x) = argmaxk f λ
k (x).

Other, more direct, multi-class generalizations exist (Rosset et al., 2003; Weston and Watkins,
1998); although exact path algorithms are possible here too, we were ableto implement our ap-
proach most easily with the “one vs all” strategy above. Figure 11 shows theresults of fitting
this family of SVM models. Shown are the training error, test error, as well as 8-fold balanced
cross-validation.4 The training error is zero everywhere, but both the test and CV error increase
sharply when the model is too regularized. The right plot shows similar results using quadratically
regularized multinomial regression (Zhu and Hastie, 2004).

Although the least regularized SVM and multinomial models do the best, this is still not very
good. With fourteen classes, this is a tough classification problem.

It is worth noting that:

• The 14 different classification problems are very “lop-sided”; in many cases 8 observations
in one class vs the 136 others. This tends to produce solutions with all membersof the small
class on the boundary, a somewhat unnatural situation.

• For both the SVM and the quadratically regularized multinomial regression, one can reduce
the logistics by pre-transforming the data. IfX is then× p data matrix, withp � n, let its
singular-value decomposition beUDVT . We can replaceX by then×n matrixXV = UD = R
and obtain identical results (Hastie and Tibshirani, 2003). The same transformationV is
applied to the test data. This transformation is applied once upfront, and the transformed data
is used in all subsequent analyses (i.e. K-fold cross-validation as well).

6. No Intercept and Kernel Density Classification

Here we consider a simplification of the models (6) and (7) where we leave out the intercept term
β0. It is easy to show that the solution forg(x) has the identical form as in (26):

g(x) =
1
λ

n

∑
j=1

α jy jK(x,x j). (45)

However, f (x) = g(x) (or f (x) = βTx in the linear case), and we lose the constraint (11) due to the
intercept term.

This also adds considerable simplification to our algorithm, in particular the initial conditions.

4. By balanced we mean the 14 cancer classes were represented equally in each of the folds; 8 folds were used to
accommodate this balance, since the class sizes in the training set were multiples of 8.
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Figure 11: Misclassification rates for cancer classification by gene expression measurements. The
left panel shows the the training (lower green), cross-validation (middle black, with
standard errors) and test error (upper blue) curves for the entire SVM path. Although the
CV and test error curves appear to have quite different levels, the region of interesting
behavior is the same (with a curious dip at aboutλ = 3000). Seeing the entire path
leaves no guesswork as to where the region of interest might be. The right panel shows
the same for the regularized multiple logistic regression model. Here we do not have an
exact path algorithm, so a grid of 15 values ofλ is used (on a log scale).

• It is easy to see that initiallyαi = 1∀i, since f (x) is close to zero for largeλ, and hence all
points are inL . This is true whether or notn− = n+, unlike the situation when an intercept is
present (Section 3.2).

• With f ∗(x) = ∑n
j=1y jK(x,x j), the first element ofE is i∗ = argmaxi | f ∗(xi)|, with λ1 =

| f ∗(xi∗)|. Forλ ∈ [λ1,∞), f (x) = f ∗(x)/λ.

• The linear equations that govern the points inE are similar to (33):

K ∗
`δ = (λ`−λ)1, (46)

We now show that in the most regularized case, these no-intercept kernel models are actually
performing kernel density classification. Initially, forλ > λ1, we classify to class +1 iff ∗(x)/λ > 0,
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else to class -1. But

f ∗(x) = ∑
j∈I+

K(x,x j)− ∑
j∈I−

K(x,x j)

= n·

(

n+

n
·

1
n+

∑
j∈I+

K(x,x j)−
n−
n

·
1

n−
∑
j∈I−

K(x,x j)

)

(47)

∝ π+h+(x)−π−h−(x). (48)

In other words, this is the estimated Bayes decision rule, withh+ the kernel density (Parzen window)
estimate for the + class,π+ the sample prior, and likewise forh−(x) andπ−. A similar observation
is made in Scḧolkopf and Smola (2001), for the model with intercept. So at this end of the regular-
ization scale, the kernel parameterγ plays a crucial role, as it does in kernel density classification.
As γ increases, the behavior of the classifier approaches that of the 1-nearest neighbor classifier. For
very smallγ, or in fact a linear kernel, this amounts to closest centroid classification.

