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The Entropy Formula for Linear Heat
Equation

By Lei Ni

ABSTRACT.  We derive the entropy formula for the linear heat equation on general Riemannian man-
ifolds and prove that it is monotone non-increasing on manifolds with nonnegative Ricci curvature. As
applications, we study the relation between the value of entropy and the volume of balls of various scales.
The results are simpler version, without Ricci flow, of Perelman’s recent results on volume non-collapsing
for Ricci flow on compact manifolds. We also prove that if the entropy for the heat kernel achieves its
maximum value zero at some positive time, on any complete Riamannian manifold with nonnegative Ricci
curvature, if and only if the manifold is isometric to the Euclidean space.

1. Introduction

In a recent article of Perelman [20], an entropy formula for Ricci flow was derived. The
formula turns out to be of fundamental importance in the study of Ricci flow (cf. [20, Sections 3,
4, 10]) as well as the Kihler—Ricci flow [21]. The derivation of the entropy formula in [20,
Section 9] resembles the gradient estimate for the linear heat equation proved by Li-Yau in
another fundamental article [18] on the linear parabolic equation. This suggests that there may
exist a similar entropy formula for the linear heat equation. The purpose of this short note is to
show such entropy formula and derive some applications of the new entropy formula.

Let M be a complete Riemannian manifold. We study the heat equation

a
(§_A> u(x,t) =0. (1.1)
Following [20], we define
W(f. r)=f (r|Vf|2+f—n)Lfﬁdv (1.2)
M (4rt)2
restricted to (f, T) satisfying
/ Lfﬂ dv=1 (1.3)
M (4mt)?2
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with T > 0.

Theorem 1.1. Let M be a closed Riemannian manifold. Assume that u is a positive solution
to the heat Equation (1.1) with fM udv = 1. Let f be defined as u = e’ and t = ©(t) with

(4r7)?

dr _
d—f_l, Then

dW e
5 = —/M 2T (IViij — Zgij

In particular, if M has nonnegative Ricci curvature, W( f, T) is monotone decreasing along the
heat equation.

+Rijfifj>udv. (1.4)

Notice that in the case that M is Ricci flat, the result above is indeed a special case of
Perelman’s result. We show that the monotonicity of the entropy holds for all complete manifolds
with nonnegative Ricci curvature.

The result can be derived out of a point-wise differential inequality. The proof of Theorem 1.1
and the argument of [20] gives the following differential inequality for the fundamental solution
to the heat equation.

Theorem 1.2. Let M be a closed Riemannian manifolds with nonnegative Ricci curvature.
Let H be the positive heat kernel. Then

t(2Af—|Vf|2>+f—n§O, (1.5)

e/

fort >0 withH = .
(412

2
\VML; c 4 5: = 0 is equivalent to

Notice that Li—Yau’s gradient estimate % —
t2Af)—n<0. (1.6)

The inequality (1.6) can be viewed as a generalized Laplacian comparison theorem. In deed,
the Laplacian comparison theorem on M is a consequence of (1.6) by applying the inequality
to the heat kernel and letting 1 — 0. This suggests that one can view L(x,7) = 4¢f as the
square of a time-dependent ‘distance function’; then (1.6), which says that AL < 2n, simply
generalizes the standard Laplacian comparison Ar? < 27 on any Ricci non-negative manifold to
such generalized ‘distance function.” From this point of view, one can think (1.5) as a Laplacian
comparison theorem in the space-time since it says AL + L, < 2n. The similar inequality [20,
(7.15)] was one of the important new discoveries of Perelman. Applying similar consideration,
one can also view the entropy estimate in [20] as a generalization of the space-time Laplacian
comparison theorem. This is also related to the reduced volume monotonicity of [20]. It was
pointed to us later by Professor S.T. Yau that he and Hamilton also noticed (1.5) for the Ricci
flow a few years ago. The relation between (1.4) and Li-Yau’s estimate (1.6) will be shown in the
addendum to this paper.

For closed manifolds, following [20], one can define

pw@) = inf W(f1). (1.7)

M uav=

A direct consequence of Theorem 1.1 is the following.
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Corollary 1.3.  On manifolds with nonnegative Ricci curvature, . (t) is a monotone decreasing
function of t. Moreover, u(t) < 0 withlim;_o u(t) =0.

