
THE ENUMERATIVE GEOMETRY OF RATIONAL AND ELLIPTIC

CURVES IN PROJECTIVE SPACE

RAVI VAKIL

Abstract. We study the geometry of moduli spaces of genus 0 and 1 curves in P
n with

specified contact with a hyperplane H. We compute intersection numbers on these spaces that
correspond to the number of degree d curves incident to various general linear spaces, and
tangent to H with various multiplicities along various general linear subspaces of H. (The
numbers of classical interest, the numbers of curves incident to various general linear spaces
and no specified contact with H, are a special case.) In the genus 0 case, these numbers are
candidates for relative Gromov-Witten invariants of the pair (Pn,H), and in the genus 1 case
they generalize the enumerative consequences of Kontsevich’s reconstruction theorem for Pn.
The intersection numbers are rcursively computed by degenerating conditions. As an example,
the enumerative geometry of quartic elliptic space curves is worked out in detail.

The methods used may be of independent interest, especially i) the surprisingly intricate
geometry of maps of pointed curves to P1, and ii) the study of the space of curves in Pn via
a smooth fibration (from an open set) to the space of maps of curves to P1. An unusual
consequence of i) is an example of a map from a nodal curve to P1 that can be smoothed in
two different ways.
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1. Introduction

In this paper, we study the geometry of moduli spaces of genus 0 and 1 curves in P
n with

specified contact with a hyperplane H. Recursions are given to compute the number of degree
d curves (of genus 0 or 1) incident to various general linear spaces, and tangent to H with var-
ious multiplicities along various general linear subspaces of H; call these numbers enumerative
invariants of P

n. (Gathmann refers to them as degeneration invariants, [Ga1].) The number
usually of interest, the number of curves incident to various general linear spaces and with no
specified contact with H, is a special case; call these ordinary enumerative invariants.
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Li and Ruan, and Ionel and Parker have proposed a definition of relative Gromov-Witten
invariants ([LR], [R], [IPa]) in the symplectic category, which in the case of (Pn, H) agrees
with the genus 0 enumerative invariants defined here. Enumerative invariants of P

n are thus
potentially a good test-case for any candidate for an algebraic definition of relative Gromov-
Witten invariants. Hence the recursions can be interpreted as a full reconstruction theorem
for relative Gromov-Witten invariants of Pn (and genus 1 enumerative invariants, cf. Getzler’s
reconstruction theorem for genus 1 Gromov-Witten invariants of P

n [G]).

The approach to the enumerative problem is classical: one of the general linear spaces is
specialized to lie in H, and the resulting degenerations and multiplicities are analyzed. (Even
if one is only interested in ordinary enumerative invariants, one is forced to deal with all
enumerative invariants.) Thanks to the power of Kontsevich’s moduli space of maps, the
overall strategy is simple, and most of the article is spent checking details. The reader may
wish to see a few motivating examples to understand the issues that come up (Section 2; many
phenomena are reminiscent of [CH]), and then read the basic definitions and strategy (Section
3).

As an example, many enumerative invariants of quartic elliptic space curves were computed
(by hand, Section 8), including the fact that there are 52,832,040 such curves through 16 general
lines in P3. This number was earlier computed by Avritzer and Vainsencher ([AVa], with the
actual number corrected in [A]), and independently by Getzler (announced in [G], proof to
appear in [GP]). Getzler’s method gives recursions for ordinary enumerative invariants of
genus 1 curves in P3.

Gathmann has extended many of these results to the case where H is replaced by a hyper-
surface ([Ga1]). He has also used extended these ideas to give a different algebro-geometric
proof of the number of rational curves of all degrees on the quintic threefold ([Ga2]).

As a surprising aside, a map to P1 is given that has two distinct smoothings (Section 4.15).

1.1. Brief history. The enumerative geometry of space curves has been of interest since
classical times (see [K2] for an excellent history; see also [KSX] and [PiZ]). Interest in such
problems has been reinvigorated by recent ideas motivated by physics, and in particular Kont-
sevich’s introduction of the moduli space of stable maps. Recursions for ordinary enumerative
invariants of rational curves in Pn were one of the first applications of this space, via the First
Reconstruction Theorem ([KoM], see also [RT]). Similar techniques have been brought to bear
on (maps from) genus 1 curves (see [P], [I], [GP] for various enumerative results).

Caporaso and Harris used degeneration methods to give recursions for the enumerative ge-
ometry of plane curves (of arbitrary genus, [CH]). Although they use the Hilbert scheme, a
reading of their paper from the perspective of stable maps is enlightening, and motivated this
work. Such ideas can also be used to calculate genus g Gromov-Witten invariants of del Pezzo
surfaces (or equivalently, count curves) and count curves on rational ruled surfaces ([V1]).

1.2. Acknowledgements. This article contains the majority of the author’s 1997 Harvard
Ph.D. thesis (and the e-print math.AG/9709007), and was partially supported by an NSERC
1967 Fellowship and a Sloan Foundation Dissertation Fellowship. The author is extremely
grateful to his advisor, J. Harris, for inspiration and advice. Conversations with A.J. de Jong
have greatly improved the exposition and argumentation. The author also wishes to thank D.
Abramovich, M. Thaddeus, R. Pandharipande, T. Graber, T. Pantev, A. Vistoli, M. Roth, L.
Caporaso, E. Getzler, and A. Gathmann for many useful discussions.

A. Gathmann has written a program computing genus 0 enumerative invariants of P
n, avail-

able upon request from the authour.
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Figure 1. Possible positions of l after L1 and L2 have degenerated to H

2. Motivating Examples

To count the number of curves in Pn incident to various general linear subspaces and tangent
with various multiplicities to various general linear subspaces in H, we successively specialize
the linear subspaces (not in H) to lie in H. By following through this idea in special cases, we
get a preview of the behavior that will turn up in general.

2.1. Two lines through four fixed general lines in P3. Fix four general lines L1, L2,
L3, L4 in P3, and a hyperplane H. There are a finite number of lines in P3 intersecting L1, L2,
L3, L4. Call one of them l. We will specialize the lines L1, L2, L3, and L4 to lie in H one at
a time and see what happens to l. First, specialize the line L1 to (a general line in) H, and
then do the same with L2 (see Figure 1; H is represented by a parallelogram). If l doesn’t pass
through the intersection of L1 and L2, it must still intersect both L1 and L2, and thus lie in
H. Then l is uniquely determined: it is the line through L3 ∩ H and L4 ∩ H. Otherwise, if
l passes through the point L1 ∩ L2, it is once again uniquely determined (as only one line in
P3 can pass through two general lines and one point — this can also be seen through further
degeneration). This argument can be tightened to rigorously show the classical fact that there
are two lines in P3 intersecting four general lines.

2.2. 92 conics through eight fixed general lines in P3. The example of conics in
P3 is a simple extension of that of lines in P3, and gives a hint as to why stable maps are the
correct way to think about these degenerations. Consider the question: How many conics pass
through 8 general lines L1, . . . , L8? (For another discussion of this classical problem, see [H]
p. 26.) We introduce a pictorial shorthand that will allow us to easily follow the degenerations
(see Figure 2).

We start with the set of conics through 8 general lines (the top row of the diagram — the
label 92 indicates the number of such conics, which we will calculate last) and specialize one of
the lines L1 to H to get row 7. (The line L1 in H is indicated by the dotted line in the figure.)
When we specialize another line L2, one of two things can happen: the conic can intersect H
at the point L1 ∩ L2 and one other (general) point, or it can intersect H once on L1 and once
on L2 (at general points). (The requirement that the conic must pass through a fixed point in
the first case is indicated by the thick dot in the figure.)

In this second case (the picture on the right in row 6), if we specialize another line L3, one
of three things can happen.

1. The conic can stay smooth, and not lie in H, in which case it must intersect H at {L1 ∩
L3, L2} or {L1, L2 ∩ L3} (hence the “×2” in the figure).

2. The conic could lie in H. In this case, there are eight conics through five fixed points
L4 ∩H, . . . , L8 ∩H with marked points on the lines L1, L2, and L3.
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Figure 2. Counting 92 conics in P3 through 8 general lines

3. The conic can degenerate into the union of two intersecting lines, one (l0) in H and one (l1)
not. These lines must intersect L4, . . . , L8. (The line l0 already intersects L1, L2, L3, so
these conditions are automatically satisfied.) Either three or four of {L4, . . . , L8} intersect
l1. In the first case, there are

(

5
3

)

choices of the three lines, and two configurations (l0, l1)
once the three lines are chosen (2 choices for l1 from Section 2.1). In the second case there
are a total of

(

5
4

)

× 2 configurations by similar reasoning. Thus the total number of such
configurations is 30.

We fill out the rest of the diagram in the same way. Then, using the enumerative geometry
of lines in P3 and conics in P2 we can work our way up the table, attaching numbers to each
picture, finally deducing that there are 92 conics through 8 general lines in P3. To make this
argument rigorous, precise dimension counts and multiplicity calculations are needed.

The algorithm described in this article is slightly different: we parametrize rational curves
with various conditions and marked intersections with H. In the case of conics through 8 lines,
for example, we would count 184 conics through 8 lines with 2 marked points on H, and then
divide by 2. The notation will then be cleaner. The resulting pictorial table is almost identical
to Figure 2; the only difference is in the first two lines (see Figure 3).

2.3. Twisted cubics through 12 fixed general lines. The situation for curves in P
n in

general is not much more complicated in principle than our calculations for conics in P3. Two
additional twists come up, which are illustrated in the case of the 80, 160 twisted cubics through
12 general lines in P3, indicated pictorially in Figure 4. The third figure in row 8 represents a
nodal (rational) cubic in H. There are 12 nodal cubics through 8 general points in P2. (The
algorithm described in this paper will actually calculate 80, 160× 3! cubics with marked points
on H through 12 general lines.)
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Figure 3. Counting 184 conics with two marked points on H through 8 general lines
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Figure 4. Counting 80, 160 cubics in P
3 through 12 general lines

On the left side of row 8 we see a new degeneration (from twisted cubics through nine general
lines intersecting H along three fixed general lines in H): a conic tangent to H, intersecting a
line in H. (The tangency of the conic is indicated pictorially by drawing its lower horizontal
tangent inside the parallelogram representing H.) We also have an unexpected multiplicity of
2 here.

The appearance of these new degenerations indicate why, in order to enumerate rational
curves through general linear spaces by these degeneration methods, we must expand the set
of curves under consideration to include those required to intersect H with given multiplicity,
along linear subspaces.
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Figure 5. Counting 1500 elliptic cubics through 12 general lines in P3

2.4. Genus 1 cubics through 12 fixed general lines in space. The example of
smooth elliptic cubics in P3 illustrates some of the degenerations we will see, and shows a new
complication in genus 1. There are 1500 smooth elliptic cubics in P3 through 12 general lines,
and we can use the same degeneration ideas to calculate this number. Figure 5 is a pictorial
table of the degenerations; a smooth elliptic curve is represented by a squiggle with an open
circle on the end.

The degenerations marked with an asterisk have a new twist. For example, consider the
cubics through 9 general lines L1, . . . , L9 and 3 lines L10, L11, L12 in H (the middle figure in
row 9) and specialize L9 to lie in H. The limit cubic could be a smooth plane curve in H (the
left-most picture of row 8 in the figure). In this case, it must pass through the eight points
L1 ∩H, . . . , L8 ∩H. But there is an additional restriction. The cubics (before specialization)
intersected L10, L11, L12 in three points p10, p11, p12 (pi ∈ Li), and as elliptic cubics are planar,
these three points must have been collinear. Thus the possible limits are those curves in H
through L1 ∩H, . . . , L8 ∩H and passing through collinear points p10, p11, p12 (with pi ∈ Li).
(There is also a choice of a marked point of the curve on L9, which will give a multiplicity of
3.) This collinearity condition can be written as π∗(O(1)) ∼= O(p10 + p11 + p12) in the Picard
group of the curve.

We will have to count elliptic curves with such a divisorial condition involving the marked
points; this locus forms a divisor on a family of stable maps. Fortunately, we can express
this divisor in terms of divisors we understand well (Section 7.7). As a side benefit, we get
enumerative data about elliptic curves in Pn with a divisorial condition as well.

6



3. Definitions and Strategy

3.1. Conventions. We work over C. By scheme, we mean scheme of finite type over
C. By variety, we mean a separated integral scheme. Curves are assumed to be complete and
reduced. All morphisms of schemes are assumed to be defined over C, and fibre products are
over C unless otherwise specified. If f : C → X is a morphism of schemes and Y is a closed
subscheme of X, then define f−1(Y ) as C ×X Y ; f−1Y is a closed subscheme of C. Sing(f) is
the set of singular points of f (in C). Similar definitions apply for stacks, which are assumed
to be of Deligne-Mumford type. A brief summary of basic facts about the moduli stack of
stable maps Mg,m(Pn, d) is included in Appendix A. If H is a hyperplane in Pn, and q is a
marked point, we will occasionally let {π(q) ∈ H} denote the Cartier divisor ev∗qH in order
to be geometrically suggestive. If X is a zero-dimensional scheme (or stack), let #X be the
number of points of X . (One should really count each point with multiplicity 1/G, where G is
the cardinality of the isotopy group of the point, but this will be 1 in these applications.)

If ∆ is a collection (of subspaces of P
n, for example), indexed by a set S(∆), let |∆| be the

cardinality of S(∆). We use set notation for collections.

Throughout this paper, H is a hyperplane of Pn, and A is a hyperplane of H.

