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Abstract: A prototype for the instrumented decay tunnel of ENUBET was tested in 2018 at

the CERN East Area facility with charged particles up to 5 GeV. This detector is a longitudinal

sampling calorimeter with lateral scintillation light readout. The calorimeter was equipped by an

additional “t0-layer” for timing and photon discrimination. The performance of this detector in

terms of electron energy resolution, linearity, response to muons and hadron showers are presented

in this paper and compared with simulation. The t0-layer was studied both in standalone mode

using pion charge exchange and in combined mode with the calorimeter to assess the light yield and

the 1 mip/2 mip separation capability. We demonstrate that this system fulfills the requirements for

neutrino physics applications and discuss performance and additional improvements.

Keywords: Calorimeters; Neutrino detectors

ArXiv ePrint: 2006.07269

https://arxiv.org/abs/2006.07269


2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
8
0
0
1

Contents

1 Introduction 1

2 Requirements 3

3 Layout and construction of the positron tagger 4

3.1 Description of the calorimeter 4

3.2 The photon veto 7

4 Neutron reduction studies 8

5 Test setup at the T9 beamline 10

6 Signal equalization and response to minimum ionizing particles 12

7 Response to electrons 13

8 Response to charged pions 16

9 Tests of the photon veto 17

10 Conclusions 20

1 Introduction

Monitored neutrino beams [1] are highly controlled sources of neutrinos at the GeV scale. They

represent the ideal facilities for a new generation of experiments to measure neutrino cross sections

of relevance for oscillation studies at per cent level. In particular, the ERC ENUBET project [2–4]

is aimed at designing the first monitored beam tagging large angle positrons from the three body

decay of charged kaons (Ke3 : K+ → e+π0νe) and thus providing a pure source of νe where the

flux is measured with a precision of < 1%. One of the key challenges of ENUBET is to devise

a compact, radiation-hard, efficient and cost-effective instrumentation for the decay tunnel, whose

requirements are detailed in section 2. The ENUBET “positron tagger” must be capable to identify

electrons and muons in the neutrino decay tunnel located after a narrow band secondary transfer

line. In 2017-2018 we demonstrated that the ENUBET requirements can be achieved using an

iron-scintillator calorimeter whose basic unit is an Ultra Compact Module (UCM) sampling e.m.

and hadronic showers every 4.3 radiation lengths (X0) or, equivalently, 0.45 interaction lengths

(λ0) [15]. Scintillation light produced by five 0.5 cm thick tiles is transported by wavelength-shifter

(WLS) fibers crossing the 1.5 cm thick iron tiles (”shashlik” light readout [16–18]) toward 1 mm2

Silicon Photomultipliers (SiPMs) located in the back of the module and, hence, embedded in the

bulk of the calorimeter. Irradiation tests [19] performed in 2018 demonstrate that the most critical

– 1 –
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component of the UCM are the SiPMs, which are exposed to fast neutrons produced by hadronic

showers. The ENUBET UCMs are able to stand up to O(10
11) n/cm2, which is sufficient for νe cross

section measurements with a statistical uncertainty of 1% employing neutrino detectors of the same

size of ICARUS at Fermilab [20] or the ProtoDUNEs at CERN [21, 22]. The UCM, however, has

two drawbacks: SiPMs are inaccessible for maintenance during data taking and fluxes exceeding

O(10
12) n/cm2 may compromise the sensitivity of the UCM to muons if data taking is significantly

extended or the average beam power is increased well above the ENUBET baseline design.

Figure 1. Schematics of the ENUBET instrumented decay tunnel. The three layers of modules of the

calorimeter (light green) constitute the inner wall of the tunnel. The rings of the scintillator tiles of the

photon veto (yellow) are located just below the modules. The length of each module is 10 cm and the tile

doublets of the photon veto are installed every 7 cm. In the lateral readout option, the optical fibers (not

shown) bring the light in the radial direction toward the outer part of the tunnel (light brown) where the

SiPMs (not shown) are positioned.

The tolerable beam power can be increased by a factor of about 18 (see section 4) positioning

the SiPMs above the calorimeter and on top of a 30 cm Borated polyehtylene shield and transporting

the light from the module to the top of the detector by WLS fibers running along the lateral side

of the tiles. This setup replaces the shashlik-based UCM with a lateral readout compact module

(LCM) where the light of all fibers belonging to a module is recorded by a single 4× 4 mm2 SiPM.

The number of SiPMs is thus equal to the number of modules and they can be accessed during

data taking from the outer part of the decay tunnel. The drawback of this setup is an increased

complexity in mechanical installation and a slight reduction of the light yield due to the longer

fiber length.

These challenges were addressed by ENUBET in 2018-2019 by constructing a prototype

calorimeter whose size is similar to the UCM-based detector [15] but it is assembled from LCMs.

In addition, this prototype was equipped with a t0-layer built with a technology very similar to the

LCM: tile doublets of plastic scintillator laterally readout by WLS fibers that are connected to the

SiPMs. In this paper, we describe the design and construction of the lateral readout calorimeter

– 2 –
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(section 3.1) and the t0-layer (section 3.2). The positron tagger, i.e. the calorimeter equipped with

the t0-layer, was tested at the CERN East Experimental Area in fall 2018 (see section 5): we show

the performance of the detector in a mixed beam of electrons, muons and hadrons in the energy

range of interest for monitored neutrino beams in section 6, 7 and 8. The performances of the

t0-layer are detailed in section 9.