Whenever it makes sense (for example, when M is simply connected, negatively curved with
lower bound on its curvature), as in [20], one can also define v = inf, £ (7) and it can be thought
as some sort of isoperimetric constant. When M = R", v = 0. Thanks to the gradient estimates
of Li—Yau [18], the above results still hold on complete noncompact manifolds with nonnegative
Ricci curvature. As an application of the entropy formula obtained in Theorem 1.1 we prove the
following result.

Theorem 1.4. Let M be a complete Riemannian manifold with nonnegative Ricci curvature.
Then W(f,t) = 0, withu = e_fﬂ being the heat kernel, for some t > 0 if and only if M is

(4r1)2

isometric to R".

In [11] (see also [23, 26]), a sharp logarithmic Sobolev inequality (in different disguises
in [23, 26]) was proved on R". When M = R", the inequality is equivalent to

1 2 e/
/ <§|Vf| —i—f—n) —dv >0 (1.8)
M

(2m)>2

e dv=1.
@m)?

for all f with [,

Since (1.8) is equivalent to ,u(%) > (, asimple corollary of Theorem 1.4 is the following result
on the relation between the logarithmic Sobolev inequality and the geometry of the manifolds,
which is originally due to Bakry, Concordet and Ledoux [1].

Corollary 1.5. Let M be a complete Riemannian manifold with nonnegative Ricci curvature.
Then (1.8) holds on M if and only if M is isometric to R".

It can be shown that the (1.8) holds on any manifold with sharp isoperimetric inequality, or
equivalently the sharp L'-Sobolev inequality. Under the request of some readers of the preliminary
version, we include a proof of this fact, which is communicated to the author by Perelman in 2002
(cf. Proposition 4.1). The proof only uses spherical symmetrization to compare with the Euclidean
case. It does not give a proof to (1.8) in the Euclidean case. One can find the simple elegant proof
of (1.8) by Beckner and Pearson in [3], which makes use of the fact that the product of Euclidean
spaces is still Euclidean together with the sharp L?-Sobolev inequality.

It turns out that W(f, t) being finite, where u = eff,, is the heat kernel, also has strong

(4rt)2
geometric and topological consequences. For example, in the case M has nonnegative Ricci

curvature, it implies that M has finite fundamental group. In fact we can show that

M is of maximum volume growth if and only if the entropy W( f, t) is uniformly bounded for

allt > 0, where u = =< fﬂ is the heat kernel.
(Ar1)2
The analogy above was discovered originally in [20] for the ancient solution to Ricci flow
with bounded nonnegative curvature operator, where he claimed that an ancient solution to the
Ricci flow with nonnegative curvature operator is «-non-collapsed if and only if the entropy is
uniformly bounded for any fundamental solution to the conjugate heat equation.

With some care in the estimates, we can show that the asymptotic value of the entropy
W(x,t),ast — 00,is given by log . Here 0 is the asymptotic volume ratio of the Riemannian
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manifold with nonnegative Ricci curvature. This certainly sharps the above statement on M being
maximum volume growth and gives a quantified version of Theorem 1.4.

Without assuming the nonnegativity of the Ricci curvature, the bound on . (7) also implies
the uniform lower bound on the volume of balls of certain scales. Namely, it implies the volume
noncollapsing, as in the x-noncollapsing theorem of Perelman [20, Theorem 4.1], therefore an
uniform upper bound of the diameter, if the manifold has finite volume. In some sense, u(t)
reflects the isoperimetric property of M for the scale parametrized by t.

2. Proof of Theorems 1.1 and 1.2

We start with the following two lemmas.

Lemma 2.1. Let M be a complete Riemannian manifold. Let u be a positive solution to (1.1).
Then

(%—A>w=—2(|Viij|2+Rijfifj)_2<Vw’ Vi=> @D

where w = 2Af — |V f|> and f = —logu.
Proof. Direct calculation shows that
(% - A) w=—2ViV; f2 = 2R fif; —2 < V(AF).Vf > +2 < V(). Vf >
= 2A(f1) +2fu
= —20ViV; 1 2R fif; =2 < V (IVf1). Vf > =2 (1VfP)
= 2(ViV, fI* —2Ri; fifi —2 <V (|Vf|2 +2ft) Vf >
= 2V;VfP—2Rijfifi —2 < Vw.Vf > .