3.2. The stacks X and W. Fix positive integers n and d. Suppose ∆ = {∆α}α∈S(∆) is
a collection of general linear spaces of P

n indexed by a set S(∆). (We use a collection rather
than a set as we will need to consider the case when all of the ∆α are dimension n, i.e. Pn.) For
each positive integer m, suppose Γm = {Γα

m}α∈S(Γm) is a collection of general linear spaces of H
indexed by a set S(Γm), where

∑

mm|Γm| = d. Let Γ = {Γm}m>0. Then define Xn(d,Γ,∆) to

be the (stack-theoretic) closure in M0,
P

|Γm|+|∆|(P
n, d) of points corresponding to stable maps

π : C → Pn of genus 0 curves with marked points qα (α ∈ S(∆)) and pα
m (m > 0, α ∈ S(Γm)),

such that

(i) π(qα) ∈ ∆α for all α ∈ S(∆), and π(pα
m) ∈ Γα

m for all m > 0, α ∈ S(Γm).
(ii) π∗H =

∑

m,α∈S(Γm)mp
α
m.

(As a consequence, no component of C is mapped to H.) Informally, this stack parametrizes
rational curves incident (at a marked point) to the linear spaces {∆α}, and m-fold tangent to
H (at a marked point) along the space Γα

m (for all m > 0, α ∈ S(Γm)).

Define Wn(d,Γ,∆) to be the closure in M1,
P

|Γm|+|∆|(P
n, d) of points corresponding to stable

maps π : C → Pn of genus 1 curves with marked points qα (α ∈ S(∆)) and pα
m (for all m > 0,

α ∈ S(Γm)), satisfying (i) and (ii) above and also

(iii) No connected union of components of C of arithmetic genus 1 is contracted.

Informally, this stack parametrizes genus 1 curves incident to the linear spaces {∆α}, and
m-fold tangent to H along the space Γα

m (for all m > 0, α ∈ S(Γm)).

The subscript n will often be suppressed to keep the notation from becoming too complicated.

3.3. The Strategy. We calculate #Wn(d,Γ,∆) (or #Xn(d,Γ,∆)) by degenerating one of
the linear spaces ∆β (general in P

n) to a general linear space in H, and observing how the maps
corresponding to points of Wn(d,Γ,∆) degenerate. We can express this degeneration method

as follows. Let ∆′ be the same as ∆ except ∆′β is dimension one greater than ∆β. Let DH be
the Cartier divisor ev∗βH (i.e. π(qβ) ∈ H), and DH′ the Cartier divisor ev∗βH

′, where H ′ is a
general hyperplane in Pn. Then Wn(d,Γ,∆) = Wn(d,Γ,∆′) ∩ DH′ (Proposition 5.3(c)). The
degeneration corresponds to counting the points of Wn(d,Γ,∆′) ∩ DH , with multiplicity. As
DH is linearly equivalent to DH′ , these numbers are the same.
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In short, we must understand the irreducible components (and the corresponding multiplic-
ities) of the divisor DH =

∑

miDi on Wn(d,Γ,∆). This is the key problem addressed in this
paper. We make three reductions to simplify the problem.

Reduction A. The condition of requiring a marked point to lie on a fixed general hyperplane
imposes one transverse condition on any irreducible substack of Mg,m(Pn, d) (by Kleiman-
Bertini 5.1), so requiring a marked point to lie on a codimension k fixed general linear space
imposes k transverse conditions. Hence it suffices to know the components and multiplicities
of DH when each Γα

m is H and each ∆α is P
n (as one can then reduce to the case when the Γα

m

and ∆α are smaller by intersecting the Di’s with the appropriate transverse conditions).

Reduction B. Now that there are no conditions on the marked points qα, it suffices to know
the components and multiplicities of DH in the case when S(∆) = {β} (as we can then reduce
to the case where |∆| > 1 by adding marked points).

Reduction C. Projection from the hyperplane A of H gives a rational map Pn
99K P1

(sending H to a point ∞ ∈ P
1) that induces a rational map ρA : Mg,m(Pn, d) 99K Mg,m(P1, d)

that is a morphism on an open set corresponding to maps π : C → Pn where π−1A = ∅. It
extends to a morphism on the open set V where π−1A is a union of reduced smooth points
of C, and ρA is smooth on V (Proposition 5.5). Each component of DH meets V. Hence if
we can solve the problem for n = 1, we can solve the problem in general: the divisor DH

(restricted to V) is the pullback of the corresponding divisor D∞ on W1(d,Γ
′,∆′ = {P1}), and

the components of DH (restricted to V) are pullbacks of the analogous components of D∞ (and
also with W replaced by X ). As ρA is smooth on V, the multiplicities are the same.

For this reason, we first turn to the space of maps from curves to P1 with specified ramifi-
cation (at marked points) over a point ∞ ∈ P

1, with one other marked point qβ, and find the
components and multiplicities of D∞ = ev∗

qβ∞ = {π(qβ) = ∞} (Section 4). This is technically
the most intricate part of the argument.

3.4. Summary. In short, the proof of the recursion for the number of genus 0 and 1
curves with prescribed incidences and tangencies is as follows. We first study stacks of maps
to P1, with prescribed ramification over ∞ (at marked points), and one other marked point
qβ, and find the components and multiplicities of ev∗β∞ (Section 4). Then, pulling back by the
smooth morphism ρA (Reduction C), we have a result on stacks of maps to Pn with prescribed
intersection with a hyperplane H and one other marked point qβ, giving components and
multiplicities of ev∗βH. By adding additional marked points (Reduction B) and requiring them
to lie on various numbers of general hyperplanes (Reduction A), we have a linear equivalence
of divisors on stacks of maps to Pn with various incidence and tangency conditions (Section
6). If the stack is one-dimensional, we get an expression giving each enumerative invariant in
terms of “simpler” enumerative invariants, i.e. recursions (Section 7.1).

3.5. Definitions: Components of DH. Suppose A is a stack of m-pointed, arithmetic
genus g, degree d stable maps to P

n, and let Di = ev∗iH (1 ≤ i ≤ m). If
∏m

i=1D
ni

i [A] = 0
for all m-tuples (n1, . . . , nm) adding to dimA, we say A is enumeratively irrelevant; otherwise
it is enumeratively relevant. The components of DH that are enumeratively irrelevant will not
contribute to enumerative calculations, and may be discarded.

If A(j) := A×Mg,m(Pn ,d) Mg,m+j(P
n, d) is enumeratively irrelevant for all j ≥ 0, we say A is

stably enumeratively irrelevant. (The stack A(1) is the universal curve over A, and A(j+1) is
the universal curve over A(j).) Informally speaking, if the “image of A in the Chow variety”
is of dimension less than that of A, then A is stably enumeratively irrelevant. (See [V2] 2.1
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for a similar definition.) Enumerative irrelevance can arise because of moduli in a contracted
component, see Proposition 5.2.

3.6. The components of the divisor DH on stacks of form X or W that are enumeratively
relevant will turn out to be stacks of the form defined below. The enumerative geometry of
these will be obviously related to the enumerative geometry of stacks of the form X and W.

Fix n, d, Γ, ∆, and a non-negative integer l. Let
∑l

k=0 d(k) be a partition of d. Let the
points {pα

m}m,α be partitioned into l + 1 subsets {pα
m(k)}m,α for k = 0, . . . , l. This induces a

partition of each Γm into
∐l

k=0 Γm(k). Let the points {qα}α be partitioned into l + 1 subsets

{qα(k)}α for k = 0, . . . , l. This induces a partition of ∆ into
∐l

k=0 ∆(k). For k > 0, define
mk := d(k) −

∑

mm|Γm(k)|, and assume mk > 0 for all k = 1, . . . , l. In Definitions 3.7, 3.8,

3.10, and 3.11 below, the marked points on Mg,
P

|Γm|+|∆|(P
n, d) are labelled {pα

m}α∈S(Γ) and
{qα}α∈S(∆)

Substacks of the following form will appear as components of DH on stacks of the form
X (d,Γ,∆).

3.7. Definition. The stack

Yn(d(0),Γ(0),∆(0); . . . ; d(l),Γ(l),∆(l))

is the (stack-theoretic) closure of the locally closed substack of M0,
P

|Γm|+|∆|(P
n, d) representing

stable maps (C, {pα
m}, {q

α}, π) satisfying the following conditions

Y1. The curve C consists of l+ 1 irreducible components C(0), . . . , C(l) with all components
meeting C(0). The map π has degree d(k) on curve C(k) (0 ≤ k ≤ l).

Y2. The points {pα
m(k)}m,α and {qα(k)}α lie on C(k), and π(pα

m(k)) ∈ Γα
m(k), π(qα(k)) ∈

∆α(k).
Y3. As sets, π−1H = C(0) ∪ {pα

m}m,α, and for k > 0,

(π |C(k))
∗H =

∑

m,α

mpα
m(k) +mk(C(0) ∩ C(k)).

Pictorial representations of such maps are given in the Figures of Section 2. Note that
d(k) > 0 for all positive k by the last condition.

Substacks of the following forms will appear as components of DH on stacks of the form
W(d,Γ,∆).

3.8. Definition. The stack

Ya
n(d(0),Γ(0),∆(0); . . . ; d(l),Γ(l),∆(l))

is the closure of the locally closed substack of M1,
P

|Γm|+|∆|(P
n, d) representing stable maps

(C, {pα
m}, {q

α}, π) satisfying conditions Y1–Y3 above, and

Ya4. The curve C(1) has genus 1 (and the other components are genus 0).

3.9. Remark. For given d, Γ, ∆, m, and choices α ∈ Γm, β ∈ Γ, let Γ′ be the same as Γ
except Γ′α

m = Γα
m ∩ ∆β. Then there is a natural isomorphism

φ : Xn(d,Γ′,∆ \ {∆β}) → Yn(0, {Γα
m}, {∆

β}; d,Γ \ {Γα
m},∆ \ {∆β}).

The map from the left to the right involves gluing a contracted P1 (with marked points pα
m and

qβ) to the point p′αm.

Similarly, there is a natural isomorphism (which we sloppily denote φ as well)

φ : Wn(d,Γ′,∆ \ {∆β}) → Ya
n(0, {Γα

m}, {∆
β}; d,Γ \ {Γα

m},∆ \ {∆β}).
9



3.10. Definition. The stack

Yb
n(d(0),Γ(0),∆(0); . . . ; d(l),Γ(l),∆(l))

is the closure of the locally closed substack of M1,
P

|Γm|+|∆|(P
n, d) representing stable maps

(C, {pα
m}, {q

α}, π) satisfying conditions Y1–Y2 above, and

Yb3. As sets, π−1H = C(0) ∪ {pα
m}m,α, and for k > 1,

(π |C(k))
∗H =

∑

m,α

mpα
m(k) +mk(C(0) ∩ C(k)).

Yb4. All components of C are rational. The curves C(0) and C(1) intersect at two distinct
points {a1, a2}. (These points are not marked; monodromy may exchange them.) Also,

(π |C(1))
∗H =

∑

m,α

mpα
m(k) +m1

1a1 +m1
2a2

where m1
1 +m1

2 = m1.

Thus Yb(d(0), . . . ,∆(l)) is naturally the union of [m1/2] (possibly reducible) stacks (where
[·] is the greatest-integer function), indexed by m1

1. For convenience, label these stacks

{Yb(d(0), . . . ,∆(l))m1
1
}1≤m1

1<m1,

so Yb(d(0), . . . ,∆(l))m1
1

= Yb(d(0), . . . ,∆(l))m1−m1
1
.

3.11. Definition. The stack

Yc
n(d(0),Γ(0),∆(0); . . . ; d(l),Γ(l),∆(l))

is the closure of the locally closed substack of M1,
P

|Γm|+|∆|(P
n, d) representing stable maps

(C, {pα
m}, {q

α}, π) satisfying conditions Y1–Y3 above, and

Yc4. The curve C(0) has genus 1 (and the other components are genus 0). The morphism π
has positive degree on every component.

Yc5. In Pic(C(0)),

π∗(OPn(1)) ⊗OC(0)

(

l
∑

k=1

mk(C(0) ∩ C(k))

)

∼= OC(0)





∑

m,α∈Γm(0)

mpα
m(0)



 .

3.12. Remark. This Picard condition Yc5 was actually present in Y, Ya and Yb, but as
C(0) was rational in each of these cases, the requirement reduced to

d(0) +
l
∑

k=1

mk =
∑

m

m|Γm(0)|

which was always true.

The six types of stacks W, X , Y, Ya, Yb, Yc are illustrated in Figure 6. In the figure,
the dual graph of the curve corresponding to a general point of the stack is given. Vertices
corresponding to components mapped to H are labelled with an H, and vertices corresponding
to genus 1 components are open circles.

Because of the divisorial condition Yc5 in the definition of Yc, we will also be interested in
the variety parametrizing smooth degree d genus 1 curves in Pn (n ≥ 2) with a condition in the
Picard group of the curve involving the marked points and π∗(OPn(1)). Let ∆ = {∆α}α∈S(∆)

be a set of linear spaces in Pn. Let D be a linear combination of the formal variables {qα}α∈S(∆)

with integral coefficients summing to d.
10



W X Ya

H

Yb Yc

H H

Y

H

Figure 6. Six types of stacks

3.13. Definition. The stack Zn(d,∆)D is the (stack-theoretic) closure of the locally
closed subset of M1,|∆|(P

n, d) (where the points are labelled {qα}α) representing stable maps
(C, {qα}, π) where C is smooth, π(qα) ∈ ∆α for all α, and π∗(OPn(1)) ∼= OC(D) in Pic(C).

For example,
Z2(d = 4,∆ = {11 general points})q1+q2+q3+q4.

parametrizes the finite number of two-nodal quartic plane curves C through 11 fixed general
points {qj}1≤j≤11 such that q1 + q2 + q3 + q4 is linearly equivalent to the hyperplane section
on the normalization of the curve C. (There are 62 such curves, see the example at the end of
Section 7.7 and Table 2.)