2 Requirements

ENUBET will provide the most sophisticated diagnostics ever conceived for neutrino beams to

control the νe and νµ neutrino flux at source. This is motivated by the uncertainties on the neutrino

cross sections at the GeV scale that limit the physics reach of future neutrino oscillation experiments

(in particular, DUNE and Hyper-Kamiokande). In previous neutrino cross-section experiments, the

measurement systematics are completely dominated by the uncertainties on the flux, which will be

overcome by ENUBET.

For a transfer line selecting kaons at 8.5 GeV/c, like the one envisaged for ENUBET, the

positrons from Ke3 reaching the instrumented walls of the tunnel at 1 m from the beam axis span

an energy range between 1 and 3 GeV. The mean energy of the positron is ∼1.6 GeV and the

mean angle is ∼125 mrad. Since the positrons produced per spill exceed 10
7, statistical error is

always negligible and we aim at recording a (prescaled) subsample of minimum bias events for

monitoring purposes. The main background consists of charged pions from the other decay modes

of the kaons and from the off-momentum beam halo transported at the entrance of the tunnel.

In addition, the instrumentation must be able to suppress muons from decays along the beamline

(halo muons) and photons from tertiary e.m. showers and π0. An overall positron efficiency of

20% or more with a signal-to-noise ratio > 1 is sufficient to predict the νe flux at per-cent level.

The instrumentation must be cost-effective and reliable and should be placed around the wall of

the decay tunnel covering a significant fraction of this 40 m long tunnel. Sampling calorimeter

with longitudinal segmentation read out by WLS fibers and compact solid-state photosensors fulfill

these requirements and represent the technology of choice for ENUBET. A full simulation of the

ENUBET beamline performed in 2016-2020 [5, 6] indicates that an appropriate e+/π+ separation

can be achieved by longitudinally segmented sampling calorimeters with an e.m. energy resolution

< 25%/
√

E(GeV) in the range of interest for ENUBET (1-3 GeV). Charged pions are separated

by positrons (or background electrons) employing the energy deposition pattern in the longitudinal

modules of the calorimeter. Positron identification has been simulated starting from particles

transported by the ENUBET beamline at the entrance of the decay tunnel. The ENUBET GEANT4

simulation includes particle tracking and detector response and the full particle identification (PID)

chain from the event builder to the positron identification. The PID is based on a Multivariate Data

Analysis (TMVA) [7, 8] that employs 13 variables constructed from the energy deposit in each

module. The latest results provide a signal-to-noise ratio of ∼1.6 for a positron efficiency1 of ∼24%

using the calorimeter described in this paper.

The particles impinge in the calorimeter from the innermost part of the tunnel in an angular

range between 10 and 200 mrad and the simulation accounts for energy losses due to albedo, i.e.

1Including the geometrical acceptance that amounts to ∼53%.

– 3 –
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parts of the shower that bounce back into the tunnel. The average particle rate in the calorimeter

along the tunnel length is ∼600 kHz and is dominated by kaon decay products and muons from

the beam halo. Pile-up suppression requires a recovery time of about 20 ns which is achieved

both by fast recovery devices and by the analysis of the SiPM waveform recorded during the spill.

The ENUBET analysis includes pile-up effects simulated through GEANT4 [10–12] by the time

distribution of the particles entering the decay tunnel. The response of the SiPM is simulated

at hardware level using GosSiP [9] and dedicated algorithms to further disentangling pile-up are

being developed.

Longitudinal segmentation does not provide separation between positrons and photons. Pho-

tons originate from showers produced in the transfer line and from K+ decays that produce neutral

pions (in particular K+ → π0π+ decays). The positron tagger (see figure 1) must hence include

a photon veto, which also provides the timing of the event (“t0-layer”). The t0-layer must provide

absolute timing of the events with a precision < 2 ns, an efficiency for a single minimum ionizing

particle (mip) > 90% and 1 mip/2 mip discrimination capability to reject the small fraction of

photons that converts inside a tile of the photon veto.

Finally, the ENUBET instrumentation must be radiation tolerant both for ionizing and non

ionizing doses. Doses depends on the quality of the beam and the duration of the run. A full

dose assessment was performed using the FLUKA 2011 code [13, 14] and demonstrated that the

only critical component are the SiPMs if they are embedded in the core of the calorimeters. These

studies (see section 1 and 4) motivated the design of the lateral readout scheme. In particular, the

neutron fluence on the inner surface of the calorimeter for a run that collects 10
4 νe CC events

at the neutrino detector is ∼ 2 × 10
11 n/cm2 (1 MeV equivalent) but lower irradiation levels are

highly advisable especially to prevent the dark count rate to disrupt the identification of minimum

ionizing particles [19]. Mip identification is useful for self-monitoring possible drifts of the LCM

response in the course of the run. Muon identification allows to exploit additional K decay channels

(K+ → µ+νµ) and constrain the distribution of halo muons from the transfer line.

The results presented in this paper validate a significant fraction of this simulation for the

LCM-based instrumentation: the energy response of the electron at various angles, the data/MC

agreement for the response to the mip, the longitudinal profile of charged pions and, finally, the

performance of the t0-layer. Further details and opportunities offered by NP06/ENUBET (muon

monitoring after the hadron dump for the νµ, a priori measurement of the νµ at source, tagged

neutrino beams etc.) are summarized in ref. [6].