Here we have used w = 2f; + |V f|? and (% —A) f=-|VfI L]
Lemma 2.2. Let M and u be as in Lemma 2.1. Let W = t2QAf — |V f|*) + f — n, where
we write u = effﬂ . Here t = t(¢) with ‘;—; = 1. Then

(4rt)2

2

<% - A) W=—2 ('Vivjf - Zitgi./ + Rijft'fj) —2<VW,Vf> . (2.2)

Proo_f. One can proceed directly. Here we use Lemma 2.1 to simplify the calculation a little.
Let f = —logu. We then have that

W:rw+f—glog(4nt)—n.
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Keep in mind that (£ — A) f = —|V f|2. The direct calculation shows that

d d -2 n
——A)W=1(=-A —|VFl = —
(8: ) T(az >w+w | f’ 2t
-2 - -2 n
= —=27|ViV,; fI* = 2tR;j fi f; =2t < Vw,Vf >+ |VF[ +2f —|VF] ~57

= 2|ViV fP—2 < VW.Vf > +2AF — zl —2tR;; fifj
T

2

1
=27 V,‘ij—Zgij —2<VW, Vf>—2‘L’Rijfifj.

Here we have used Vf = V £.

Remarks. 1. Lemma 2.1 has its corresponding version for the Ricci flow, namely, if g;; satisfies
the backward Ricci flow equation %gij = 2R;; and u is a solution to (% — A+ R)u = 0. Define
w = QAf — |[Vf]®2+ R). Then
0
<E—A>w=—2|R,~j+ﬁj|2—2<Vw,Vf> ) (2.3)
Here u = ¢~/. One can easily see that (2.3) implies the formula (2.2) of [20]. This also gives
another derivation of the first monotonicity formula in [20].

2. The above approach of the proof to Lemma 2.2 was motivated by the statistical analogy
in [20, Section 6]. One can also use the similar approach to derive Proposition 9.1 of [20]
from (2.3) above. This would simplify the calculation a little and reflect the relation between the
energy and the entropy quantity. L]

Proof of Theorem 1.1.  The proof of Theorem 1.1 follows from the simple observation
uV f = —Vu, therefore

9 P
(5 - A) (Wu) = -2z ( ViVif = 58|+ Rijfifj) U

—2<VW,Vf>u—-2<VW,Vu >

1 2
= 27 ( V,'ij - Zgij +Rijfifj)u s

and integration by parts. L]

Proof of Theorem 1.2.  We can apply Perelman’s argument in the proof of Corollary 9.3
of [20]. For any tp > 0, let & be any positive function. We solve the backward heat equation
starting from #y with initial data 4. We then have that

i/ thdv:/ (hy)(Wu) + h(Wu),; dv
dt Ju M
:/ (hy + AR) Wu + h(Wu); — A(Wu)) dv
M

<0.

Using the fact that ( f y hWudv)|;=o = 0, when u is the fundamental solution, we have that

/ h(Wu)dv <0
M
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for any f9 > 0 and any positive function 4. This implies that Wu < 0. Therefore W < 0. L]

3. Extensions and the value of 1 (0)

The first extension is to complete noncompact manifolds. From the proof, it is easy to see
that Theorems 1.1 and 1.2 hold as long as the integration by parts can be justified. We focus on
the case M having nonnegative Ricci curvature. Since we have the gradient estimate of Li—Yau
for the positive solutions, one can make the integration by part rigorous, keeping in mind that u
is assumed integrable in our consideration of the entropy. One of the references where one can
find the estimates on derivatives of u is [4, Section 3].

Another extension of Theorems 1.1 and Theorem 1.2 is for manifolds with boundary. In this
case, it is not hard to show that the theorem holds on manifolds with convex boundary. In fact, in
this case

W _ (2rff YOVt f —n)v

ov
n—1
=2t) fifw
i

= —2thij fi f
<0.

Here h;; denotes the second fundamental form of 9 M. Therefore, Theorems 1.1 and 1.2 hold for
positive solution # with the Neumann boundary condition g—lbj =0.