When Γ and ∆ are general, all of the varieties W, X , Y, Ya, Yb, Yc, Z defined above will
be seen to be of the expected dimension (Proposition 5.7).

4. Maps to P1

4.1. Quasi-stable maps. For the purposes of this Section, define a quasi-stable map in the
same way as a stable map, except the source curve is not required to be connected. Then the
entire theory of stable maps carries through for quasi-stable maps, and for smooth projective
X there is a fine moduli stack, which we’ll denote Mg,m(X,β)Q, of finite type, and Mg,m(X,β)
is an open and closed substack of Mg,m(X,β)Q. For more details on this (essentially trivial)
variation on stable maps, see [V1] Section 2.5.

4.2. Deformations of maps from curves to curves. Suppose π : C → P1 is a stable
degree d map with marked points {pi}. Call étale neighborhoods of connected components A
of Sing(π) ∪ {pi} ⊂ C (containing only one copy of A and no other points of Sing(π) ∪ {pi})
special loci of π. Special loci are étale neighborhoods of ramification points of C, nodes of C,
marked points, or unions of contracted components of π. The map π is stable, so the functor
parametrizing deformations of π is pro-representable by the formal neighborhood Def of the
corresponding point in the moduli stack of stable maps.

If A1, . . . , An are the special loci of π (or more precisely, if étale neighborhoods of A1, . . . ,
An are the special loci), let DefA1

, . . . , DefAn
be the deformation spaces (i.e. hulls) of the

special loci. (Implicit here is the fact that DefAj
is independent of the neighborhood of Aj

chosen; this will follow from the proof of the following proposition.)

4.3. Proposition. — The natural map Def → DefA1
× · · · × DefAn

is an isomorphism.

In the analytic category, this proposition is clear.

Proof. The deformation theory of π is controlled by Ext·(Ωπ,OC) (see Appendix A). Let
ej : Cj → C be an étale neighborhood of Aj as described above, so DefAj

is constructed using
Ext(e∗jΩπ, e

∗
jOC) (as e∗jΩπ = Ωπ◦ej

).

Let K = Ker(Ωπ) and Q = Coker(Ωπ), so K is supported on the special loci and hence splits
canonically into ⊕jKj, with Kj supported on Aj (and similarly for Q = ⊕jQj).

11



There are exact sequences

0 → K[1] → Ωπ → Q→ 0(1)

and (for each j)

0 → Kj[1] → e∗jΩπ → Qj → 0(1j)

with morphisms (1) → (1j) induced by ej. By considering (1) → ⊕j (1j) and taking the
associated long exact Ext sequence, we have

. . . → Exti(Q,OC) → Exti(Ωπ,OC) → Exti−1(K,OC) → . . .
|| ↓ ||

. . . → ⊕j Exti(Qj,OCj
) → ⊕j Exti(e∗jΩπ,OCj

) → ⊕j Exti−1(Kj,OCj
) → . . . .

(2)

By the five lemma, the vertical arrow is an isomorphism for all i, and by the construction of
Def from Exti(Ωπ,OC) (and DefAj

from Exti(Ωπ◦ej
,OCj

)), the result follows.

4.4. Substacks of Mg,m(P1, d). Fix a positive integer d and a point ∞ on P1, and let ~h =

(h1, h2, . . . ) represent a partition of d with h1 1’s, h2 2’s, etc., so
∑

mmhm = d. Let V = Vd,g(~h)

be the closure in Mg,
P

hm+1(P
1, d)Q of points representing quasi-stable maps (C, {pα

m}, q, π)
where C is a smooth curve with

∑

hm + 1 (distinct) marked points Γm = {pα
m}1≤α≤hm

and q,

and π∗(∞) =
∑

m,αmp
α
m. (For example, X1(d,Γ,∆) is an open and closed substack of Vd,0(~h),

where Γm consists of hm copies of ∞, and ∆ = {P1}. Similarly, W1(d,Γ,∆) is an open and

closed subset of Vd,1(~h).)

For the map corresponding to a general point in V, each special locus Aj is either a marked
ramification above the point ∞, a simple unmarked ramification (of which there are d + 2g −
2 +

∑

hm by Riemann-Hurwitz), or the point q (at which π is smooth). In these three cases,
the formal deformation space of Aj inside V is 0, Spf C[[t]], and Spf C[[t]] respectively. Thus

dimV = d+ 2g − 1 +
∑

hm(3)

Let D∞ be the divisor ev∗q (∞) = {π(q) = ∞}. There are three natural questions to ask:

1. What are the components of the divisor D∞?
2. With what multiplicity do they appear?
3. What is the local structure of V near these components?

We partially answer these three questions.

Fix a component Y of the divisor D∞ and a map (C, {pα
m}, q, π) corresponding to the general

element of Y. Notice that π collapses a component of C to ∞, as otherwise π−1(∞) is a union
of points, and

d = deg π∗(∞) ≥ degq π
∗(∞) +

∑

m,α

degpα
m
π∗(∞) ≥ 1 +

∑

m

mhm = d+ 1.

Let C(0) be the connected component of π−1(∞) containing q, and let C̃ be the closure of
C \C(0) in C (see Figure 7; C(0) is the union of those curves contained in the dotted rectangle,
and C̃ is the rest of C).

Let Γm(0) = {pα
m(0)} be the points of Γm on C(0), and Γ̃m = {p̃α

m} = Γm \ Γm(0) be the

points on C̃ (with hm(0) = |Γm(0)|, h̃m = |Γ̃m|). Let s be the number of intersections of
C(0) and C̃, and label these points r1, . . . , rs. Thus g = pa(C(0)) + pa(C̃) + s − 1. Let mk

be the multiplicity of (π|C̃)∗(∞) at rk. The data (m1, . . . ,ms) is constant for any choice of
(C, {pα

m}, q, π) in an open subset of Y.
12



π

p1
1

p1
2

p3
1

∞

P1

q

p2
1

Figure 7. The map (C, {pα
m}, q, π}) ∈ Y

4.5. Proposition. — The map (C̃, {pα
m(0)}, {rk}, π) has no collapsed components, and only

simple ramification away from π−1(∞). The curve C̃ is smooth.

The map (C̃, {pα
m(0)}, {rk}, π) will turn out to correspond to a general element in Vd,g′(~h′)

for some g′, ~h′.

Proof. Let A1, . . . , Al be the special loci of π, and say q ∈ A1.

The map (C, {pα
m}, q, π) lies in V and hence can be deformed to a curve where each special

locus is either a marked ramification above ∞, a simple unmarked ramification, or the point
q. If Ak (k > 1) is not one of these three forms then by Proposition 4.3 there is a deformation
of the map (C, {pα

m}, q, π) preserving π at Ai (i 6= k) but changing Ak into a combination of
special loci of these three forms. Such a deformation (in which A1 is preserved and thus still
smoothable) is actually a deformation in the divisor D∞ = ev∗q∞ = {π(q) = ∞}, contradicting
the generality of (C, {pα

m}, q, π) in Y.

4.6. Thus the map (C̃, {p̃α
m}, {r

k}, π) must lie in Vd,pa(C̃)(~h′) where ~h′ is the partition corre-
sponding to (π|C̃)∗(∞). By (3), C̃ moves in a family of dimension at most

d+ 2pa(C̃) − 2 +
(

∑

h̃m + s
)

,

and the curve C(0) (as a nodal curve with marked points {pα
m(0)}m,α∈Γm(0), {r

k}1≤k≤s, and q)
moves in a family of dimension at most

3pa(C(0)) − 3 +
∑

hm(0) + s+ 1,

so Y is contained in a family of dimension
(

d+ 2pa(C̃) − 2 +
∑

h̃m + s
)

+
(

3pa(C(0)) − 3 +
∑

hm(0) + s+ 1
)

= d+ 2g − 1 +
∑

hm − 1 + pa(C(0))

= dimV − 1 + pa(C(0))(4)

by (3).

4.7. Components Y of D∞ satisfying pa(C(0)) = 0. For each choice of a partition

Γm = Γm(0)
∐

Γ̃m (inducing a partition of hm into hm(0) + h̃m), a positive integer s, and
13



q

q

p1
1

p1
1

p1
1

p2
1

p1
1

V2,0(h1 = 2)

p2
1

p2
1

p2
1

q

p2
1

p1
1

q

q

Figure 8. The four possible components of D∞ on V2,0(h1 = 2)

(m1, . . . ,ms) satisfying
∑

mk +
∑

mh̃m = d, consider the closure in Mg,
P

hm+1(P
1, d)Q of

points corresponding to maps (C(0) ∪ C̃, {pα
m}, q, π) where

• The curve C(0) ∪ C̃ is nodal, and the curves C(0) and C̃ intersect at the points {rk}.
• The curve C(0) is isomorphic to P1, has labelled points {pα

m(0)} and q, and π(C(0)) = ∞.
• The curve C̃ is smooth of arithmetic genus g− s+ 1 with labelled points {p̃α

m}. The map
π is degree d on C̃, and

(π|C̃)∗(∞) =
∑

mp̃α
m +

∑

mkrk.

Let U be the union of these substacks (over all choices of partitions of Γm); dimU = dimV − 1
by (4).

An irreducible component Y of the divisorD∞ satisfying pa(C(0)) = 0 has dimension dimV−
1 and is a closed substack of U , which also has dimension dimV − 1. Hence Y must be a
component of U and the stable map corresponding to a general point of Y satisfies the three
properties listed in the previous paragraph. (We don’t yet know that all such Y are subsets of
V, but this will follow from Proposition 4.8 below.)

For example, if d = 2, g = 0, and h1 = 2, there are four components of U (see Figure 8;
π−1(∞) is indicated by a dashed line). The components (from left to right) are a subset of the
following.

1. The curve C̃ is irreducible and maps with degree 2 to P1, ramifying over two general
points of P1. The marked points q and p1

1 lie on C(0), and p2
1 lies on C̃. The curve C(0)

is attached to C̃ at the point

(π|C̃)−1(∞) \ {p2
1}.

2. This case is the same as the previous one with p1
1 and p2

1 switched.
3. The curve C̃ is the disjoint union of two P

1’s, each mapping to P
1 with degree 1. Both

intersect C(0), which contains all the marked points.
4. The curve C̃ is irreducible and maps with degree 2 to P1, and one of its branch points is

∞. All of the marked points lie on C(0).

Given a component Y of U , we can determine the multiplicity of the divisor D∞ along Y.
As this multiplicity will turn out to be positive, Y is a subset of V, so as sets, U ⊂ D∞.

4.8. Proposition. — Fix such a component Y with pa(C(0)) = 0. The multiplicity of D∞

along Y is
∏s

k=1m
k.
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C ′(0)

pα
m

∞ 0

Figure 9. Step 2: It suffices to study deformations of a simpler map

For example, in Figure 8, the first 3 components appear with multiplicity 1, and the fourth
with multiplicity 2.

Proof. We make a series of reductions to simplify the proof.

Step 1: Deformations of A1. The multiplicity may be computed on a formal neighborhood
of a general point of Y. By Proposition 4.3, this space is naturally a product of the hulls of
the special loci. If A1 is the special locus containing q, then D∞ is the pullback of a Cartier
divisor on DefA1

, and Y is the pullback of a Weil divisor on DefA1
. Thus we need only consider

deformations of the special locus A1.

Step 2: Simpler maps. Fix a point 0 ∈ P1 (distinct from ∞). Let V ′ be the closure in
M0,|Γ(0)|+1+s(P

1,
∑s

k=1m
k) of points representing maps (C, {pα

m(0)}, q, {yk}s
k=1, π) where π∗(∞) =

∑

mpα
m(0) and π∗(0) =

∑

mkyk. Let Y ′ be the closure of points representing maps from a nodal
curve C ′(0) ∪ C(1) ∪ · · · ∪ C(s), where

• C ′(0) is glued to C(k) at a point (call it rk) (1 ≤ k ≤ s)
• The marked curve (C ′(0), {pα

m(0)}, q, {rk}) is isomorphic to the marked curve (C(0), {pα
m(0)}, q, {rk}),

and is collapsed to ∞ by π.
• C(k) maps to P1 with degree mk, and is totally ramified over 0 (at yk) and ∞ (at rk).

(See Figure 9.) (An étale neighborhood of) the special locus C ′(0) of a general map in Y ′ is
isomorphic to (an étale neighborhood of) A1. As the only other special loci of such a map are
the points yk, the formal deformations in V ′ of a general map in Y ′ are given by DefA1

. As it
suffices to consider the case when Γ = Γ(0) (all the marked points mapping to ∞ are on C(0)),
we now assume that this is the case.

Step 3: Fixing the marked curve. There is a morphism of stacks α : V ′ → M0,
P

hm+1+s

that sends each map to the stable model of the underlying pointed nodal curve. Given any
smooth marked curve (C(0), {pα

m}, q, {y
k}) in M0,

P
hm+1+s, the stable map (C, {pα

m}, q, {y
k}, π)

defined in Step 2 corresponds to a point in α−1(C(0), {pα
m}, q, {y

k}), so α|Y′ is surjective. Let
Fα be a general fiber of α. By Sard’s theorem, α|Y′ is regular in a Zariski-open subset of Y ′,
so [Y ′] ∩ [Fα] = [Y ′ ∩ Fα] in the Chow group of [V ′].

In order to determine the multiplicity of D∞|V′ along Y ′, it suffices to determine the multi-
plicity of the Cartier divisor D∞|Fα

along Y ′ ∩ Fα (in the Chow group of Fα). (Proof: As D∞

is a Cartier divisor, [D∞|Fα
] = D∞ · [Fα]. Thus if [D∞|V′ ] = m[Y ′] in A1V ′ then, intersecting

with [Fα], [D∞|Fα
] = D∞ · [Fα] = m[Y ′] · [Fα] = m[Y ′ ∩ Fα] in A1Fα.)