3 Layout and construction of the positron tagger

The prototype of the ENUBET positron tagger is composed by the longitudinal segmented calorime-

ter based on the LCM and the t0-layer.

3.1 Description of the calorimeter

The construction of the prototype calorimeter was performed in two steps. In April 2018, we built a

setup (“Module 1”) composed of 18 LCMs to validate the production and mounting procedure and

estimate the light yield. In summer 2018, we added two additional modules: “Module 2”, identical

to Module 1 i.e. composed by 18 LCMs, and “Module 3” made of 48 LCMs.

– 4 –
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Figure 2. Layout of the three Modules of the calorimeter. The GEANT4 simulation shows a 3 GeV electron

impinging at 200 mrad the side under the calorimeter. The numbers in parenthesis correspond to the LCMs

of the Modules. The z direction corresponds to the axis of the tunnel. The x axis correspond to the radial

direction of the tunnel while y cover a fraction of the azimuthal direction of the tunnel.

The prototype tested in fall 2018 is thus composed of three parts (see figure 2 and table 1).

Module 1 and 2 have 2 columns of LCMs in the axis that corresponds to the azimuthal direction

in figure 1 (y-axis in table 1). They have 3 layers in the transverse beam plane, i.e. in the radial

direction of figure 1 (x-axis in table 1) and 3 planes in the longitudinal direction along the beam

axis (z-axis in table 1). Each LCM is composed by 1.5 cm thick iron slabs interleaved with 0.5 cm

plastic scintillators (Eljen EJ-204 [23]), while each scintillator tile and iron slab has a cross section

of 3 × 3 cm2, as sketched in figure 3. The scintillator tiles are painted with a diffusive TiO2-based

coating and read by two WLS Saint Gobain BCF92 fibers [24] with a diameter of 1 mm each glued

to the sides. In addition, a Mylar® (BoPET) foil is placed between the two columns.

The longitudinal planes are shifted by 3.5 mm with respect to each other, to allow for the

extraction of the fibers from the bulk of the calorimeter. This arrangement (see figure 4), in which

each fiber is coupled only to one scintillator tile and does not collect light from the above planes,

ensures optical insulation among LCMs. For the same reason, iron tiles are grooved on both sides

to make room for the passage of the fibers (see figure 5). The grooves are 3 mm and 7 mm wide

and 1.5 mm deep. The only difference between the two small Modules is the dimension of the

scintillator: the tiles employed in one of them are 0.2 mm thicker than the other ones since they

were procured by different Eljen production batches. Hence the LCM length is 10.1 cm instead

of 10.0 cm.

Module 3 is made of 3×4×4 modules for a total of 48 LCMs: 3 radial layers, 4 horizontal

columns and 4 longitudinal (i.e. along the direction of the beam axis) planes. The first three planes

in the longitudinal direction are read by Kuraray Y11 fibers [25], while the fourth is equipped with

Saint Gobain BCF92 fibers. The LCMs are housed in custom PVC/Aluminium boxes and Mylar

foils are positioned among the four columns. The overall calorimeter — see figure 6 — thus consists

of 84 LCMs in a 3×4×7 structure. The length of the WLS fibers is 30 cm, i.e. three times longer

– 5 –
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Figure 3. Layout of one LCM. The axis definition is the same as for figure 2.

Figure 4. Layout of the fibers running toward the SiPMs through several LCMs by the iron grooves. The

axis definition is the same as for figure 2.

that the previous ENUBET shashlik UCM. The 10 WLS fibers of a single LCM (corresponding to 5

scintillator tiles) were read by 4×4 mm2 SiPMs with 40 µm cell size produced by Advansid srl [26].

Each SiPM has 9340 cells with a fill factor of 60% and peak PDE at 550 nm. The breakdown

voltage is 27 V and the bias is the same for all SiPMs and it is distributed by a coaxial cable. During

the beam-test all the SiPMs were biased at 32 V and the equalization among LCMs was performed

using the response to minimum ionizing particles (see section 6).

The signals from the LCMs are recorded by a set of 8 channel v1720 CAEN [27] digitizers

(12 bit, 250 MS/s). All waveforms are recorded by the DAQ. A reduced dataset is produced for the

analysis employing a peak finding algorithm on the waveform data [16]. The assembly of Module 2

– 6 –
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Figure 5. Mounting of one of the Modules before the bundling of the fibers and the installation of the SiPMs.

Figure 6. The full calorimeter: module 3 (blue box) on the right, Module 2 (orange box) on the left, Module

1 behind Module 2 (not visible). The red box points out one LCM in the prototype. During the beam-test,

the charged particle beam was impinging from the right and Module 1+2 were used for shower containment.

and 3 was optimized taking advantage of the experience gained during the mounting of Module 1.

In particular, we developed special plastic connectors to bundle the fibers prior to the final levering

and polishing (see figure 7, left). The SiPM is hosted in another plastic connector coupled to the

bundle with two M3 Teflon screws that hold also the board bringing the bias to the photosensor and

leading the anode signal toward the digitizer by a MCX connector (see figure 7, right). All plastic

connectors were produced by 3D printing at INFN Padova.

3.2 The photon veto

The photon veto (t0-layer) provides both photon identification capabilities and precise timing of the

particles in the instrumented decay tunnel. The requirements to achieve the goals of ENUBET are

a photon identification efficiency at 99% and a time resolution of ∼1 ns.

