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Abstract

This paper describes the Entropy Reduction En-
gine, an architecture for the integration of plan-

ning, scheduling, and control. The architecture is

motivated, presented, and analyzed in terms of its

different components; namely, problem reduction,
temporal projection, and situated control rule exe-
cution. Experience with this architecture has mo-

tivated the recent integration of learning, and this
paper also describes the learning methods and their

impact on architecture performance.

1 Introduction

This paper describes the Entropy Reduction Engine, an ar-

chitecture for the integration of planning, scheduling, and
control. The next section motivates the architecture, and

the main body of the paper describes the architecture ac-
cording to various dimensions. This architecture has been

tested on some simple but representative problems, and un-
less otherwise noted, all capabilities that are described have

been implemented.

2 Architecture Motivation

At the outset, we would like to indicate what we mean by the

word "integrated", as used in the phrase "integrated archi-
tecture". To do this, we must first discuss our target problem

class •

We are addressing a class of problems that heretofore have
been largely considered in piecemeal fashion. The problems
are those that require planning, scheduling, and control. The

Entropy Reduction Engine (ERE) project is a focus for re-
search on planning and scheduling in the context of dosed-

loop plan execution. The objective of the project is to cre-
ate a set of software tools for designing and deploying inte-

grated planning and scheduling systems that are able to ef-
fectively control their environments (Bresina & Drummond,

1990). This objective has two important subgoals: first, we
are working to integrate planning and scheduling;, second, we
are studying plan execution as a problem in control.

Traditional AI planning is mainly concerned with the selec-
tion of actions that are relevant to achieving given goals. Var-
ious disciplines, principally Operations Research, and more
recently AI, have been concerned with the scheduling of ac-
tions; that is, with sequencing a given set of actions in terms
of metric time and metric resource constraints. Unfortu-

nately, these two bodies of work remain theoretically and
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practically disconnected from each other. It is clear that the

choices made in planning must influence subsequent schedul-

ing, but it is also true that choices made in scheduling can
engender further planning activity. The ERE architecture in-

tegrates planning and scheduling functions so that scheduling

decisions can give rise to further planning activity.

Most planning and scheduling work assumes that the job of

the software system is done when a plan has been gener-
ated. However, as Dwight D. Eisenhower observed, "Plans
are nothing, planning is everything _. We agree with this view
in the sense that the importance of planning does not lie in

the existence of a single plan, but rather in a system's ability

to predictively manage plan execution in light of continuous
feedback from an environment and to re-plan when failures

occur. In the ERE project, we formalize plan execution as
a form of closed-loop control, where a plan describes a de-

sired behavior_ and feedback from the environment is used to
measure deviations.

Diversity in the class of problems poses both the difficulties
and opportunities of architectural integration. We are using
various problem-solving methods in our architecture, includ-

ing problem reduction, temporal projection, and rule-based
execution. We also intend to employ both analytic and in-
ductive learning methods. The problem-solving methods that

axe being integrated have been selected due to their apparent
relevance to problem types of concern (planning, scheduling,

and control). We are pursuing this integration effort with the
hope of achieving more from the methods' interaction than
could be achieved from any single method in isolation.

3 Architecture Components

The ERE architecture consists of three major components:
the Reductor, the Projector, and the Reactor. The Reduc-
tor synthesizes appropriate problem-solving strategies for a
given problem; the Projector uses these strategies as search
control to plan and schedule appropriate actions; and the
Reactor executes control rules derived from the Projector's
plans. Bresina and Drummond (1990) present an overview
of this architecture; here, we only discuss how ERE can be
used to build a system for a particular problem. We take a

programming language view on the architecture and consider
the different sorts of knowledge that a user must provide in

order to construct an application system.

First, a user must provide a cau_al theory for the domain of

application, or no behaviors can be produced by the system.
This theory consists of a description of the control actions
that can be taken by the system, their preconditions, and

probability distributions of these actions' possible effects. In
a similar fashion, a user can also specify exogenous events

that are outside of the system's control. This information is
used by the Projector to reason about possible system behav-
iors. To complete the causal theory, the user must provide
domain constraints that specify those facts which can never
co-occur; these constraints are used throughout the system to



By taskability we mean the ability of a system to accept new
goals at run time. ERE has this ability, provided that there
is time for the three components to react. The Reactor can
accommodate a new goal with ease, provided that it has ap-
propriate SCI_. If no such SCKs exist, then the Projector
must carry out a search and compile SCRs for the new goal.
If the current strategy is inappropriate for the new goal, then
the Reductor must respond by producing a new and appro-
priate strategy. It is possible to change goals at run time ....

because we do not wire a single goal into the system at de-

sign time. Of course, there is a cost associated with this
run-time flexibility: in order to produce a new set of SCRs,
each system component might have to carry out extensive

computation.

5.4 Adaptability

By system adaptability we refer to the introduction of learn-
ing methods that enable the system to improve itself over
time. One way to accomplish this is by acquiring and refining
various sources of knowledge. Currently, there are three types
of knowledge in the system that are acquired and refined: the
causal theory, the SCRs, and the problem reduction rules. In
this section, we consider each in turn.