With this in mind, fix a general (C, {pα
m}, q, {y

k}) in M0,
P

hm+1+s and let V ′′
o be the points

of M0,
P

hm+1+s(P
1, d)Q representing stable maps (C, {pα

m}, q, {y
k}, π) where π∗(∞) =

∑

mpα
m
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and π∗(0) =
∑

mkyk. Let f and g be sections of OC(d) with associated divisors

(f) =
∑

mpα
m, (g) =

∑

mkyk.

Then the maps in V ′′
o are those of the form [βf, γg] where

[β, γ] ∈ P
1 \ {[0, 1], [1, 0]}

where ∞ = [0, 1] and 0 = [1, 0].

Let V ′′ = V ′ ∩ Fα be the closure of V ′′
o , and define Y ′′ = Y ∩ Fα similarly. Let V ′′ be the

course moduli scheme of V ′′, and Y ′′ the course moduli scheme of Y ′′.

Step 4: V ′′ is isomorphic to P1. The variety V ′′ is proper, and V ′′
o
∼= P1 \ {[0, 1], [1, 0]}, so

the normalization of the variety V ′′ is P
1.

The evaluation map gives a morphism from the curve V ′′ to P1:

[(C, {pα
m}, q, {y

k}, π)] → π(q)

and this map is an isomorphism from V ′′
o to P

1 \ {[0, 1], [1, 0]}, so it must be an isomorphism
from V ′′ to P1.

Step 5: Calculating the multiplicity. Let w be a general point of the target P1. Then the
divisor {π(q) = w} is linearly equivalent to D∞|V ′′ = ev∗q∞|V ′′ = {π(q) = ∞}|V ′′ , and is
OV ′′(1).

Thus, on V ′′, D∞|V ′′ = [1, 0] = Y ′′. But the limit map has automorphism group

Z/m1
Z ⊕ · · · ⊕ Z/ms

Z

(as Aut(C(k), π|C(k)) = mk) so as stacks [D∞|V′′ ] =
(
∏

mk
)

[Y ′′]. Therefore [D∞] =
∏

mk[Y].

In order to extend these results to components for which pa(C(0)) = 1, we will need the
following result.

4.9. Proposition. — Let Y be a component of D∞, with (C, {pα
m}, q, π) the map corresponding

to a general point of Y, C(0) ∩ C̃ = {r1, ..., rs}, and mk the multiplicity of π∗(∞) on C̃ at rk.
Then

OC(0)

(

∑

m,α

mpα
m(0)

)

∼= OC(0)

(

s
∑

k=1

mkrk

)

where Γ(0) ⊂ Γ are the marked points whose limits lie in C(0).

Proof. For a map (C, {pα
m}, q, π) corresponding to a general point in V, we have the following

relation in the Picard group of C:

π∗(OP1(1)) ∼= OC(
∑

m,α

mpα
m).

Thus for the curve corresponding to a general point of Y the invertible sheaf OC(
∑

m,αmp
α
m)

must be a possible limit of π∗(OP1(1)). The statement of the lemma depends only on an étale
neighborhood of C(0), so we may assume (as in Step 2 of the proof of Proposition 4.8) that
Γ = Γ(0), and C̃ consists of k rational tails C(1), . . . , C(k) each totally ramified where they
intersect C(0). As the dual graph of C is a tree, C is of compact type (i.e. Pic0C is compact).
One possible limit of π∗(OP1(1)) is the line bundle that is trivial on C(0) and degree mk on
C(k). If a curve C ′ is the central fiber of a one-dimensional family of curves, and C ′ = C1 ∪C2,
and a line bundle L is the limit of a family of line bundles, then the line bundle L′ whose
restriction to Ci is L|Ci

((−1)iC1 ∩ C2) is another possible limit. Thus the line bundle that is
trivial on C̃ and OC(

∑

mkrk) on C(0) is a possible limit of π∗(OP1(1)).
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If two line bundles on a curve C of compact type are possible limits of the same family of
line bundles, and they agree on all components but one of C, then they must agree on the
remaining component. But OC(

∑

mpα
m) is another limit of π∗(OP1(1)) that is trivial on C̃, so

the result follows.

4.10. We now determine all components Y of D∞ satisfying pa(C(0)) = 1. For each choice
of a partition of Γm into Γm(0)

∐

Γ̃m, a positive integer s, and (m1, . . . ,ms) satisfying
∑

mk +
∑

mh̃m = d, consider the closure in Mg,
P

hm+1(P
1, d) of points corresponding to maps

(C(0) ∪ C̃, {pα
m}, q, π)

where

1. The curve C(0) ∪ C̃ is nodal, and C(0) and C̃ intersect at the points {rk}.
2. The curve C(0) is a smooth genus 1 curve with labelled points {pα

m(0)} and q, where
OC(0)(

∑

mpj
m(0)) ∼= OC(0)(

∑

mkrk), and π(C(0)) = ∞.

3. The curve C̃ is smooth of arithmetic genus g − s with labelled points {p̃α
m}. The map π

is degree d on C̃, and

(π|C̃)∗(∞) =
∑

mp̃α
m +

∑

mkrk.

Let U be the union of all such substacks (over all choices of s, partitions of Γ, etc.). The divi-
sorial condition OC(0)(

∑

mpα
m(0)) ∼= OC(0)(

∑

mkrk) defines a substack M′ of pure codimension
1 in M1,

P
hm+1+s: for any

(C, {pα
m}, q, {r

k}k>1) ∈ M1,
P

hm+1+(s−1)

the subscheme of points r1 ∈ C satisfying

OC(m1r1) ∼= OC

(

∑

mpα
m(0) −

∑

k>1

mkrk

)

is reduced of degree (m1)2. Thus the stack M′ is a degree (m1)2 étale cover of M1,
P

hm+1+(s−1).
By this observation and (4), U has pure dimension dimV − 1.

An irreducible component Y of the divisorD∞ satisfying pa(C(0)) = 1 has dimension dimV−
1 and is a substack of U , which also has dimension dimV − 1. Hence Y must be a component
of U and the stable map corresponding to a general point of Y satisfies properties 1–3 above.

The determination of multiplicity and local structure is identical to the genus 0 case.

4.11. Proposition. — Fix such a component Y with pa(C(0)) = 1. If m1, . . . , ms are
the multiplicities of π∗(∞) along C̃ at the s points C(0) ∩ C̃, then this divisor appears with
multiplicity

∏

k m
k.

Proof. The proof is identical to that of Proposition 4.8. We summarize the steps here.

Step 1. If A1 is the special locus of π containing q, then it suffices to analyze DefA1
.

Step 2. We may consider instead deformations of the map consisting of C(0), with s rational
tails ramifying completely over ∞ (at points rk) and over another point 0 (at points yk). In
particular, we assume Γ = Γ(0).

Step 3. Let M
′

1,
P

hm+1+s be the substack of M1,
P

hm+1+s that is the closure of the set of

points representing smooth stable curves where O(
∑

mpα
m) ∼= O(

∑

mkyk). If α is defined by

α : V ′ → M
′

1,
P

hm+1+s,
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then α|Y is dominant, so we may consider a fixed general stable curve

(C, {pα
m}, q, {y

k}) ∈ M
′

1,
P

hm+1+s.

Steps 4 and 5. The variety V ′′ is P1, and the multiplicity calculation is identical.

4.12. We have now found all components of D∞ on X1(d,Γ,∆) and W1(d,Γ,∆) where
∆ = {P1} (as in these cases pa(C(0)) ≤ 1), and the multiplicity of D∞ along each component.
We summarize this in two theorems which will be invoked later.

4.13. Theorem (Genus 0 maps to P1). — The components of D∞ on X1(d,Γ,∆) are of the
form

Y1(0,Γ(0),∆; d(1),Γ(1), ∅; . . . ; d(l),Γ(l), ∅)

for some positive integer l and partitions d =
∑l

k=1 d(k), Γ =
∐l

k=0 Γ(k). If mk = d(k) −
∑

mm|Γm(k)| (as in Section 3.6), this component appears with multiplicity
∏

k m
k.

4.14. Theorem (Genus 1 maps to P1). — Let Y be a component of D∞ on W1(d,Γ,∆).

Fix a positive integer l and partitions d =
∑l

k=1 d(k) and Γm =
∐l

k=0 Γm(k). Then Y is a
component of

Ya
1 (0,Γ(0),∆; d(1),Γ(1), ∅; . . . ; d(l),Γ(l), ∅),

Yb
1(0,Γ(0),∆; d(1),Γ(1), ∅; . . . ; d(l),Γ(l), ∅)m1

1
(for some m1

1), or

Yc
1(0,Γ(0),∆; d(1),Γ(1), ∅; . . . ; d(l),Γ(l), ∅).

If mk = d(k)−
∑

mm|Γm(k)|, the components of the first and third types appear with multiplicity
∏l

k=1m
k and those of the second type appear with multiplicity m1

1(m
1 −m1

1)
∏l

k=2m
k.

In all cases, the multiplicity is the product of the “new ramifications” of the components not
mapped to ∞.

For general g, the above argument identifies some of the components of D∞, but further work
is required to determine what happens when pa(C(0)) > 1.

4.15. Aside: local structure near D∞, and pathological behavior of Mg(P
1, d).

The proofs of Propositions 4.8 and 4.11 can be refined to determine the local structure of V
near Y in both cases. As these results will not be needed, the proof is omitted.

4.16. Corollary. — Let Y be the same component as in Propositions 4.8 or 4.11. A formal
neighborhood of a general point of Y in the stack V is isomorphic to

Spf C[[a, b1, . . . , bs, c1, . . . , cdimV−1]]/(a = bm
1

1 = · · · = bm
s

s )

with D∞ given by (a = 0), and Y given set-theoretically by the same equation.

In particular, if gcd(mi,mj) > 1 for some i and j, V fails to be unibranch at a general point
of Y. Similar phenomena occur in other situations ([CH] Proposition 4.8, [V3] Section 2.5,
etc.), although the proofs seem unrelated.

4.17. Let Mg(P
1, d)o be the closure of points corresponding to maps from irreducible genus

g curves. One might hope that Mg(P
1, d)o is smooth for general g and d. This is not the case.

The phenomenon of Proposition 4.16 suggested the following example of a map to P1 that can
be smoothed in 2 different ways.

The dimension of M4(P
1, 4)o is 14. Consider the family Y of stable maps whose general

element parametrizes a smooth genus 3 curve C(0) meeting a rational tail C(1) at two general
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points. The curve C(0) maps with degree 0 to P1, and the rational tail maps with degree 4 to
P1, ramifying at both points of intersection with C(0).

The substack Y has dimension 13: 8 for the two-pointed genus 3 curve C(0), 1 for the image
of C(0) in P1, and 4 for the other ramification points of C(1). Thus if Y is contained in
M4(P

1, 4)o, it is a Weil divisor.

4.18. Proposition. — M4(P
1, 4)o has two smooth branches along Y, intersecting trans-

versely.

By a similar argument, we can find a codimension 1 unibranch singularity of M5(P
1, 5)o, and

singularities of M8(P
1, 7)o with several codimension 1 singular branches.

4.19. Maps of genus 1 curves to P1. We conclude with necessary results unrelated to
the earlier part of this section.

4.20. Lemma. — Suppose π : C → P1 is a map from a connected nodal curve of arithmetic
genus 1.

(a) If π contracts no component of arithmetic genus 1, then

h1(C, π∗(OP1(1))) = h1(C, π∗(OP1(2))) = 0.

(b) If C has a contracted component E of arithmetic genus 1, where E intersects the rest of
the components R at two points p and q (and possibly others) with π|R étale at p, then
h1(C, π∗(OP1(2))) = 1.

By “contracting no component of C of arithmetic genus 1” we mean that all connected unions
of contracted irreducible components of C have arithmetic genus 0.

Proof. (a) By Serre duality, it suffices to show that

H0(C,KC ⊗ π∗(O(−1))) = 0.

Assume otherwise that such (C, π) exists, and choose one with the fewest components, and
choose a nonzero global section s of KC ⊗ π∗(O(−1)). If C = C ′ ∪R where R is a rational tail
(intersecting C ′ at one point), then s = 0 on R as

degR(KC ⊗ π∗(O(−1))) = −1 − degπ R < 0.

Then s|C′ is a section of (KC⊗π
∗(O(−1)))|C′ that vanishes onC ′∩R. But KC′ = KC(−C ′∩R)|C′,

so this induces a non-zero section of KC′ ⊗ (π|C′)∗(O(−1)), contradicting the minimality of the
number of components. Thus C has no rational tails, and C is either an irreducible genus 1
curve or a cycle of rational curves. If C is an irreducible genus 1 curve, then C isn’t contracted
by hypothesis, so KC ⊗ π∗(O(−1)) is negative on C as desired. If C is a cycle C1 ∪ · · · ∪ Cs of
P1’s, then

degCi
(KC ⊗ π∗(O(−1))) = −degCi ≤ 0.

As one of the curves has positive degree, there are no global sections of KC ⊗ π∗(O(−1)).

(b) The proof is essentially the same, and is omitted.

4.21. Proposition. — Suppose (C, {pi}, π) is a stable map in M1,m(P1, d) satisfying

(a) C has no contracted component of arithmetic genus 1, or
(b) C has a contracted component E of arithmetic genus 1, where E intersects the rest of the

components R at two points p and q (and possibly others) with π|R étale at p.

Then M1(P
1, d) is smooth of dimension 2d+m at (C, {pi}, π).

The result is almost certainly true even without the étale condition in (b).
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Proof. (a) As H1(C, π∗TP1) = 0 by the previous lemma, M1,m(P1, d) is smooth of dimension
deg π∗TP1 +m = 2d+m. The argument is well-known, but for completeness we give it here.