The t0-layer is composed of doublets of EJ-204 plastic scintillator tiles with a surface of

3×3 cm2 and a thickness of 0.5 cm. The tiles are mounted below the LCMs and positioned

every 7 cm (see figure 8) so that positrons from kaon decays in the ENUBET working condition

– 7 –
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Figure 7. Left: fiber connector close up. Right: detail of the SiPM’s connector.

Figure 8. Four doublets of the photon veto installed below Module 3 (bottom rightmost part of the figure).

(θe+ ∼ 100 mrad) cross five doublets on average. The surface of the tiles is painted with a TiO2

layer. Two 40 cm long BCF92 multi-clad (MC) WLS fibers are glued to the lateral edges of the tiles

with the same optical cement (EJ-500) used for the calorimeter and bundled by a custom connector,

which optically couples them to one SenSL-J 30020 SiPM [28]. The SenSL SiPMs are equipped

with a fast output signal employed for timing applications. The other end of the fibers is covered by

a reflective painting.

Signals from the photon veto are amplified by a custom two stages amplifier (∼130 amplification

factor) with a bandwidth up to 500 MHz. Both the anode and the fast output of the SiPMs are

acquired by a 10 bit CAEN V1751 digitizer with 2 GS/s resolution through a VME-based DAQ.

4 Neutron reduction studies

We have set up a detailed simulation of a tentative beamline for the ENUBET facility in the FLUKA

framework. The goal is to estimate the ionizing doses and neutron fluences for all the elements of

the beamline and, especially, for the decay pipe where the positron instrumentation is located.

– 8 –
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Unit Mechanics Dimension Notes

LCM

5 iron tiles

5 EJ-204 scint. tiles

10 WLS fibers (⊘ 1 mm)

1 SiPM (4 × 4 mm2)

Fe tile: 3 × 3 cm2, 1.5 cm thick

Scint. tile: 3 × 3 cm2, 0.5 cm thick

overall dim.: 3 × 3 × 10 cm3

Scint. thick.

in M2: 0.52 cm

M1 LCMs with BCF92 fibers

3 LCMs in x, 2 in y, 3 in z,

9 × 6 × 30 cm3 (x,y,z)

total: 18 LCMs

fiber polishing

not optimized

M2 LCMs with BCF92 fibers

3 LCMs in x, 2 in y, 3 in z,

9 × 6 × 30.3 cm3 (x,y,z)

total: 18 LCMs

fiber polishing

optimized

M3 LCMs with Y11 fibers

3 LCMs in x, 4 in y, 4 in z,

9 × 12 × 40 cm3 (x,y,z)

total: 48 LCMs

see caption (a)

All

3 LCMs in x, 4 in y, 7 in z,

9 × 12 × 70 cm3 (x,y,z)

total: 84 LCMs

t0-layer

pair of EJ-204 scint tiles

BCF92 WLS fibers

(2 fibers per tile)

SiPMs: SenSL-J 30020

(1 SiPM per tile)

tile: 3 × 3 × 0.5 cm3 (x,y,z)

distance among tiles: 0.5 cm

distance among doublets: 7 cm

installed below

the calo

Table 1. Summary of the detector components. The calorimeter is made of 84 LCMs corresponding to 84

channels (1 SiPM per channel) that sample the e.m. and hadronic showers. All SiPMs are located on the top

and all fibers are 30 cm long. The z direction corresponds to the axis of the tunnel. The x axis correspond

to the radial direction of the tunnel while y cover a fraction (12 cm) of the azimuthal direction of the tunnel.

(a) The LCMs of the last (4th) plane in z are read by BCF92 fibers.

Such layout of the beamline has been defined by a dedicated study performed with the TRANS-

PORT [29] and G4BeamLine [30] codes. The transfer line from the target to the decay tunnel pro-

duces an intense and collimated hadron beam with low levels of stray particles. The optimization

performed with G4Beamline minimizes the length of the transfer line to reduce losses from kaon

decays occurring before the entrance of the decay tunnel.

The resulting system is shown in figure 9. In this scheme the beamline consists of an “on-axis”

quadrupole triplet followed by a single dipole and an “off-axis” quadrupole triplet. The overall

bending angle of the resulting neutrino beam with respect to the proton axis is ∼ 7.4◦. Quadrupoles

and dipoles were dimensioned to achieve a collimated beam of pions and kaons at an average

momentum of 8.5 GeV/c and a momentum bite of 5-10% with the shortest possible length to avoid

losing too many neutrinos from early decays of kaons (βγcτ ∼ 63 m at 8.5 GeV/c). The optimization

of the position and size of the proton dump is in progress.

While implementing the beam optics in FLUKA several optimizations were performed mainly

in terms of collimators and shielding. In particular a Tungsten plug of 4 m in length was added

in front of the decay pipe to protect the calorimeter from background particles thanks to the large

stopping power of this dense material.

– 9 –
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Figure 9. Layout of the hadronic beamline modeled with FLUKA. The regions in green are those composed

of borated polyethylene.

Figure 10. Left: layout of the neutron shielding above the LCMs. Right: neutron reduction induced by

the borated polyethylene shielding vs the longitudinal position in the tagger. The solid line represents the

neutron flux at the inner surface of the tagger while the dashed one the flux just outside of the shielding.

The calorimeter has been surrounded by a shielding of Borated polyehtylene with a thickness

of 30 cm as shown in figure 10, left. The neutron reduction induced by adding this layer of material

amounts to a factor of ∼ 18, averaging over the expected energy spectrum (see figure 10, right).