Corollary 3.1. Let M be a compact manifold with boundary. Let u be a positive solution
to (1.1) with the Neumann boundary condition. Let f and t be as in Theorem 1.1. Then

d 1
EW:— /M 2‘[(‘V,’ij—ag[j

Here 11(-,-) is the second fundamental form of dM and (V f)T is the tangential projection of
V f ondM. In particular, in the case M has nonnegative Ricci and d M is convex, VV is monotone
decreasing. Moreover, if u is the fundamental solution,

2

+Rijfifj>udv —Zf rII((Vf)T,(Vf)T) dA. (3.1)
oM

t(2Af—|Vf|2>+f—n§O, (3.2)
fort > 0.

Since we know that () is monotone, it is nice to know the value of u(r) as 7 — 0. We
can adapt the argument of [20] to prove that lim;_,¢ u(t) = 0.

Proposition 3.2. Let M be a closed manifold.
Iim u(t) =0. (3.3)
=0

Proof. Tt is easy to see that u(r) < 0 by Theorem 1.2. Assume that there exists 7, — 0

such that u(tx) < ¢ < O for all k. We show that this will contradict the logarithmic Sobolev
inequality. We are going to blow up the metric by %r_l. First we can decompose M into open
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subsets Uy, Uy, - - -, Uy such that each U; is contained inside some normal coordinates and each
U; also contains B(o;, §), a ball of radius 8, for some small § > 0. Now let g* = %r‘lgij and
gk = g™. Itis clear that (U}, gk, o) converges to (R", go, 0) in C* norm. We will also identify
the compact subset of R"” with the compact subset of U ;.

It is easy to see that

We(fi 1) = [ <—l| f|2 - > —e_f
f,t) = \% +f—n —dv
§ u \2 K 2m)2 ’
with restriction fM (;’;)f% dv; = 1, where | - |; is the norm with respect to g* = %t_lg and dv;

is the corresponding volume form. It is also convenient to write in more standard form.
2 2\ 2 n 2
wopr = [ (290 = (tog9?) v = (Slog@m) +0) 9?) dve G
M
restricted to f I Y2 dv; = 1. Let ¢ be the minimizer realizing (). Then we have that

n
DAk — 201 log g = (y,(tk) +n+ 3 log(27t)> Ok 3.5)
and
f prduy =1. (3.6)
M
Here Ay denote the Laplacian of g, and dvy = dv. Due to the monotonicity, we can also
assume that p(tx) > —A for some A > 0 independent of k.

Now we write F () = 2|Vw|%k — (log wz)l/fz — (% log(2m) + I’l)l//z. It is a easy matter to
check that

[FOy)dv. [ F(p)du,
fo)2dv, — [Y2dv,

By the assumption that p(tx) < ¢ < 0 we know that

—log 2?2 . (3.7)

/ F(pr)dvy <c<0.
M

By passing to subsequence we can assume that
/ Flo)dvg < — <0
k Vg = — < VU.
Uy v N

It is easy to see that f U, <p,% dvry < 1. Combining the above with (3.5) and the fact that gi
converges to go on every fixed compact subset of R”, the elliptic PDE theory implies that there
exists a subsequence of ¢y (still denote by ¢y ) such that it converges uniformly on every compact
subset of R". If the limit function ¢ exists and fR" <ng dvp > 0 we claim that we will get
contradiction to the logarithmic Sobolev inequality (1.8). In fact in this case we just denote

€2 = [pn 9% Clearly 0 < € < 1 by the assumption. Since!

/ F(pso)dvg < — <0 (3.8)
- N

IThis needs justification. One can consult [24] for a proof of Proposition 3.2 with Ricci flow, via the maximum
principle.
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then by (3.7) we have that

1 c c
/nF<E%°> dvofﬁ+210ge<ﬁ.

o 2 e
el _ (%(poo) we have that [p, % dvg = 1 and
(2m)2

Let 7
(2m)2

f L fel2 4 " o< <0
— —n —Fav — < .
rr \ 2 10 * (27-[)% 0= N

This is a contradiction to the sharp logarithmic Sobolev inequality (1.8). On the other hand, if
€ = 0 it would imply ¢ = O, contradicting (3.8). We therefore complete the proof of the
proposition. L]