From the exact sequence for infinitesimal deformations of stable maps (see Appendix A), we
have

0 −→ Aut(C, {pi}) −→ H0(C, π∗TP1)(5)

−→ Def(C, {pi}, π) −→ Def(C, {pi}) −→ H1(C, π∗TP1)

−→ Ob(C, {pi}, π) −→ 0

where Aut(C, {pi}) (resp. Def(C, {pi})) are the infinitesimal automorphisms (resp. infinites-
imal deformations) of the marked curve, and Def(C, {pi}, π) (resp. Ob(C, {pi}, π)) are the
infinitesimal deformations (resp. obstructions) of the stable map. As H1(C, π∗TP1) = 0,
Ob(C, {pi}, π) = 0 from (5). Thus the deformations of (C, {pi}, π) are unobstructed, and
the dimension follows from:

dim Def(C, {pi}, π) − dim Ob(C, {pi}, π) = (dim Def(C, {pi}) − dim Aut(C, {pi}))

+(h0(C, π∗TP1) − h1(C, π∗TP1))

= m+ 2d.

(b) For convenience (and without loss of generality) assume m = 0. As h1(C, π∗TP1) = 1
(previous Lemma), our proof of (a) will not carry through. However, Def(C, {pi}, π) does not
surject onto Def(C, {pi}) in long exact sequence (5), as it is not possible to smooth the nodes
independently: one cannot smooth the node at p while preserving the other nodes even to first
order. (This is well-known; one argument, due to M. Thaddeus, is to consider a stable map
(C, π) in M1(P

1, 1) and express the obstruction space Ext2(Ωπ,OC) as the dual of H0(C,F) for
a certain sheaf F , [Th].) Thus the map Def(C) → H1(C, π∗TP1) is not the zero map, so Def(C)
surjects onto H1(C, π∗TP1). Therefore Ob(C, π) = 0, so the deformations are unobstructed.

The rest of the proof is identical to that of (a)

5. Maps to Pn

We begin with generalities about curves in projective space justifying Reductions A–C in
Section 3.3.

The following proposition is a straightforward consequence of the Kleiman-Bertini theorem
for stacks. (Kleiman’s original proof [K1] carries through completely in the category of Deligne-
Mumford stacks.)

5.1. The Kleiman-Bertini Theorem. — Let A be a reduced irreducible substack of Mg,m(Pn, d),
and let p be one of the labelled points. Then there is a Zariski-open subset U of the dual projec-
tive space (Pn)∗ such that for all [H ′] ∈ U the intersection A ∩ ev∗pH

′, if nonempty, is reduced
of dimension dimA− 1.

Let B be a proper closed substack of A. Then there is a Zariski-open subset U ′ of the dual
projective space (Pn)∗ such that for all [H ′] ∈ U ′, each component of B ∩ ev∗pH

′ is a proper
closed substack of a component of A∩ ev∗pH

′.

5.2. Proposition. — Let A be an irreducible family of stable maps where the source curve
is of constant topological type and the components are distinguished. Suppose E is a contracted
genus g component with s special points (i.e. marked points or branches of nodes). If the
induced map i : A → Mg,s is non-constant then A is stably enumeratively irrelevant (3.5).
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Proof. Each component of the universal curve over A also satisfies the hypotheses of the
Proposition. Hence by replacing A with A(j) for suitable j, it suffices to prove that A is
enumeratively irrelevant. Suppose otherwise that A were enumeratively relevant.

If D = ev∗pj
H ′ (pj one of the marked points, H ′ a general hyperplane), then the hypothesis

also holds for each component of D. (Reason: if p is a point of Mg,s, then each component of
i∗p is a proper substack. By Kleiman-Bertini 5.1, D contains no component of i∗p, so i∗p ∩D
is of codimension at least 2 in A. Thus i(D) is non-constant.)

As A is enumeratively relevant, some component of ev∗jH (for some j) is enumeratively
relevant (and can be represented by a family also satisfying the hypotheses of the Proposition).
By repeating this process dimA times, we are left with an irreducible dimension 0 stack also
satisfying the hypotheses of the Proposition. This is impossible, as a map from a point to Mg,m

must be constant.

We next justify the Reduction steps described in Section 3.3, A and B in the next Proposition,
and C in Proposition 5.5.

5.3. Proposition. — Fix d, Γ, and ∆. Let H ′ be a general hyperplane in Pn. Then:

(a) X (d,Γ,∆ ∪ {Pn}) (resp. W(d,Γ,∆ ∪ {Pn})) is the universal curve over X (d,Γ,∆) (resp.
W(d,Γ,∆)).

(b) Fix m and α ∈ Γm. Suppose Γ′ is the same as Γ except Γ′α
m = Γα

m ∩H ′. Then the Cartier
divisor ev∗pα

m
H ′ on X (d,Γ,∆) (resp. W(d,Γ,∆)) is X (d,Γ′,∆) (resp. W(d,Γ′,∆)).

(c) Fix α ∈ ∆. Suppose ∆′ is the same as ∆ except ∆′α = ∆α ∩ H ′. Then the Cartier
divisor ev∗qαH ′ on X (d,Γ,∆) (resp. W(d,Γ,∆), Z(d,∆)) is X (d,Γ,∆′) (resp. W(d,Γ,∆′),
Z(d,∆′)).

Proof. (a) follows from

X (d,Γ,∆ ∪ {Pn}) = X (d,Γ,∆) ×M0,
P

|Γm|+|∆|(P
n ,d) M0,

P
|Γm|+|∆|+1(P

n, d)

(and the analogous statement for W).

(b) Clearly

X (d,Γ′,∆) ⊂ ev∗pα
m
H ′;

each component of X (d,Γ′,∆) appears with multiplicity one by Kleiman-Bertini 5.1. The only
other possible components of ev∗pα

m
H ′ are those whose general point represents a map where

π−1H is not a union of points (i.e. contains a component of C). But such maps form a union of
proper subvarieties of components of X (d,Γ,∆), and by Kleiman-Bertini 5.1 such maps cannot
form a component of ev∗pα

m
H ′ ∩ X (d,Γ,∆).

Replacing pα
m with qα in the previous paragraph gives a proof of (c) for X . The same

arguments hold with X replaced by W, and for (c), Z.

5.4. Next, we justify Reduction C.

Let A be a general (n − 2)-plane in H. The projection pA from A induces a rational map
ρA : Mg,m(Pn, d) 99K Mg,m(P1, d), that is a morphism (of stacks) at points representing maps
(C, {pi}, π) whose image π(C) does not meet A. Let V ⊂ Mg,m(Pn, d) be the open substack
corresponding to maps where π−1A is a union of reduced points distinct from the m marked
points {pi}.

5.5. Proposition. —
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(a) The morphism ρA can be extended to V, where the image of a map (C, {pi}, π) ∈ V is the
stable map (C̃, {pi}, πP1), with

C̃ = C ∪ C1 ∪ · · · ∪ C#π−1A,

where C1, . . . , C#π−1A are rational tails attached to C at the points of π−1A,

πP1 |{C\π−1A}= (pA ◦ π) |{C\π−1A}

(which extends to a morphism from all of C) and πP1 |Ck
is a degree 1 map to P1 (1 ≤

k ≤ #π−1A).
(b) If g = 0, then ρA is a smooth morphism of stacks (on V) of relative dimension (n−1)(d+1).
(c) If g = 1 and π doesn’t collapse any component of arithmetic genus 1, then ρA is a smooth

morphism of stacks (at (C, {pi}, π)) of relative dimension (n− 1)d.

5.6. To show that a morphism of stacks A → B is smooth at a point a ∈ A, where B is
smooth and A is equidimensional, it suffices to show that the fiber is smooth at a, or equivalently
that the Zariski tangent space to the fiber at a is of dimension dimA− dimB.

Proof. Let ν : Bl → P
n be the blow-up of P

n along A, with exceptional divisor E. If [L] ∈
H2(P

n) is the class of a line, let β = dν∗[L] ∈ H2(Bl). Let V ′ be the open substack of
Mg,m(Bl, β) corresponding to maps (C̃, {pi}, πBl), where s := #π−1A,

C̃ = C ∪ C1 ∪ · · · ∪ Cs;

Ci
∼= P1 (1 ≤ i ≤ s) and is mapped to E, isomorphically to fibers of ν; (πBl|C)∗E is a union of

s reduced points, disjoint from {pi}; and the Ci are glued to C at those s points.

Let U be the universal curve over Mg,m(Pn, d) (with natural map U → Pn). Define U ′ :=
U ×Pn Bl; as A is a complete intersection, U ′ is the blow-up of U along the pullback of A. If
p ∈ V ⊂ Mg,m(Pn, d) is a closed point, U ′

p is a curve C̃ as described in the previous paragraph.
If U ′|V is defined as U ′ ×Mg,m(Pn ,d) V, then

U ′|V → Bl
↓
V

is a family of stable maps to Bl. (Proof: All that needs to be verified is that U ′|V → V is
flat, which can be checked at closed points. Consider a point of π−1A on U mapping to V,
where the restriction of π−1A to the fiber is a closed point. Let (S, n) be the local ring of
this point, and (R,m) be the local ring of the image in V. Then π−1A defines an ideal of
S generated by 2 elements (say x, y, so (mS, x, y) = n), and we can choose x and y so that
neither x nor y vanishes to order 2 on the fiber (i.e. n = (mS, x) = (mS, y)). Then the flatness
of the blow-up of (x, y) can be checked by looking at patches. Where y 6= 0, the patch is
ψ : Spec(S[t]/(y − tx)) → SpecR. As y isn’t a 0-divisor on S/mS, y − tx isn’t a 0-divisor on
S[t]/mS[t]. Hence by the local flatness criterion [Ma] Cor. to 22.5 p. 177, ψ is flat. The same
argument holds with x and y interchanged.)

By the universal property of the moduli stack of stable maps, this induces a morphism
V → Mg,m(Bl, β); the image lies in V ′. On the other hand, the morphism ν : Bl → Pn induces
a morphism

Mg,m(Bl, β) → Mg,m(Pn, d),

and the image of V ′ lies in V. These morphisms clearly commute on the level of closed points,
so V ∼= V ′.
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Finally, the morphismm : Bl → P1 (corresponding to projection from A) induces a morphism
σ : V ′ → Mg,m(P1, d), proving (a). Let (C̃, {pi}, πP1) be the image of (C, {pi}, π) as in the
statement of (a).

In short, we have diagrams as follows:

V
∼

−→ V ′

ρA ց ↓ σ
Mg,m(P1, d)

(C, {pi}, π) → (C̃, {pi}, πBl)
ρA ց ↓ σ

(C̃, {pi}, πP1).

In order to use Criterion 5.6, we compute the Zariski tangent space to the fiber of σ at a
point of V ′. From the induced morphism of long exact sequences for infinitesimal deformations
of maps (see Appendix A), we have

Aut(C̃, {pi}) → H0(C, π∗
BlTBl) → Def(C̃, {pi}, πBl) → Def(C̃, {pi})

|| ↓ ↓ ||
Aut(C̃, {pi}) → H0(C, π∗

P1TP1) → Def(C̃, {pi}, πP1) → Def(C̃, {pi})

Hence the Zariski tangent space to the fiber ker(Def(C̃, {pi}, πBl) → Def(C̃, {pi}, πP1)) is iso-
morphic to ker(H0(C, π∗

BlTBl) → H0(C, π∗
P1TP1)). These are first-order deformations of the map

πBl preserving the image map πP1 (keeping the source curve C̃ fixed).

As the image of the map πBl|Ci
is a fiber of ν, it may move in E, but may not move out

of E (even to first order, as the degree of π∗
BlE on Ci is -1). Thus deformations of πBl in

ker(H0(C, π∗
BlTBl) → H0(C, π∗

P1TP1)) are naturally deformations of πBl|C preserving πP1 |C , with
the s points of (πBl|C)∗E required to stay on E.

These are naturally identified with the deformations of π (preserving πP1 |C) where the points
of π−1A may not move from A. If π : C → Pn is given by sections (s0, . . . , sn) of π∗OPn(1)
(and A is given by the vanishing of the first two co-ordinates), then these are deformations of
(s0, . . . , sn) keeping the sections s0, s1 constant. Thus the Zariski tangent space to the fiber of
σ is isomorphic to H0(C, π∗OPn(1))n−1.

The last paragraph can also be rephrased as follows. If TBl[−E] is the locally free sheaf
whose sections are sections of TBl, and whose sections on E are required to have no normal
component, then

0 → (ν∗OPn(1))n−1 → TBl[−E] → m∗TP1 → 0

is easily seen to be exact. Then pull back to C and take global sections.

(b) Recall that M0,m(Pn, d) is a smooth stack of dimension (n + 1)(d + 1) + m − 4 (see
Appendix A). The Zariski tangent space to the fiber of σ has dimension

h0(C, π∗OPn(1)n−1) = (n− 1)h0(C, π∗OPn(1))

= (n− 1)(d+ 1)

= dimM0,m(Pn, d) − dimM0,m(P1, d)

as desired.

(c) If no components of C of arithmetic genus 1 are collapsed by pA ◦ π, then ρA(C, π) is a
smooth point of M1,m(P1, d) by Lemma 4.21. If a component B of C of arithmetic genus 1
is collapsed by pA ◦ π, then the degree of π|B is at least 2 (as C has no genus 1 component
contracted by π), so B contains at least 2 (reduced) points of π−1A. In this case ρA(C, {pi}, π)
consists of a curve with a contracted elliptic component, and this elliptic component has at
least two rational tails that map to P1 with degree 1 (corresponding to the points of π−1A on
B). Thus by Lemma 4.21, ρA(C, π) is a smooth point of M1,m(P1, d) as well.
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By Lemma 4.20, h1(C, π∗(O(1))) = 0, so h0(C, π∗(O(1))) = d by Riemann-Roch. The proof
is then identical to the rest of (b).