5 Test setup at the T9 beamline

The calorimeter was exposed to electrons, muons and pions at the CERN PS East Area facility.

We carried out a pilot run with Module 1 in May 2018 and a complete characterization of the

prototype in September 2018. The momentum of the particles was varied between 1 and 5 GeV,

i.e. in the range of interest for ENUBET (1-3 GeV) and above. The detector was positioned inside

an Aluminum box to ensure light tightness and mounted on a platform in the T9 experimental area

in front of two silicon strip detectors. The layout of the instrumentation in the experimental area is

shown in figure 11. During the data taking the calorimeter was tilted at different angles (0, 50, 100,

200 mrad) with respect to the beam direction.

The silicon detectors [17, 31] provide track reconstruction with a spatial resolution of about

30 µm. A pair of threshold Cherenkov counters filled with CO2 is located upstream of the silicon

detectors. The maximum operation pressure of the counters is 2.5 bar. As a consequence, they

were used to separate electrons from heavier particles (µ or π) for momenta below 3 GeV while,

during runs with momenta between 3 GeV and 5 GeV, the two counters were operated at different

pressures to identify electrons, muons and pions.
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Figure 11. Layout of the instrumentation in the T9 experimental area. The detectors installed in T9 are the

Calorimeter (Module 1,2,3), two Cherenkov counters (Cher A and B), two silicon chambers (Si chambers),

a muon catcher (µ catchers) and the trigger scintillator plane (Scinti). Dimensions and distances are not

in scale.

The data acquisition system is triggered by a 10×10 cm2 plastic scintillator located between the

silicon and Cherenkov detectors. Two pads of plastic scintillator (“muon catcher”) are positioned

after the calorimeter. We installed a 20 cm thick iron shield between the scintillators to select high

purity samples of muons or non-interacting pions.

Particles in the beamline are produced from the interaction of 24 GeV/c primary protons of

the CERN-PS accelerator with a fixed target. As in [15], we employed the T9 “electron enriched”

target: an Aluminum Tungsten target (3×5×100 cm2) followed by a Tungsten cylinder (diameter:

10 cm, length: 3 cm). The setting of the collimators was tuned to achieve a momentum bite of 1%.

At 3 GeV the beam composition as measured by the Cherenkov counters is 12% electrons, 14%

muons and 74% hadrons. We only selected negative particles in the beamline and the contamination

of protons and undecayed kaons is thus negligible.

The DAQ system employed in T9 is based on a standard VME system controlled by a SBS

Bit3 model 620 bridge, optically linked to a Linux PC-system. The DAQ, the digitizers, the power

supply for the SiPMs and the front-end electronics for the silicon chambers are located in the

proximity of the calorimeter, inside the experimental area. The front-end electronics also perform

zero suppression in the silicon chambers [31]. The HV settings for the Cherenkov counters and

the scintillators, and the configuration setting for DAQ (start-stop of the run, quality control) are

performed by a PC in the Control Room connected to the main PC of the DAQ through a Gigabit

Ethernet link. Users in T9 are served by a dedicated slow extraction of the protons from the PS to

the target. The acquisition is hence triggered by the coincidence of the proton beam spill (duration:

400 ms) and the signal in the plastic scintillator. The signals from the Cherenkov counters and

muon catcher are recorded for each trigger and used off-line for particle identification. The average

particle rate recorded by the DAQ during the beam-test was ∼500 particles per spill. This rate

is limited by the throughput of the waveform digitizers in the DAQ configuration employed for

the beam-test. The maximum sustainable rate of the calorimeter and t0-layer is dominated by the

recovery time of the SiPMs and is O(100MHz) per LCM.
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6 Signal equalization and response to minimum ionizing particles

The signal response to minimum ionizing particles (mip) of each LCM was measured using a

dedicated high statistics sample of non-interacting muons and pions at 4 GeV. The bias voltage for

the SiPMs was Vbias = 32 V. Mips are identified by Cherenkov counters located upstream of the

beamline and they are selected projecting the information of the silicon chambers at the entrance of

the calorimeter and checking if the particle hits a squared region of 1 × 1 cm2 in the centre of each

LCM. The distribution of the signal response for each LCM is shown in figure 12. The mip peak

corresponds to the most probable value of the Landau fit of the deposited energy and it was used to

equalize the relative response of the entire prototype.

Figure 12. Signal response to minimum ionizing particles (mip) of each LCM. The LCMs belonging to the

same Module are contained in boxes. Blue (dashed line): module 3 with Y11 fibers. Light blue (continuous

line): module 3 with BCF92 fibers. Green (dashed line) Module 2. Orange (dotted line): module 1.

Figure 12 shows significant variations among the LCMs. The variation of the signal response

among Modules is due to the two different optical fibers (Y11 and BCF-92) used in the assembly

of the calorimeter: as expected, LCMs equipped by Y11 fibers have a higher response with respect

to modules equipped with BCF-92 fibers because of the better spectral match with the plastic

scintillator. In addition, the variations between Module 1 and 2 are due to the improvement of

the fiber polishing procedure performed in summer 2018 (see section 3.1). Variation of the LCMs

inside the same Module were investigated by a dedicated campaign with a pulsed laser and cosmic

rays. They were caused by differences in the gain of the SiPMs at 32 V. This effect was not noticed at

the time of the construction because we were not aware of the production batches of the SiPMs and

the general feature of the SiPMs (Vbk and I-V curve in reverse bias) were rather uniform. Later on,

we were able to trace that the SiPMs used for the construction of the prototype were coming from
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different production batches but no fast equalization of the gain was possible during the beamtest

because there is not a straightforward correlation between the gain at a given voltage and the size

of the reverse current. After the test, however, most of the SiPMs of Module 3 were measured one

by one with a laser system and the gain difference was computed for the voltage used at CERN.