4. Bounded entropy and volume growth

The main purpose of this section is to prove Theorem 1.4 and show that for the manifold with
nonnegative Ricci curvature the finiteness of the entropy for the heat kernel is equivalent to the
manifold haing maximum volume growth. We first include a short discussion on the logarithmic
Sobolev inequality. We say M has logarithmic Sobolev inequality if

1 e f
—|IVF]? dv>—C 4.1
/M<2| £l +f> Sz @.1)

. _ o—f . . . .
for all f with restriction | y — dv = 1. This is equivalent to the finiteness of ,u(%). It is
2m)2

an easy matter to see that the regular Sobolev inequality implies (4.1). In particular, it holds on
minimal submanifolds in R”, which is a special case of the general result in [10]. Since one
has the L2-Sobolev inequality on a closed manifold, any closed manifold satisfies (4.1). In this
case the dependence of the constant C; can be explicitly traced, applying Lemma 2 of [16]. This
would in turn give the explicit dependence of the « constant on the geometry of the initial metric
in the x noncollapsing theorem of [20, Section 4].

The inequality (4.1) is also equivalent to the ultracontractivity as pointed out in [9], which
then follows from conditions such as the lower bound on the Ricci curvature (i.e., Ric > —K for
some K > 0) and inf V, (1) > § > 0. Therefore, u(%) is finite for a large class of manifolds.

It is interesting to find out on which manifolds the logarithmic Sobolev inequality holds with
C1 = n: namely, (1.8) holds. It was pointed out in [20] that the sharp isoperemetric inequality
also implies the sharp logarithmic Sobolev inequality. The following was the proof suggested by
the communication with Perelman.

Proposition 4.1 (Perelman). Let M be a complete manifold such that
AGR) = V(@)

for any compact domain 2 with the Euclidean constant c,,. Here A(9X2) is the area of the boundary
0S2. Then (1.8) holds on M.

Proof. As we know in the proof of Proposition 3.2, (1.8) is equivalent to

fM 2V — (10g¢2) ¢? — (g log(27) + n) $*dv>0. 4.2)
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It suffices to prove the result for compact supported nonnegative function ¢. Let M’ = {x|¢ (x)
> 0}. Let B(R) be a ball of radius R in R” such that Vol(B(R)) = Vol(M’). We define that
F(t) = Vol({x € M'|¢p(x) > t}). We also denote M; = {x € M'|p(x) > t}. T, = OM,.
Let g(ly|) be a function on B(R) such that Vol({ylg(y) = t}) = F(r) and g(R) = 0. We can
define M, and T, similarly. Clearly Vol(M;) = Vol(M;) and A(T;) > A(T) by the isoperimetric
inequality. The simple integration by parts shows that

(0,¢]
/ MN(S)F(s)ds = / A(f)dv (4.3)
0 M’
for any Lipschitz function A(#) with A(0) = 0. This implies that
2\ 2 n 2 4. 2\ 2 n 2 4=
logp~ ) ¢~ + log2m) +n) ¢-dv = logg“) g~ + log(2m) +n)g-dv.
M’ 2 B(R) 2
On the other hand the isoperimetric inequality implies
f IVo|? dv z/ |Ve|* di . (4.4)
M B(R)
In fact, the co-area formula shows that

(o]
/ |V¢|2dv:/ IVo|dA dt
M’ 0 Iy

and

F(t) = ——dAd
®= //(,”w«m s

Combining with the fact F(¢) = Vol(M,) we have that

/ 1 ua —/ dA.
r V9l r, Vel

Using the fact that |Vg| is constant on I';, by Holder inequality, we have that

(/F A dA) (/ 7 g|dA) — A2 (F)

< A%
1
([ o) (], )
T, r, Vol
which then implies that
/ IVo|dA z/ |Vg| dA. 4.5)
I, I,

Since (4.4) implies (4.5) we complete the proof. L]

We should point out that in [2], Beckner provides a proof of (1.8) from the isoperimetric
inequality using the product structure of the Euclidean spaces. The above argument just reduces
the (1.8) for any manifolds, with the sharp isoperimetric inequality, to the Euclidean space (with
the same dimension) case. It does not prove the Euclidean case itself. Now we prove Theorem 1.4.
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Proof of Theorem 1.4. By the assumption, one can find 7o such that W(f, 7o) > 0. But

on the other hand, Theorem 1.2 implies that W(f, ) < 0 for H = 4“’#)2 being the heat kernel.
(4rt)2
This implies W(f,t) = 0 for 0 < ¢ < t9. Applying the equality case in Theorem 1.1 we have

that f;; — 5-gi; = 0, which implies that

2tAf =n. (4.6)
On the other hand, by [6, 25] we know that lim;_, —4¢log H = rz(x, ¥). In particular,
ll%mf =r2(x,y).
Then (4.6) implies that
Ar’(x,y) =2n. .7