First, the causal theory can be refined by detecting and recov-

ering from failures (Kedar, Bresina, & Dent, 1991). In par-
ticular, errors in the causal theory are detected when there is
a discrepency between what was projected to occur and what
actually occurred during reaction. These 'prediction failures'

may be caused by one (or more) of the following: missing op-
erator preconditions, missing operator outcomes, or missing

domain constraints. We have implemented a technique us-
ing explanation-based learning (Mostow & Bhatnagar, 1987;
Gupta, 1987; Chien, 1989; Minton, 1988b) to acquire gen-
eral preconditions to be added to an operator schema. We
are currently developing techniques to handle other kinds of
missing information. These techniques require the addition

of induction to explanation-based learning.

Secondly, SCRs can be acquired and refined through caching
goal-satisfying behaviors synthesized by the Projector. The
most specific version of this process is a form of knowledge
compilation. However, SCRs can be formed with varying de-
grees of generality using a goal regression algorithm (Mitchell,
et al., 1986) that we have extended to regress goals with tem-
poral extent. Compiling general SCRs using goal regression
is very similar to Soar's chunking mechanism (Laird _- Rosen-
bloom, 1990) and to Theo's use of explanation-based learning
(Mitchell, 1990).

Thirdly, problem reduction rules can be refined in the face of :
inappropriate problem-solving behavior. Recall that the Re-
ductor synthesizes an ordered set of subproblems which the
Projector attempts to satisfy in turn. Whenever a subprob-
lem is solved, the solution is compiled into SCIls which are

immediately made available to the Reactor. Thus, if execu-
tion must begin before a complete solution has been found,
the Reactor is guided by the SCRs resulting from the current
solution prefix. However, harmful interactions between sub-
problems can make it impossible to extend the partial solu-
tion to satisfy the entire strategy. If this happens the Reactor

may have to physically backtrack. Hence, it is important that
the probability of backtracking over a subproblem solution be
kept low. This probability can be reduced by incrementally
refining the problem reduction rules, such that the subprob-
]eros they specify are more independently solvable. We are

currently developing a combination of analytic and inductive
learning mechanisms to address this issue.

5.5 Scalabillt y

Any given problem can be scaled up in a number of ways;
in general, the major impact on our architecture is an in-
crease in the size of the projection search space. In order for
the synthesized SCRs to be of sufficient "quality" within the
available time, the search guidance supplied by the Redactor
must also be of sut_icient "quality". The quality of the syn-

thesized problem solving strategies is dependent (mainly) on
the expertise encoded in the problem reduction rules. Thus,
if the expertise appropriate for the scaled-up problem is sup-
plied (or learned), the Reductor has the potential to effec-
tively guide the Projector's search. However, this potential
can only be realized if there is enough computation time avail-

able. Scaled-up problems tend to require deeper searches in
the reduction space and in the projection space; hence, the
anytime characteristics will degrade. Partially due to this
degradation, if all planning search must be carried out con-
current with action, the Reactor's response time could in-
crease. The other (potential) reason for increased response
time is that scaled-up problems tend to require a larger set of
SCRs to specify the appropriate control advice. We're cur-
rently studying system performance in the TileWorid simu-
lator (Philips & Bresina, 1991), but plan to address the scal-
ability issue by using ERE on a more realistic NASA domain
in the future.

5.6 Reactivity

Environmental change potentially affects all three ERE com-
ponents. The Reactor can easily respond to environmental
change, and in fact, that is exactly its job. On each cycle,
it checks for applicable SCRs (relevant to the given goal and
enabled in the current situation) and executes one of the indi-
cated actions. Clearly, if the sensor values indicate a situation
for which there is an applicable SCR, then the Reactor can
accommodate environmental change. Things are more prob-
lematic when we consider how the Projector can respond to
environmental change. This problem is essentially that of
having a planning system recognize when assumptions it has

made about the environment are invalidated during plan con-
struction. We do not currently have a solution to this prob-
lem implemented, but we are considering various dependency
tracking mechanisms. Lastly, the Reductor must also notice
environmental change, since it is possible that the currently

selected strategy is inappropriate in the current situation.
This is an open research problem.

5.7 Efficiency

The maximum response time of the Reactor occurs when it is
lorced to respond (i.e., perform some action) and no available
SCR is appIicable. Since the causal theory specifies all possi-
ble actions, the Reactor can respond by (randomly) selecting
one of =the enabled actions. Hence, the maximum response

time equals the time needed to determine that no SCRs are
applicable plus the time to determine which actions, speci-
fied in the causal theory, are enabled in the current situation.
This calculation depends on the match algorithm, as well as
on the size and, more importantly, on the organization of
the set of SCRs. The time required to guarantee an "appro-
priate _ response depends on whether the necessary planning
has been done in advance, and if not, it depends on the any-
time characteristics of the Reductor and Projector. We have
not yet addressed the utility problem; that is, the problem
of SCRs with excessively expensive applicability conditions.
This problem is especially acute when using generalized SClts

(Minton, 1988a).
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