Accounting for this effect, non-uniformities inside Module 3 are reduced to ∼10%. Finally, the low

signal response of 7th LCM of the uppermost Module (Module 3, see LCM# 7 in figure 12) was

traced back to an optical fiber damaged during the installation.

The detector response was simulated with GEANT4. The simulation includes the iron-

scintillator tiles, the WLS fibers and a plastic box that holds all calorimeter components. It

does not include the scintillation process and light propagation. The physics list employed is

FTFP_BERT_HP [12, 32]. The expected signal in each LCM is thus proportional to the energy

deposit in the scintillator smeared with the contribution due to photoelectron statistics (the measured

value is 82 p.e./mip in a single LCM at Vbias = 31 V). Unlike electrons (see section 7), saturation

effects in the SiPMs are negligible. The mip energy deposit is in good agreement with simulations.

Figure 13 shows the shape of the energy deposit for muons impinging on a 3 × 3 cm2 on the front

face of the calorimeter for data (3 GeV run, Vbias = 31 V) and Monte Carlo simulation. This area

corresponds to the green square of the figure 14. Data were converted from arbitrary units (ADC

counts) to MeV by equalizing the energy deposit of the electrons in the data (up to saturation) to the

energy deposit of the electrons in the MC simulation. The data response for muons is empirically

reduced by 20% to account for limitations in the MC detector description (lack of full optical

simulation) and the different calorimetric response between electron and muons (e/mip ratio).

Figure 13. Distribution of the energy deposited in the scintillator by 3 GeV muons impinging on the front

face of the calorimeter for data (red dots) and simulation (blue line).

7 Response to electrons

The calorimeter under test provides full containment of electromagnetic showers up to 5 GeV for

particles impinging on the front face and from the lateral side. The tilted geometry reproduces
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Figure 14. Fiducial areas selected for the test beam data analysis obtained projecting the tracks reconstructed

by the silicon chambers. Left: area selected for muon and pion (green square) and for electron (blue and

green squares) responses on the front face of the calorimeter. Right: the red area represents the fiducial area

selected for 100 mrad runs, where particles impinge from the lateral side of the inclined calorimeter.

its actual operating conditions in the decay tunnel, where positrons from K+ → e+π0νe reach the

detector with an average angle of ∼ 100 mrad [1, 2]. Dedicated runs with energy (1-5 GeV) and tilt

angles (0, 50, 100 and 200 mrad) relevant for neutrino physics application were carried out during

the beam-test, in order to evaluate the response to electromagnetic showers.

Electrons were selected by the Cherenkov counters located upstream the silicon detectors. The

bias voltage for the SiPMs was Vbias = 31 V. The silicon chambers are used to select single particles

hitting a fiducial area with negligible lateral leakage: for the front face run it amounts to 6×3 cm2 in

the center of the calorimeter, while for tilted runs it corresponds to particle impinging on a projected

area in the front face of the calorimeter of 0.5 × 6 cm2, as shown in figure 14.

The results indicate that, as for the shashlik design [15], the performance of the calorimeter is

the same for front and inclined runs. On the other hand, a clear deviation from linearity is visible

above 3 GeV for all runs. Figure 15 shows the reconstructed energy in the scintillator for data and

MC. The linear fit (red line) results from the data points up to 3 GeV. At 4 (5) GeV, the data show

a deviation from linearity of ∼ 3% (∼ 7%). Most of this effect has been traced back to saturation

of the SiPMs, which is enhanced by a rather large correlated noise (cross-talk) of the SiPMs at

Vbias = 31 V. The correlated noise was measured in a dedicated setup at the INFN Bologna labs

in 2019 and turns out to be Px−talk = 44% at Vbias = 31 V and Px−talk ≃ 65% at Vbias = 32 V.

To account for these effects, the average expected number of p.e. (including the single photon

efficiency of the SiPM) in a LCM hit by an electron is smeared for Poisson fluctuations (Npe) and

increased by cross-talk effects: Nseed ≡ (1 + Px−talk) · Npe. Note that such correction is just an

approximation that neglects the correlation between saturation effects and cross talk: the latter is

suppressed especially at high light intensities because the pixel occupancy is already nearly 100%.

For a complete treatment — which is outside the scope of this paper — see [33–36]. In the present

case, the SiPMs have 9340 cells but the fibers are put in mechanical contact with the SiPMs and

illuminate a maximum number of cells Nmax ≃ 5000 < 9340. We can thus approximate the number

of expected fired cells in the SiPM due to saturation as

Nfired ≃ Nmax

(

1 − e
−Nseed/Nmax

)

(7.1)

The uncertainty in this formula arises from the uncertainty on the actual size of the surface
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illuminated by the fibers (Nmax) and by the above-mentioned approximations [33, 34]. Still, eq. 7.1

is able to account for non linearities in the detector to at least 4 GeV. Figure 15 shows the Monte

Carlo prediction before and after the corrections for saturation effects.
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Figure 15. Energy reconstructed in the calorimeter versus beam energy for a 100 mrad run. Testbeam data

(red dots) are compared with Monte Carlo simulation including (green triangles) and not including (blue

squares) the SiPM saturation. The horizontal errors correspond to the momentum bite of the beam. The

vertical error bars (not visible in the plot, since of O(0.1%) and covered by the marker) in “MC” and “Data”

are given by the standard error of the mean of the gaussian fit performed on the electron peaks. The vertical

error bars in “MC + SiPM saturation” are given by the uncertainty on the number of pixels available to the

light collection (the lowest estimate is ∼4580, while the highest estimate is ∼5400).