5.7. Proposition. — Fix n, d, Γ =
∐l

k=0 Γ(k), ∆ =
∐l

k=0 ∆(k), and D.

(a) Xn(d,Γ,∆) has pure dimension

(n+ 1)d+ (n− 3) −
∑

m,α∈S(Γm)

(n+m− dim Γα
m − 2) −

∑

α∈S(∆)

(n− 1 − dim ∆α).

The general element of each component is (a map from) a smooth curve. Also, Yn(d(0), . . . ,∆(l))
has pure dimension dimXn(d,Γ,∆) − 1.

(b) Wn(d,Γ,∆) has pure dimension

(n+ 1)d−
∑

m,α∈S(Γm)

(n+m− dim Γα
m − 2) −

∑

α∈S(∆)

(n− 1 − dim ∆α).

The general element of each component is (a map from) a smooth curve. Also, Ya =
Ya

n(d(0), . . . ,∆(l)) (respectively Yb, Yc) has pure dimension dimWn(d,Γ,∆) − 1.
(c) Zn(d,∆)D has pure dimension

(n+ 1)d−
∑

α∈S(∆)

(n− 1 − dim ∆α) − 1.

These are the dimensions one would naively expect.

Proof. The proof for (a) is simpler than the proof for (b), and will be omitted for brevity.

(b) We will prove the result about dimW(d,Γ,∆) in the special case ∆ = ∅ and Γ consists
of copies of H. Then the result holds in general by Reductions A and B (Proposition 5.3). In
this special case, we must prove that each component of W(d,Γ, ∅) is (reduced) of dimension

(n+ 1)d−
∑

m

(m− 1)|Γm|.

Consider any point (C, {pα
m}, π) on W(d,Γ, ∅) where no component maps to H and π collapses

no component of arithmetic genus 1. The natural map Wn(d,Γ, ∅) 99K W1(d, Γ̃, ∅) induced by
ρA : M1,

P
|Γm|(P

n, d) 99K M1,
P

|Γm|(P
1, d) is smooth of relative dimension (n− 1)d at the point

(C, {pα
m}, π) by Proposition 5.5. The stack W1(d, Γ̃, ∅) is reduced of dimension 2d+1−

∑

(m−
1)|Γm| by Section 4, so W(d,Γ, ∅) has dimension

(n− 1)d+ dim(W1(d, Γ̃, ∅)) = (n+ 1)d−
∑

m

(m− 1)|Γm|

as desired. As the general element of W1(d, Γ̃, ∅) is (a map from) a smooth curve, the same is
true of W(d,Γ, ∅).

The same argument works for Ya, Yb, and Yc, as in Section 4, it was shown that Ya
1 (d(0), . . . ,∆(l)),

Yb
1(d(0), . . . ,∆(l)), and Yc

1(d(0), . . . ,∆(l)) are Weil divisors of W1(d,Γ, ∅).

(c) By Proposition 5.3 (c), we may assume that ∆ consists only of copies of Pn.

It suffices to prove the result for the generically degree d! cover Z ′
n(d,∆)D obtained by

marking the points of intersection with a fixed general hyperplane H. If Γ1 consists of d copies
of H, and Γm is empty for m > 1, then Z ′

n(d,∆)D is a substack of W(d,Γ,∆), and as

dimWn(d,Γ,∆) = (n+ 1)d−
∑

α

(n− 1 − dim ∆α),

we wish to show that Z ′
n(d,∆)D is a Weil divisor (in fact reduced) of the variety Wn(d,Γ,∆).
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Assume qα0 appears in D with non-zero coefficient a (so D−aqα0 is a sum of integer multiples
of qα, α ∈ S(∆) \ {α0}). Let W(d,Γ,∆ \ {∆α0})o be the open subset of W(d,Γ,∆ \ {∆α0})
representing maps from smooth elliptic curves. On the universal curve over W(d,Γ,∆\{∆α0})o

there is a reduced divisor Z corresponding to points q such that

aq = (D − aqα) − π∗(O(1))

in the Picard group of the fiber. The universal curve over the stack W(d,Γ,∆ \ {∆α0}) is
W(d,Γ,∆) by Proposition 5.3 (a), so by definition the closure of Z in W(d,Γ,∆) is Z(d,∆)D.

The following proposition is completely irrelevant to the rest of the argument. It is included
to ensure that we are actually counting what we might want to.

5.8. Proposition. — If n ≥ 3, and (C, {pα
m}, {q

α}, π) is the stable map corresponding to a
general point of a component of X (d,Γ,∆) or W(d,Γ,∆), then C is smooth and π is a closed
immersion.

Proof. By Reductions A and B (Proposition 5.3), we can assume ∆ = ∅ and Γm consists of copies
of H. By the previous proposition, the curve C is smooth. We need only check that π is a closed
immersion. The line bundle π∗OPn(d) is very ample, so a given non-zero section s0 and three
general sections t1, t2, t3 will separate points and tangent vectors. If π = (s0, s1, s2, s3, s4, . . . , sn)
then the infinitesimal deformation (s0, s1 + εt1, s2 + εt2, s3 + εt3, s4, . . . , sn) will separate points
and tangent vectors and still lie in X (d,Γ,∆) (or W(d,Γ,∆)). As (C, {pα

m}, {q
α}, π) corresponds

to a general point in X (d,Γ,∆) (or W(d,Γ,∆)), the map π must be a closed immersion at this
point.

We will need to avoid the locus on W(d,Γ,∆) where an elliptic component is contracted.
The following lemma identifies maps which could lie in this locus.

5.9. Lemma. — Let C be a complete reduced nodal curve of arithmetic genus 1, and
let π : C → Pn. Assume (C, π) can be smoothed. If B is a connected union of contracted

components of C of arithmetic genus 1, intersecting C \B in k points, and T1, . . . , Tk are

the tangent vectors to C \B at those points, then the vectors {π(Ti)}
k
i=1 in Tπ(B)P

n are linearly
dependent.

More generally, this result will hold whenever π is a map to an n-dimensional variety X.

Proof. Let ∆ be a smooth curve parametrizing maps (Ct, π) (with total family (C, π)) to Pn,
with (C0, π) = (C, π) and general member a map from a smooth curve. Thus the following
diagram commutes.

C
π

−→ Pn × ∆
ց ւ

∆

There is an open neighborhood U of B ⊂ C such that π |U\B is an immersion. Thus π factors
through a family C ′ that is the same as C except B is contracted. Let π′ be the contraction
π′ : C → C′. The family C ′ is also flat, and its general fiber has genus 1. The central fiber
is a union of rational curves, at most nodal away from the image of B. If the images of T1,
. . . , Tk in C ′

0 are independent, the reduced fiber above 0 would have arithmetic genus 0, so the
central fiber (reduced away from the image of B) would have arithmetic genus at most zero,
contradicting the constancy of arithmetic genus in flat families. Thus the images of T1, . . . ,
Tk in Tπ′(B)C

′
0 must be dependent, and hence their images in Tπ(B)P

n must be dependent as
well.
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It is likely that every stable map of the form described in the above lemma can be smoothed,
which would suggest (via a dimension estimate) that when k ≤ n+1 those maps with a collapsed
elliptic component intersecting k noncontracted components (with linearly dependent images
of tangent vectors) form a Weil divisor of W(d,Γ,∆). Because of the moduli of M1,k, none of
these divisors would be enumeratively relevant. Thus the following result is not surprising.

5.10. Proposition. — If W ′ is an irreducible substack of W(d,Γ,∆) whose general map
(C, {pα

m}, {q
α}, π) has a contracted elliptic component E (or more generally a contracted con-

nected union of components of arithmetic genus 1) and W ′ is of codimension 1, then W ′ is
enumeratively irrelevant.

Proof. We show more generally that W ′ is stably enumeratively irrelevant (3.5), as this property
behaves well with respect to Reductions A and B (Proposition 5.3). By these reductions, we may
assume ∆ = ∅ and Γ consists of copies ofH. Restrict to the open substack of W where the source
curve has constant topological type. Take an étale cover to distinguish the components. Let
(C, {pα

m}, π) be a general point of W ′. Suppose E has s special points (markings or intersections
with noncontracted components) including k intersections with noncontracted components.

If E (with the s special points) has moduli (i.e. the induced map W ′ → M1,s is nonconstant),
the family is stably enumeratively irrelevant by Proposition 5.2. Assume that this is not the
case.

If s ≥ 3, replace E by a rational R = P1, with s fixed special points (i.e. constant in M0,s),
to obtain a new stable map (C ′, {pα

m}, π
′) ∈ X (d,Γ, ∅). The family of such (C ′, π′) forms an

étale cover of a subtack X ′ of X (d,Γ, ∅), and X ′ is contained in X ′′ where in the latter we don’t
impose the dependence of tangent vectors required by the previous lemma.

Then X ′′ has codimension at least (s− 3) + 1 in X (d,Γ, ∅) (s− 3 from the moduli of M0,s,
1 from smoothing of the curve). The previous lemma imposes an additional max(n+ 1 − k, 0)
conditions, which are independent as the rational curves intersecting R can move freely under
automorphisms of Pn preserving H. Thus the codimension of X ′ in X (d,Γ, ∅) is at least
n−1+(s−k) ≥ n−1. But dimX (d,Γ, ∅)−dimW(d,Γ, ∅) = n−3, so dimW ′ ≤ dimW(d,Γ, ∅)−
2 = dimW ′ − 1, giving a contradiction.

The s = 2 case is the same, except E is replaced by nothing. (This is perhaps most quickly
said by replacing E by a rational R and then stabilizing.) The same argument carries through.

Otherwise, k = s = 1. Then X ′′ can be identified with the substack of X (d,Γ, {Pn}) where
the corresponding map π : (C, {pα

m}, q) → Pn is singular at q. As the singularity requirement
imposes n conditions,

dimW ′ ≤ dimX (d,Γ, {Pn}) − n

= dimX (d,Γ, ∅) + 1 − n

= (dimW(d,Γ, ∅) + n− 3) + 1 − n

= dimW(d,Γ, ∅) − 2

= dimW ′ − 1

giving a contradiction once again. Hence W ′ is enumeratively irrelevant.

6. Components of DH

Fix d and general linear spaces Γ and ∆ (as in the definition of X (d,Γ,∆) and W(d,Γ,∆)).
Let q be the marked point corresponding to one of the linear spaces ∆β in ∆.
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Let DH = ev∗qH = {π(q) ∈ H} be the Cartier divisor on X (d,Γ,∆) or W(d,Γ,∆) that
corresponds to requiring q to lie on H. The components of DH on X (d,Γ,∆) are given by the
following result.

6.1. Theorem. — If Γ and ∆ are general, each component of DH (as a divisor on X (d,Γ,∆))
is a component of

Y(d(0),Γ(0),∆(0); . . . ; d(l),Γ(l),∆(l))

for some l, d(0), . . . , ∆(l), with d =
∑l

k=0 d(k), Γ =
∐l

k=0 Γ(k), ∆ =
∐l

k=0 ∆(k), ∆β ∈ ∆(0).
This component appears with multiplicity

∏

mk (with mk as defined in Section 3.6).

Proof. By Reductions A and B (Proposition 5.3), we may assume that Γm consists only of H’s
for all m, and that ∆ = {Pn} (with ∆β = P

n). With these assumptions, the result becomes
much simpler. The stack X (d,Γ, {Pn}) is the universal curve over X (d,Γ, ∅), and we are asking
which points of the universal curve lie in π−1H.

Let (C, {pα
m}, q, π) be the stable map corresponding to a general point of a component of DH .

Choose a general (n − 2)-plane A in H. By Kleiman-Bertini 5.1, the set π−1A is a union of
reduced points on C, so by Proposition 5.5 ρA is smooth (as a morphism of stacks) at the point
representing (C, {pα

m}, q, π). As a set, DH contains the entire fiber of ρA above ρA(C, {pα
m}, q, π),

so ρA(DH) is a Weil divisor on X1(d, Γ̃, {P1}) that is a component of ev∗q∞ = {π(q) = ∞} where
∞ = pA(H). By Theorem 4.13, the curveC is a union of irreducible components C(0)∪· · ·∪C(l′)
with ρA ◦ π(C(0)) = ∞ (i.e. π(C(0)) ⊂ H), C(0) meets C(k), and the marked points split up
among the components: Γ̃ =

∐

Γ̃(k). If d(0) = deg π|C(0), then d(0) of the curves C(1), . . . ,
C(l′) are rational tails that are collapsed to the d(0) points of C(0)∩A; they contain no marked
points. Let l = l′ − d(0). Also, ∆(k) = ∅ for k > 0, as the only incidence condition in ∆ was
q ∈ ∆β, and q ∈ C(0).

Therefore this component of DH is contained in

Y = Y(d(0),Γ(0),∆(0); . . . ; d(l),Γ(l),∆(l)).

But dimY = dimX (d,Γ,∆) − 1 (by Proposition 5.7), so the set-theoretic result follows. For
the multiplicity result, pull back the multiplicity statement of Theorem 4.13 along the smooth
morphism ρA.

For enumerative calculations, we need only consider enumeratively relevant components.
With this in mind, we restate Theorem 6.1 in language reminiscent of [CH] and [V1]. Let
φ be the isomorphism of Remark 3.9. The following statement will be more convenient for
computation.

6.2. Theorem. — If Γ and ∆ are general, then each enumeratively relevant component of
DH (as a divisor on X (d,Γ,∆)) is one of the following.

(I) A component of φ(X (d,Γ′,∆′)), where, for some m0 and ∆α0 ∈ Γm0
,

• ∆′ = ∆ \ {∆β}, and
• Γ′ is the same as Γ except Γα0

m0
is replaced by Γα0

m0
∩ ∆β.