Combining with the assumption that Ricci is nonnegative this implies that M is isometric to R".
In fact, from (4.7) one can easily obtain that

Ax(r)
—— =n
Vi(r)

where A(r) and V (r) denote the area of dB,(r) and the volume of B, (r), which then imply
that V, (r) is same as the volume function of Euclidean balls. The equality case of the volume
comparison theorem implies M = R" L]

It is clear that Theorem 1.4 implies Corollary 1.5. The proof of [1] to Corollary 1.5 relies
on a deep result of Peter Li [17] on the large time behavior of the heat kernel. Since we only uses
the behavior of the heat kernel near + = 0, our proof is dual to theirs in some sense. In [15], the
author proved that the sharp Sobolev inequalities on a Ricci nonnegative manifold also implies
the manifold is isometric to R”. The case of L!-Sobolev, which is equivalent to the isoperimetric
inequality in Proposition 4.1, is relatively simple. The other cases are more involved. Please
see [15] for details. It was also asked in [15] if the sharp Nash inequality implies the same
conclusion or not. That still remains open.

Proposition4.2. Let M be a complete Riemannian manifold with nonnegative Ricci curvature.
Assume that M has maximum volume growth, namely V‘;—ff) > 0 for some 6 > 0. Then there

exists A = A(0, n) > 0 such that
W(f,1) = —-A (4.8)

foru = (:ﬁ;ﬂ being the heat kernel. On the other hand, (4.8) implies that M has maximum
)2

volume growth. Namely % > 6 holds for some 6 = 6(n, A).

Proof. Letv = /u. One can rewrite W(f, t) as

W = 4;/ IV[? dv — / log (v2> v dv — (n +2 10g(47rt)) . (4.9)
M M 2
On the other hand, by Li—Yau’s heat kernel estimate
C(n)
2
v =H(x,y,t) <
Vi (V1)
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Hence n
W > —log(C(n)f) —n — 3 log(4m) .

Here we have used the fact [}, v2du = 1.

To prove the second half of the claim we need to use the lower bound estimate of Li—Yau
as well as the gradient estimate for the heat kernel. We first estimate the first term in (4.9) using
inequality (1.6), the Li—Yau’s gradient estimate:

5 [VH|?
4t [Vu|“dv =t dv
M u H

< r/ (Ht + %H) dv (4.10)
M

NS

The second term can be estimated as

Cs(n) r’(x.y)
_/Mlog(H)Hdv < —/1‘/110;:{(‘/)C \/a exp (— 3 )) H dvy

(
< Cotm) +1og (Vi (VA)) + 5 /M P26 WH(x, v, 1) dvy

< Cr(m) +1og (Vi (V7)) -

Here C; are positive constants only depending on n. We also have used Theorem 3.1 of [19] to
estimate the last term of the second line above. Putting the assumption W > — A and (4.9)—(4.11)
together we have the lower bound (4.1) for the volume. L]

@.11)

The similar result as above was claimed in [20, Section 11] for the Ricci flow ancient solu-
tions. The proof here is easier than the nonlinear case considered in [20]. In fact, Proposition 4.2
here can be used in the proof of Theorem 10.1 of [20].

Corollary 4.3. Letweo = lim;— 0o W(f, 1) and 05 = lim, _, %, where w,, is the volume
of the unit ball in R". Then
Woo = 10g Oso.

Proof.  The proof needs Corollary 1.2 in the addendum to this paper. L]

5. Manifolds with bounded u(7)

The following result gives the geometric implication of the non-sharp logarithmic Sobolev
inequality (4.3), or bounded (7). The result can be thought as the Riemannian version of the
k non-collapsing result of [20]. Notice that we do not even require M has nonnegative Ricci
curvature. The results in this section are in line with Perelman’s work on Kéhler—Ricci flow [21].
However, the arguments in the nonlinear case are technically more involved than the case treated
here, especially on the diameter bound.