As λ is relaxed, theαi(λ) will change, giving ultimately zero weight to points well within their
own class, and sharing the weights among points near the decision boundary. In the context of
nearest neighbor classification, this has the flavor of “editing”, a way ofthinning out the training set
retaining only those prototypes essential for classification (Ripley, 1996).

All these interpretations get blurred when the interceptβ0 is present in the model.
For the radial kernel, a constant term is included in span{K(x,xi)}

n
1, so it is not strictly necessary

to include one in the model. However, it will get regularized (shrunk towardzero) along with all
the other coefficients, which is usually why these intercept terms are separated out and freed from
regularization. Adding a constantb2 to K(·, ·) will reduce the amount of shrinking on the intercept
(since the amount of shrinking of an eigenfunction ofK is inversely proportional to its eigenvalue;
see Section 5). For the linear SVM, we can augment thexi vectors with a constant elementb, and
then fit the no-intercept model. The largerb, the closer the solution will be to that of the linear SVM
with intercept.

7. Discussion

Our work on the SVM path algorithm was inspired by earlier work on exact path algorithms in
other settings. “Least Angle Regression” (Efron et al., 2002) shows that the coefficient path for
the sequence of “lasso” coefficients (Tibshirani, 1996) is piecewise linear. The lasso solves the
following regularized linear regression problem,

min
β0,β

n

∑
i=1

(yi −β0−xT
i β)2 +λ|β|, (49)

where|β| = ∑p
j=1 |β j | is theL1 norm of the coefficient vector. ThisL1 constraint delivers a sparse

solution vectorβλ; the largerλ, the more elements ofβλ are zero, the remainder shrunk toward zero.
In fact, any model with anL1 constraint and a quadratic, piecewise quadratic, piecewise linear, or
mixed quadratic and linear loss function, will have piecewise linear coefficient paths, which can be
calculated exactly and efficiently for all values ofλ (Rosset and Zhu, 2003). These models include,
among others,

• A robust version of the lasso, using a “Huberized” loss function.
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• TheL1 constrained support vector machine (Zhu et al., 2003).

The SVM model has a quadratic constraint and a piecewise linear (“hinge”) loss function. This
leads to a piecewise linear path in the dual space, hence the Lagrange coefficientsαi are piecewise
linear.

Other models that would share this property include

• Theε-insensitive SVM regression model

• Quadratically regularizedL1 regression, including flexible models based on kernels or smooth-
ing splines.

Of course, quadratic criterion + quadratic constraints also lead to exact path solutions, as in the
classic case of ridge regression, since a closed form solution is obtainedvia the SVD. However,
these paths are nonlinear in the regularization parameter.

For general non-quadratic loss functions andL1 constraints, the solution paths are typically
piecewise non-linear. Logistic regression is a leading example. In this case, approximate path-
following algorithms are possible (Rosset, 2005).

The general techniques employed in this paper are known as parametric programming via active
sets in the convex optimization literature (Allgower and Georg, 1992). The closest we have seen to
our work in the literature employ similar techniques in incremental learning for SVMs (Fine and
Scheinberg, 2002; Cauwenberghs and Poggio, 2001; DeCoste and Wagstaff, 2000). These authors
do not, however, construct exact paths as we do, but rather focus on updating and downdating the
solutions as more (or less) data arises. Diehl and Cauwenberghs (2003) allow for updating the
parameters as well, but again do not construct entire solution paths. The work of Pontil and Verri
(1998) recently came to our notice, who also observed that the lagrange multipliers for the margin
vectors change in a piece-wise linear fashion, while the others remain constant.

TheSvmPath has been implemented in theR computing environment (contributed librarysvmpath
at CRAN), and is available from the first author’s website.
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B. Scḧolkopf, and D. Schuurmans, editors,Advances in Large Margin Classifiers, pages 297–
311, Cambridge, MA, 2000. MIT Press.

J. Weston and C. Watkins. Multi-class support vector machines, 1998. URL
citeseer.nj.nec.com/8884.html.

Christopher K. I. Williams and Matthias Seeger. The effect of the input density distribution on
kernel-based classifiers. InProceedings of the Seventeenth International Conference on Machine
Learning, pages 1159–1166. Morgan Kaufmann Publishers Inc., 2000.

Ji Zhu and Trevor Hastie. Classification of gene microarrays by penalized logistic regression.Bio-
statistics, 2004. (to appear).

Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. L1 norm support vector machines.
Technical report, Stanford University, 2003.

1415