The component appears with multiplicity m0. (See Remark 3.9 for the definition of φ.)
(II) A component of Y(d(0),Γ(0),∆(0); . . . ; d(l),Γ(l),∆(l)) for some l, d(0), . . . , ∆(l), with

d =
∑l

k=0 d(k), Γ =
∐l

k=0 Γ(k), ∆ =
∐l

k=0 ∆(k), ∆β ∈ Γ(0), and d(0) > 0. The
component appears with multiplicity

∏

mk (with mk as defined in Section 3.6).

Call these components Type I components and Type II components respectively.

Proof. Consider a component Y of DH that is not a Type II component (so d(0) = 0). Let
(C(0) ∪ · · · ∪C(l), {pα

m}, {q}, π) be the stable map corresponding to a general point of Y. The
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curve C(0) has at least 3 special points: q, one of {pα
m} (call it pα0

m0
), and C(0) ∩C(1). If C(0)

had more than 3 special points, then the component would not be enumeratively relevant, by
Proposition 5.2. Thus l = 1, and Y is a Type I component.

An analogous result is true in genus 1.

6.3. Theorem. — If Γ and ∆ are general, each enumeratively relevant component of DH

(as a divisor on W(d,Γ,∆)) is one of the following.

(I) A component of φ(W(d,Γ′,∆′)), where, for some m0 and ∆α0 ∈ Γm0
,

• ∆′ = ∆ \ {∆β}, and
• Γ′ is the same as Γ except Γα0

m0
is replaced by Γα0

m0
∩ ∆β.

The component appears with multiplicity m0.
(II) A component of Ya(d(0), . . . ,∆(l)), Yb(d(0), . . . ,∆(l))m1

1
, or Yc(d(0), . . . ,∆(l)) for some

l, d(0), . . . , ∆(l), with d =
∑l

k=0 d(k), Γ =
∐l

k=0 Γ(k), ∆ =
∐l

k=0 ∆(k), ∆β ∈ Γ(0),
and d(0) > 0. The component appears with multiplicity

∏

mk in cases Ya and Yc, and
m1

1(m
1 −m1

1)
∏

k>1m
k in case Yb.

Call the components of (I) Type I components, and call the three types of components of (II)
Type IIa, IIb, and IIc components respectively.

Proof. As in the proof of Theorem 6.1, we assume that Γ consists of copies of H, and ∆ =
{Pn} (and ∆β = Pn). We consider the map ρA : Wn(d,Γ, {Pn}) 99K W1(d, Γ̃, {P1}) near a
general point (C, {pα

m}, {q}, π) of a component of DH . As a set, DH contains the entire fiber
of ρA above ρA(C, π), so ρA(DH) is a Weil divisor on W1(d, Γ̃, {P

1}) that is a component of
ev∗q∞ = {π(q) = ∞}. By Theorem 4.14, the curve C is a union of irreducible components
C(0)∪· · ·∪C(l′) with ρA ◦π(C(0)) = ∞ (i.e. C(0) ⊂ π−1H), C(0)∩C(k) 6= φ, and the marked
points split up among the components: Γ̃ =

∐

Γ̃(k). If d(0) = deg π|C(0), then d(0) of the
curves C(1), . . . , C(l′) are rational tails that are collapsed to the d(0) points of C(0)∩A; they
contain no marked points. Let l = l′ − d(0). Also, ∆(k) = ∅ for k > 0, as the only incidence
condition was q ∈ ∆β, and q ∈ C(0).

Case d(0) > 0. By Theorem 4.14, the component Y is contained in

Ya(d(0), . . . ,∆(l)), Yb(d(0), . . . ,∆(l)), or Yc(d(0), . . . ,∆(l)).

As the dimensions of each of these three is dimW(d,Γ,∆) − 1 = dimY, Y must be a Type II
component as described in the statement of the theorem.

Case d(0) = 0. By the same argument as in the proof of Theorem 6.2, Y is a Type I
component.

The multiplicity proof is the same as in Theorem 6.2; pull back the analogous statement in
Theorem 4.14 along the smooth morphism ρA.

7. Recursive formulas

7.1. The enumerative geometry of X and W. Theorems 6.2 and 6.3 express the
enumerative geometry of stacks of the form X (d(0), . . . ,∆(l)) or W(d(0), . . . ,∆(l)) in terms of
the enumerative geometry of stacks of dimension 1 less, of the form X , W, Y, Ya, Yb, or Yc.

7.2. The enumerative geometry of Y from that of X , and Ya and Yc from W and

X .
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L1
L0

H

Figure 10. How many (L0, L1) satisfy the desired conditions?

Counting maps in Y(d(0), . . . ,∆(l)) (or Ya(d(0), . . . ,∆(l)) or Yc(d(0), . . . ,∆(l))) corresponds
to counting maps of pointed curves C(0), . . . , C(l) where the images of certain points are
required to coincide. This is done by the classical method of “splitting the diagonal”.

The method is best understood through an example. Fix a hyperplane H ⊂ P
4. In P

4 the
number of ordered pairs of lines (L0, L1) consisting of lines L0 ⊂ H and L1 ⊂ P4, with L0

intersecting 3 fixed general lines a1, a2, a3 in H, L1 intersecting 5 fixed general 2-planes b1, . . . ,
b5 in P4, and L0 intersecting L1 (see Figure 10), can be determined as follows.

There is a one-parameter family of lines L0 in H intersecting the general lines a1, a2, a3.
This family sweeps out a surface S ⊂ H of some degree d0. The degree d0 is the number of
lines intersecting the lines a1, a2, and a3 and another general line in H, so this is

#X3(d = 1,Γ1 = {plane},∆ = {a1, a2, a3, another line}).

There is also a one-parameter family of lines L1 intersecting the general 2-planes b1, . . . , b5,
and the intersection point of such L1 with H sweeps out a curve C ⊂ H of some degree d1. The
degree d1 is the number of lines intersecting the 2-planes b1, . . . , b5 in P

4 and another general
2-plane in H. Thus

d1 = #X4(d = 1,Γ = {plane in H},∆ = {b1, b2, b3, b4, b5}).

The answer we seek is #(C ∩ S) = d0d1.

We count #Yn(d(0), . . . ,∆(l)) in general as follows. Choose general linear spaces γ(1), . . . ,
γ(l) in H of appropriate dimensions such that Xn(d(k),Γ′(k),∆(k)) is finite, where Γ′(k) is Γ(k)
with the additional condition of γ(k) in Γmk(k). Let Γ′

1(0) consist of d(0) copies of a hyperplane
H ′ in Pn−1, and Γ′

m(0) = ∅ for m > 1. Choose general linear spaces δ(1), . . . , δ(l) in H of
dimension dim δ(k) = (n−1)−dim γ(k) (“dual to γ(k)”). Let ∆′(0) = ∆(0)

∐

{δ(k)}l
k=1

∐

Γ(0).
Then Xn−1(d(0),Γ′(0),∆′(0)) is finite as well. With these definitions,

#Yn(d(0), . . . ,∆(l)) =
#Xn−1(d(0),Γ′(0),∆′(0))

d(0)!

l
∏

k=1

#Xn(d(k),Γ′(k),∆(k)).

The d(0)! is included to account for the possible labellings of the intersection points of a
degree d(0) curve C(0) in H with a fixed general hyperplane H ′ of H.

7.3. We sketch an argument to show that this gives a correct count. If ∆′′(0) is the same as
∆(0)

∐

Γ(0) but with an extra l copies of H, there is a natural map

ψ : Xn−1(d(0),Γ′
1(0),∆′′(0)) → H l

that is the product of the evaluation maps on the “extra l points”. If Γ′′(k) (k > 0) is the same
as Γ(k) with an additional copy of H in Γ′′

mk(k), there is a natural map

ψk : Xn(d(k),Γ′′(k),∆(k)) → H
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that is the evaluation map on the “additional point”. As the linear spaces in Γ and ∆ are
chosen generally, by Kleiman-Bertini 5.1 (with the subgroup of Aut(Pn) preserving H, acting
on ψk), the image of ψ meets the product of the images of ψk transversely. The transversality
checks for the cases Ya, Yb, Yc below are similar, and omitted.

7.4. Similar formulas (with the same justification) hold for Ya and Yc.

#Yc
n(d(0), . . . ,∆(l)) = #Zn−1(d(0),∆′(0))P

m,α mpα
m(0)−

Pl
k=1 mkrk

l
∏

k=1

#Xn(d(k),Γ′(k),∆(k))

where Γ′ and ∆′ are defined in the same way as for Y.

# Ya
n(d(0), . . . ,∆(l)) =

#Xn−1(d(0),Γ′(0),∆′(0))

d(0)!
#Wn(d(1),Γ′(1),∆(1))

l
∏

k=2

#Xn(d(k),Γ′(k),∆(k))

where Γ′ and ∆′ is defined in the same way, except γ(1) is chosen so that Wn(d(1),Γ′(1),∆(1))
is finite.

7.5. The enumerative geometry of Yb from that of X . Counting points of Yb is
similar. For convenience, let Ỹb correspond to the slightly different problem, where we mark
one of the points of C(0) ∩ C(1) where C(1) intersects H with multiplicity m1

1; this will avoid
a factor of 1/2 that would otherwise arise if m1

1 = m1
2. The (mild) additional complexity comes

from requiring the curves C(0) and C(1) to intersect twice (at marked points of each curve, on
H), so a natural object of study is the blow-up of H ×H along the diagonal ∆, Bl∆H ×H.

But when n = 2, the situation is simpler. The curve C(0) is H, and C(1) will always intersect
it. In this case, for C(0) ∪ · · · ∪ C(l) to be determined by the incidence conditions (up to a
finite number of possibilities), each of C(1), . . . , C(l) must also be determined (up to a finite
number). The analogous formula to those of the previous subsection is

#Ỹb
2(d(0); . . . ;∆(l))m1

1
=

l
∏

k=2

#X2(d(k),Γ
′(k),∆(k))

where for k > 1, Γ′(k) is the same as Γ(k) with the additional condition {point} in Γmk(k),
and Γ′(1) is the same as Γ(1) with additional conditions {point} in Γm1

1
(1) and Γm1

2
(1). This

formula agrees with Theorem 1.3 of [CH].

We now calculate #Ỹb when n = 3; the same method works for n > 3. As an illustration of
the method, consider the following enumerative problem.

Fix seven general lines L1, . . . , L7 in P3 and a point p on a hyperplane H. How many pairs
of curves (C(0), C(1)) are there with C(0) a line in H through p and C(1) a conic intersecting
L1, . . . , L7 and intersecting C(0) at two distinct points, where the intersections are labelled a1

and a2?

The answer to this enumerative problem is by definition

#Ỹb = #Ỹb
3(1,Γ(0) = {p}, ∅; 2, ∅,∆ = {L1, . . . , L7}).

The space of lines in H passing through p is one-dimensional, and thus defines a three-
dimensional locus in Bl∆H × H. The space of conics in P3 passing through 7 general lines
is one-dimensional, and thus defines a one-dimensional locus in Bl∆H ×H parametrizing the
points of intersection of the conic with H. Then #Ỹb is the intersection of these two classes.
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Let hi be the class (in the Chow group) of the hyperplane on the ith factor of Bl∆H × H
(i = 1, 2), and let e be the class of the exceptional divisor. Then the Chow ring of Bl∆H ×H
is generated (as a Z-module) by the classes listed below with the relations

h3
1 = 0, h3

2 = 0, e2 = 3h1e− h2
1 − h1h2 − h2

2.

Codimension Classes
0 1
1 h1, h2, e
2 h2

1, h1h2, h
2
2, h1e = h2e

3 h2
1h2, h1h

2
2, h

2
1e = h1h2e = h2

2e
4 h2

1h
2
2

Let the image of possible pairs of points on C(0) be the class C(0) = α(h1 + h2) + βe in
A3(Bl∆H × H). Then C(0) · h2

1h2 = α and C(0) · eh2
1 = −β. But C(0) · h2

1h2 is the number
of lines in H passing through p (class C(0)) and another fixed point (class h2

1) with a marked
point on a fixed general line (class h2), so α = 1. Also, C(0) · eh2

1 is the number of lines in the
plane through p (class C(0)) and another fixed point q (class h2

1) with a marked point mapping
to q, so β = −1. Thus C(0) = h1 + h2 − e.

Let the image of possible pairs of points on C(1) ∩H be the class C(1) = γ(h2
1h2 + h1h

2
2) +

δh1h2e. Then γ = C(1) · h1 is the number of conics in P3 through 7 general lines in P3 and a
general line in H, which is 92 from Section 2.2. Also, −δ = C(1) · e counts the number of conics
in P3 through 7 general lines in P3 and tangent to H, which is 116 (which can be inductively
computed using the methods of this article). Thus C(1) = 92(h2

1h2 + h1h
2
2) − 116eh1h2.

Finally, the answer to the enumerative problem is

#Ỹb = (h1 + h2 − e)
(

92(h2
1h2 + h1h

2
2

)

− 116eh1h2) = 92 + 92 − 116 = 68.

When n = 3 in general, there are three cases to consider. Let C = C(0) ∪ C(1) ∪ · · · ∪ C(l)
as usual.

Case i). If the conditions Γ(1) and ∆(1) specify C(1) up to a finite number of possibilities,
then #Ỹb(d(0), . . . ,∆(l)) is:

#X (d(1),Γ′(1),∆(1)) · #Y (d(0),Γ′(0),∆(0); d(2),Γ(2),∆(2); . . . ; d(l),Γ(l),∆(l))

where

• Γ′(1) is the same as Γ(1) with the additional conditions {H} in Γm1
1
(1) and Γm1

2
(1) (the

curve C(1) intersects H at two points a1 and a2 with multiplicity m1
1 and m1

2 respectively;
these will be the intersections with C(0)), and

• Γ′(0) is the same as Γ(0) with the additional two conditions {point} and {another point}
in Γ′

1(0) (the curve C(0) must pass through two points of intersection a1 and a2 of C(1)
with H).