Proposition 5.1. Let M be a complete manifold. Assume thatu(t) > —A, forall0 <t <T,
for some constant A > 0. Then there exists a positive constant k (A, n) > 0 such that

Vi(R) > kR" 5.D
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forall R> < T. In particular, if u(t) > —A for allt > 0, M has at least the Euclidean volume
growth.

Proof.  The first observation is that
2 2, N 2
w(z) < / T4|Vh|? — (logh + 51og(4m)) 2 dv (5.2)
M

for compact supported nonnegative function 4. If we have that
R
Vi 5 > nVi(R) (5.3)

n
for n = (%) we will have the estimate (5.1). The reasoning is exactly as in [20], by choosing

h? = a efj),l {2(rx (y)/R), where ¢ is a nonnegative cut-off function such that ¢(¢) = 1 for all
TR*)2
t < % and ¢(t) = O for ¢+ > 1. B is so chosen such that fM h?dv = 1. Under the assumption
(5.3) we have that
V(R V(R
log x(R) + Ci(n) < B <log x(R) + Ca(n) .

Rl’l Rn

Therefore, estimation on the right-hand side of (5.2) gives
—A < puR?) < C3(n) + B

which implies (5.1) for some «. Now argue by contradiction that (5.1) must holds. If not, we
know that (5.3) cannot be true. Namely,

R
Vi <3> < nVi(R). (5.4)

‘We focus on the smaller ball B, (%). By the above argument we would conclude that

(5) ()

Otherwise we would have Vx(g) > K (%)n, which would imply Vx(g) > nVyi(R) by the
assumption (5.1) does not hold. Therefore, iterating the argument we have that

R k
Vi 2_k <" Vi(R) (5.5)
for all natural numbers k. This leads to

Vi(r) < Criioe?

for small », which is a contradiction. L]

The following result on the diameter of a manifold with bounded . (7) is an easy consequence
of Proposition 5.1

Corollary 5.2. Let M be a Riemanian manifold such that u(t) > —A for1 > t > 0. Assume
also that V(M) < Vy. Then there exists a constant D = D(A, Vy, n) such that

Diameter(M) < D . (5.6)
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In fact, D < 2([%] + 1). In particular, it implies that M is compact if it is complete.

Remark 5.3. The argument in the proof of Proposition 5.1 was first indicated by Perelman in
his MIT lectures to prove the volume non-collapsing for the Ricci flow assuming only the bound
on the scalar curvature (in stead of the sectional curvature). The details are presented in the notes

[8].

Concluding remarks 1) It would be interesting to find out if there is an interpolation
between the entropy formula of Perelman and (1.4). Namely, to find a family monotonicity
formulae connecting both. For the differential Harnack, or Li—Yau—-Hamilton inequality, there
is such interpolation in dimension two as shown by Chow [7]. The straightforward formulation
seems not to work. (One could have some differential inequalities connecting both cases. But
the differential inequalities do not give monotonicity formulae unless on two end points.)

2) It seems that the entropy formula in [20] is essentially different from the known one of
Hamilton [12] for the Ricci flow on Riemann surfaces since it can be used to derive the uniform
scalar curvature bound and diameter bounds without appealing the Harnack inequality (in [21]
Perelman proved these results for Kihler—Ricci flow with ¢1 (M) > 0), unlike the approachin [12],
which used the Harnack inequality for the Ricci flow essentially (in [5], using the similar method
of Hamilton on Riemann surfaces, the authors proved the scalar curvature and diameter bound
for the case when the manifolds has positive bisectional curvature, which is a special, relatively
easier, case of what treated in [21]). Is there any connection between Perelman’s entropy formula
and Hamilton’s entropy formula at all?2

3) Is Theorem 1.4 still true in n = 3 by assuming instead the scalar curvature R(x) of M is
nonnegative?

4) In [4], the authors proved the matrix Li—Yau—Hamilton inequality on Kéhler manifolds
with nonnegative bisectional curvature following an earlier work of Hamilton [13], which can be
viewed as a generalized complex Hessian comparison theorem. The natural questionis: does (1.5)
have a matrix version? The same question applies to Perelman’s entropy estimate Corollary 9.3.
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