The energy resolution as a function of the beam energy for particles hitting the front face of

the calorimeter is shown for a 0 mrad run in figure 16 for data (red dots) and simulation (blue

squares). The points are fitted to σE/E = S/
√

E(GeV) ⊕C, S and C being the sampling (stochastic)

and constant term, respectively. The resolution at 1 GeV is 17%. As expected, discrepancies with

the simulation are visible in the high energy range due to the large difference in the response of

the downstream modules and to SiPM saturation effects. In particular, saturation is stronger for

electrons impinging in the center of the LCM where the energy is deposited mostly in a single

module. Events close to the border of two adjacent modules share the deposited energy among

multiple LCMs without saturating the SiPMs. This effects creates a spurious dependence on the

impact point that broadens the energy distribution contributing to a worseσE/E and a poorer quality

of the fit. This source of non gaussianity contributes to the constant term together with standard

calibration effects. In our case, calibration effects mostly results from having chosen modules

and submodules (last plane of Module 3) with different components (see table 1) for R&D and

procurement reasons and installing the lowest performance modules downstream the calorimeter.

Hence, showers leaking after the third longitudinal plane of Module 3 are affected by lower response

LCMs where, in addition, the equalization is more complex due to multiple scattering in Module 3.
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Figure 16. Energy resolution versus beam energy for particles impinging on the front face (0 mrad run) for

data (red dots) and simulation (blue squares). The fit parameters for data and simulation (MC) are shown in

the top and bottom insets.

8 Response to charged pions

Longitudinal segmented calorimeters are employed for electron/hadron separation. In ENUBET,

this feature is needed to separate positrons from charged pions in the few GeV range. The prototype

under test allows for a complete longitudinal containment of pions and partial containment in the

transverse direction. The response of the detector can therefore be used to validate the ENUBET

simulation and the expected monitoring performance of the decay tunnel instrumentation.

Since all variables employed by the ENUBET analysis are based on the energy deposition

pattern in the LCM, this pattern was tested with a π− beam in the same energy range as for

the electron. For this study we recorded front runs in the fiducial area depicted in figure 11

(green square).

Pions are selected with the Cherenkov counters (no signal in any of the counters) and traced

down to the front face of the calorimeter. The mean π− energy deposited in each plane of the

calorimeter is evaluated and compared with the simulation. In this case, saturation effects are

negligible and we observe no difference between the saturation-corrected Monte Carlo and the

uncorrected simulation. Figure 17 (right) shows the average energy deposited in the scintillator

(data/MC ratio) as a function of shower depth for 3 GeV pions. The shower depth is expressed as

number of calorimeter plane: plane 0 represent the front face of the calorimeter, while plane 7

is the end of the calorimeter. The whole calorimeter depth corresponds to 7 × 4.3X0 = 30.1 X0

and 3.15 λ0.

The data-Monte Carlo comparison is rather good: figure 17 (right) shows that discrepancies

do not exceed 10% and are comparable to the uncertainty due to low-energy hadronic shower

simulation [37].
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Figure 17. Left: average energy deposited in the scintillator as a function of calorimeter planes for 3 GeV

pions. Each LCM corresponds to 0.45 λ0. Right: energy ratio between data and MC.

9 Tests of the photon veto

The t0-layers were characterized in terms of single mip response, timing resolution and light

collection efficiency. Moreover, to tag positrons from K+ decays and reject e± pairs produced in

the conversion of photons in the t0-layer the capability of the t0-layer to separate one mip from two

mips was investigated.

Firstly, 3 doublets were exposed to charged particles in a standalone configuration, i.e. without

the calorimeter. The trigger was given by the coincidence of two 3×3 cm2 scintillator pads and a

15×15 cm2 pad readout by fast Hamamatsu R9880 U-210 PMTs [38]. The SiPMs were operating

with +4 V overvoltage and the signals were sampled every 0.5 ns.

In the standalone configuration, the t0-layer tiles were exposed to 4 GeV pions. In total ∼ 28000

1-mip events were recorded. The distribution of the integral of the fast output signals in one t0-layer

tile is shown in figure 18 (a) and is fitted with a Landau function convoluted with a Gaussian

function. The MPV of the signal integral obtained from the fit corresponds to 25 p.e. for a mip

crossing a single tile.

The time resolution was computed from the distribution of the time difference ∆t between the

PMT and the SiPM. The threshold was set to 10% of the signal amplitude and the time resolution

is defined as the sigma of the ∆t distribution. Figure 18 (b) shows the distribution of the fast output

signals from the 1 mip data. The distribution is fitted with a Gaussian function and the sigma

is 460 ps. After subtracting the PMT time resolution (∼ 200 ps) the measured time resolution

is ≃400 ps.

The 1 versus 2 mip separation capability of the photon veto was studied exploiting charge-

exchange reactions (π− + X → π0
+ Y → γ + γ + Y ) as a source of photons. We set up a new

configuration (see figure 19) where a block of polyoxymethylene (Derlin®) was installed along the
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Figure 18. (a) Signal integral distribution of the fast output in a t0 tile exposed to 4 GeV pions. The

distribution is fitted with a Landau convoluted with a Gaussian function. The MPV corresponds to 25 p.e.

(b) Distribution of the time difference ∆t at 10% of the signal amplitude between the PMT and the SiPM

signals for the fast output. The time resolution is estimated with a Gaussian fit (red line).

Figure 19. Experimental setup for the selection of charge exchange events with converted photons. “pm1”

and “pm2” are the 3×3 cm2 scintillator pads. VETO is the 15×15 cm2 pad used to veto charged particles

produced after the Delrin block. The trigger is given by the coincidence of pm1 and pm2 and the anti-

coincidence of VETO.

beamline just after the 3×3 cm2 scintillator pad (pm1) to produce pion charge exchange. Another

3×3 cm2 scintillator pad (pm2) is placed just before the t0-layer. In addition, we installed a block

of iron between the 15×15 cm2 scintillator pad and pm2, to convert γ into e+ e− pairs. In this

configuration the 15×15 cm2 pad acts as a VETO for 1 mip particles and we acquired about 29000

events. These events are a mixture of 1 mip and 2 mip events. 1 mip events are due either to

the inefficiency of the VETO or to converted photons where only one charged particle reaches the

t0-layer. Figure 20 (a) shows the number of p.e. collected in one tile versus the number of p.e.
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Figure 20. (a) The number of p.e. collected in one tile versus the number of p.e. collected in another tile.

(b) The fit of the data using the composite model: black dots represent the data sample, the black line is the

composite model, the purple line is the dark current contribution, the blue and red lines are the signal and

background pdf respectively.

collected in another tile. The two peaks corresponding to 1 and 2 mip distributions respectively are

clearly visible.

In order to assess the 1 versus 2 mip separation capability the data of a single tile were used to

tune a model by composing the 1 mip signal pdf (Landau convoluted with a Gaussian) with the 2

mip background pdf (Landau convoluted with another Landau convoluted with a Gaussian) together

with the dark current distribution (exponential) and subtracting the noise pedestal. Figure 20 (b)

shows the fit of the data (black dots) with the composite model (black line): the signal (blue line)

and the background (red line) pdf are shown separately.

The signal and background pdf were used to generate 106 MC events of 1 mip and 2 mip

crossing a tile of t0-layer. A cut on the signal integral in one tile was studied assuming a signal to

noise ratio Ns/Nb of 2.3 as predicted by the MC simulation.

The optimal cut on the signal integral that maximizes the significance is 1.8 pC for which a

signal selection efficiency of 87% and a background rejection efficiency of 89% are obtained. The

corresponding value for the purity is 95%.

Using the beam-test data we also studied the possibility to reduce the sampling rate down to

500 MS/s (250 MS/s). In this case, the waveforms of the fast output sampled by the digitizer every

0.5 ns were sub-sampled off-line every 2 (4) ns. The fast output signal has a rising time of about

3.5 ns and a resolution of 500 MS/s still allows to sample the rising edge of the waveform. The

sampling at 2 ns, hence, is suitable to measure the rising edge of the signal with a time resolution

< 1 ns, i.e. well below the requirements of ENUBET. On the other hand, sampling at 4 ns is

compatible with the rising time of the signal and the waveform cannot be safely reconstructed.

The light collection efficiency was measured in a configuration of 4 doublets of t0-layers

combined with the calorimeter (figure 8). In this case, we recorded only runs with the calorimeter

tilted at 100 mrad with respect to the beam axis and hence only 4 tiles were crossed by charged

particles. Muon tracks were selected by the Cherenkov detectors and we employed the silicon
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chambers to identify events where the charged particle crosses the t0-layer. Considering three

consecutive tiles of the photon veto, we computed the efficiency of the tile located in the middle

The efficiencies measured for the tiles under test were all above 99%.

10 Conclusions

In this paper, we presented the construction and testbeam performance of a small scale prototype

of the ENUBET instrumented decay tunnel. The scintillation light produced in the calorimeter

and photon veto is read out by WLS fibers running along the edges of the tiles to reduce potential

radiation damage of the SiPMs. The calorimeter response to mip, electrons and pions is in good

agreement with expectations in the energy range of interest for ENUBET (1-3 GeV) but some

discrepancies in the electron response were observed above this range (>4 GeV, see section 7). The

electromagnetic resolution is 17% at 1 GeV and the sampling term is the dominant contribution in

the 1-3 GeV range. Non-linearities in the electron response are visible at higher energies due to

partial saturation of the SiPMs and non-uniformity of response of the LCMs. Both can be improved

by tuning the size of the SiPMs and the equalization of the gain (see section 6 and 7). The photon

veto was tested in standalone mode and combined with the calorimeter during the experimental

campaign. The 1-mip efficiency of two doublets is > 99% and the 1 mip sample can be disentangled

from the 2-mip component with a 95% purity in the background conditions of ENUBET.

In conclusion, the lateral readout calorimeter equipped with the t0-layer fulfills the specifications

of ENUBET and is well suited for the instrumented tunnel of monitored neutrino beams.
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