Case ii). If the conditions Γ(1) and ∆(1) specify C(1) up to a one-parameter family, we are
in the same situation as in the enumerative problem above. Then #Ỹb(d(0), . . . ;∆(l)) is

(

d(0) (#X (d(1),Γ′,∆(1)) + d(0)#X (d(1),Γ′′,∆(1)))

−#X (d(1),Γ′′′,∆(1))
)

· #Y(d(0),Γ′(0),∆(0); d(2), . . . ,∆(l))

where
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Figure 11. Calculating #Ỹb: A pictorial example

• Γ′ is the same as Γ(1) with additional conditions {line} in Γ′
m1

1

and {H} in Γ′
m1

2

(the

curve C(1) intersects H with multiplicity m1
1 at a1 along a fixed general line and with

multiplicity m1
2 at a2 at another point of H),

• Γ′′ is the same as Γ(1) with additional conditions {H} in Γ′′
m1

1

and {line} in Γ′′
m1

2

(the

curve C(1) intersects H with multiplicity m1
2 at a2 along a fixed general line and with

multiplicity m1
1 at a1 at another point of H),

• Γ′′′ is the same as Γ(1) with the additional condition {H} in Γ′′′
m1 (the points a1 and a2 on

the curve C(1) coincide, and C(1) is required to intersect H at this point with multiplicity
m1 = m1

1 +m1
2),

• Γ′(0) is the same as Γ(0) with the additional condition {point} in Γ′
1(0) (the curve C(0)

is additionally required to pass through a fixed point in H).

Case iii). If the incidence conditions on C(0) ∪ C(2) ∪ · · · ∪ C(l) specify the union of these
curves up to a finite number of possibilities (and the incidence conditions on C(1) specify C(1)
up to a two-parameter family), a similar argument shows that #Ỹb(d(0), . . . ,∆(l)) is

(d(0)#X (d(1),Γ′(1),∆(1)) − #X (d(1),Γ′′(1),∆(1)))#Y (d(0),Γ(0),∆(0); d(2), . . . ,∆(l))

where

• Γ′(1) is the same as Γ(1) with the additional conditions {line} in Γ′
m1

1

(1) and {another line}

in Γ′
m1

2

(1)

• Γ′′(1) is the same as Γ(1) with the additional condition {line} in Γ′′
m1(1).

These three cases are illustrated pictorially in Figure 11 for the special case of conics in P
3

intersecting a line in H at two points, with the entire configuration required to intersect 8
general lines in P

3. One of the intersection points of the conic with H is marked with an “×” to
remind the reader of the marking a1. The distribution of the line conditions (e.g. the number
of line conditions on the conic) is indicated by a small number. The bigger number beside each
picture is the actual solution to the enumerative problem corresponding to the picture. For
example, there are 116 conics in P3 tangent to a general hyperplane H intersecting 7 general
lines.

7.6. In P
n (n > 3), the procedure is the same, but the Chow ring of Bl∆(H × H) is more

complicated, so there are more cases.

7.7. The enumerative geometry of Z from that of X and W. For the purposes of
this section, dΓ is defined by: dΓ1 contains of d copies of H, and dΓk = ∅ for k > 1.
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We will use intersection theory on elliptic fibrations over a curve; the Chow ring modulo
algebraic or numerical equivalence will suffice. Let F be an elliptic fibration over a smooth
curve with smooth total space, whose fibers are smooth elliptic curves, except for a finite
number of fibers which are irreducible nodal elliptic curves. Let F be the class of a fiber and
KF the (class of the) relative dualizing sheaf. The self-intersection of a section is independent
of the choice of section. (Proof: KF restricted to the generic fiber is trivial, so KF is a sum of
fibers. Let S1, S2 be two sections. Using adjunction, S2

1 + KF · S1 = (KF + S1) · S1 = 0, so
S2

1 = −KF · S1 = −KF · S2 = S2
2 .)

For convenience, call the self-intersection of a section S2. The parenthetical proof above
shows that KF = −S2F .

7.8. Proposition. — Let S be a section, and C a class on F such that S = C on the general
fiber. Then S = C + (S2−C2

2
)F .

Proof. As all fibers are irreducible, S = C + kF for some k. By adjunction,

0 = S · (KF + S) = (C + kF )(C + (k − S2)F ) = C2 + 2k − S2.

Hence k = (S2 − C2)/2.

If the dimension of Zn(d,∆)Pmβqβ is 0, then consider the universal family over the curve
parametrizing maps to Pn with only the incidence conditions of ∆ (i.e. no divisorial condition).
This is Wn(d, dΓ,∆) modulo the symmetric group Sd (to forget the d markings of intersection
with H). The general point of Wn(d, dΓ,∆) represents a smooth elliptic curve. The remaining
points represent curves that are either irreducible and rational, or elliptic with rational tails.
(This can be proved by simple dimension counts on W1(d,

dΓ,∆).) Normalize the base (which
will normalize the family), and blow down (-1)-curves in fibers.

Call the resulting family F . It is straightforward to check that the total space of F is
smooth. (To check that the surface is smooth at the nodes of the family, show that the first-
order deformations of such maps surject onto the deformation space of the node, using the long
exact deformation sequence of Appendix A and the fact that H1(C, π∗TX) = 0. By appropriate
application of Kleiman-Bertini 5.1, one checks that the point remains smooth once one requires
marked points to lie on various general linear spaces.)

The curves blown down come from maps from nodal curves C(0) ∪ C(1), where C(0) is
rational and C(1) is elliptic. Let H be the pullback of a hyperplane to F , and let Qβ be the
section given by qβ.

7.9. Theorem. — Let D = H −
∑

mβQβ. Then #Zn(d,∆)Pmβqβ = S2 −D2/2.

Proof. Let Q be any section. Let S be the section given by Q + H −
∑

mβqβ in the Picard
group of the generic fiber. Then

#Zn(d,∆)Pmβqβ = S ·Q.
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(The sections S and Q intersect transversely from the proof of Proposition 5.7(c).) By the
previous proposition, as S2 = Q2,

S = Q+D +

(

S2 − (Q+D)2

2

)

F

so S ·Q =

(

Q+D +

(

S2 − (Q+D)2

2

)

F

)

·Q

= Q2 +D ·Q+
S2 −Q2 −D2

2
−D ·Q

= S2 −D2/2.

To calculate

#Zn(d,∆)Pmβqβ = S2 − (H −
∑

mβQβ)2/2,

we need to calculate H2, H · Qβ, and Qβ · Qβ′
, and these correspond to simpler enumerative

problems.

If β 6= β′, Qβ could intersect Qβ′
in two ways. If dim ∆β + dim ∆β′

≥ n, the elliptic curve
could pass through ∆β ∩ ∆β′

, which will happen

#W(d, dΓ,∆ \ {∆β,∆β′

}
∐

{∆β ∩ ∆β′

})/d!(6)

times. Or the curve could break into two intersecting components, one rational containing
Qβ and Qβ′

(which will be blown down in the construction of F , with images of Qβ and Qβ′

meeting transversely), and the other smooth elliptic. This will happen

∑

d(0)+d(1)=d
∆(0)

`
∆(1)=∆

∆β ,∆β′

(d(0)d(1))δn,2

(

#X (d(0), d(0)Γ,∆(0))

d(0)!

)(

#W(d(1), d(1)Γ,∆(1))

d(1)!

)

(7)

times. The factor of (d(0)d(1))δn,2 corresponds to the fact when n = 2, π(C) is a plane curve,
and the node of C could map to any node of the plane curve π(C). Transversality in both cases
is simple to check, and both possibilities are of the right dimension. Thus Qβ ·Qβ′

is the sum
of (6) and (7).

To determine H ·Qβ on F , fix a general hyperplane h in Pn, and let H be its pullback to the
fibration F . Then H is a multisection of the elliptic fibration. The cycle H could intersect Qβ

in two ways. Either π(qβ) ∈ h ∩ ∆β — which will happen

#W (d, dΓ,∆ \ {∆β}
∐

{h ∩ ∆β})/d!(8)

times — or the curve breaks into two pieces, one rational containing a point of h and qβ, which
will happen

∑

d(0)+d(1)=d
∆(0)

`
∆(1)=∆

∆β∈∆(0)

(d(0)d(1))δn,2d(0)

(

#X (d(0), d(0)Γ,∆(0))

d(0)!

)(

#W(d(1), d(1)Γ,∆(1))

d(1)!

)

(9)

times. (The second d(0) in the formula comes from the choice of point of h on the degree d(0)
rational component.) Thus H ·Qβ is the sum of (8) and (9).
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To determine H2, fix a second general hyperplane h′ in Pn, and let H ′ be its pullback to F .
Once again, H could intersect H ′ in two ways depending on if the curve passes through h∩ h′,
or if the curve breaks into two pieces. The first case happens

#W(d, dΓ,∆
∐

{h ∩ h′})

d!
(10)

times, and the second happens

∑

d(0)+d(1)=d
∆(0)

`
∆(1)=∆

(d(0)d(1))δn,2d(0)2

(

#X (d(0), d(0)Γ,∆(0))

d(0)!

)(

#W(d(1), d(1)Γ,∆(1))

d(1)!

)

(11)

times. Hence H2 is the sum of (10) and (11).

The self-intersection of a section S2 (= (Qβ)2) can be calculated as follows. We can calculate
H · Qβ, so if we can evaluate (H − Qβ) · Qβ then we can find S2 = (Qβ)2. Fix a general
hyperplane h containing ∆β, and let (H −Qβ) be the multisection that is the pullback of h to
F , minus the section Qβ. The cycle (H −Qβ) intersects Qβ if the curve is tangent to h along
∆β, or if the curve breaks into two pieces, with Qβ on the rational piece. The first case happens

#W(d,Γ′,∆ \ {∆β})

(d− 2)!
(12)

times, where Γ′
1 contains d− 2 copies of h and Γ′

2 contains one copy of ∆β (which is contained
in h). The second case happens

∑

d(0)+d(1)=d,d(0)≥2

∆(0)
`

∆(1)=∆\∆β

(d(0)d(1))δn,2

(

#X (d(0),Γ(0),∆(0))

(d(0) − 2)!

)(

#W(d(1), d(1)Γ,∆(1))

d(1)!

)

(13)

times, where Γ(0) consists of (d(0) − 1) copies of h and one copy of ∆β. Hence (H −Qβ) ·Qβ

is the sum of (12) and (13). The denominator (d(0)− 2)! arises because we have a degree d(0)
(rational) curve passing through a linear space ∆β on h, and various incidence conditions ∆(0).
The number of such curves with a choice of one of the other intersections of C(0) with h is
(d(0) − 1)#X (d(0),Γ(0),∆(0))/(d(0)− 1)!.

As an example, consider the elliptic quartics in P
2 passing through 11 fixed points, including

q1, q2, q3, q4. How many such two-nodal quartics have O(1) = q1 + · · · + q4 in the Picard
group of the normalization of the curve? We construct the fibration F over the (normalized)
variety of two-nodal plane quartics through 11 fixed points. We have sections Q1, . . . , Q11

and a multisection H. If β 6= β′, Qβ · Qβ′
= 3, H · Qβ = 30, H2 = 225 + 3

(

11
2

)

= 390,
(H −Q1) ·Q1 = 185, so

S2 = H ·Q1 − (H −Q1) ·Q1 = −155.

Let D = H −Q1 −Q2 −Q3 −Q4. Then

D2 = H2 + 4S2 − 8H ·Q1 + 12Q1 ·Q2 = 390 + 4(−155) − 8(30) + 12(3) = −434

so the answer is S2 −D2/2 = 62.

To determine the enumerative geometry of quartic elliptic space curves (see Section 8.3),
various #Z2(d,∆)D were needed with d = 3 and d = 4. When d = 3, ∆ consists of 8 points
(for dimZ to be 0) and some lines; the results are given in the Table 1. For convenience, we
write pβ for the base points (in ∆) and lβ for the marked points on lines. These values were
independently confirmed by M. Roth ([Ro]). When d = 4, ∆ consists of 11 points and some
lines; the results are given in the Table 2. For convenience again, we write pβ for points and lβ

for lines.
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#lβ D #Z2(d,∆)D
0 p1 + p2 + p3 0
1 p1 + p2 + l1 1
2 p1 + l1 + l2 5
3 l1 + l2 + l3 18
0 p1 + 2p2 1
1 2p1 + l1 4
1 p1 + 2l1 5
2 l1 + 2l2 16
0 3p1 3
1 3l1 14
0 p1 + p2 + p3 + p4 − p5 1
1 p1 + p2 + p3 + p4 − l1 2
1 p1 + p2 + p3 + l1 − p4 4
2 p1 + p2 + p3 + l1 − l2 10
2 p1 + p2 + l1 + l2 − p3 14
3 p1 + p2 + l1 + l2 − l3 39
3 p1 + l1 + l2 + l3 − p2 45
4 p1 + l1 + l2 + l3 − l4 135
4 l1 + l2 + l3 + l4 − p1 135
5 l1 + l2 + l3 + l4 − l5 432

Table 1. Counting cubic elliptic plane curves with a divisorial condition

#lβ D #Z2(d,∆)D
0 p1 + p2 + p3 + p4 62
1 p1 + p2 + p3 + l1 464
2 p1 + p2 + l1 + l2 2,522
3 p1 + l1 + l2 + l3 11,960
4 l1 + l2 + l3 + l4 52,160

Table 2. Counting quartic elliptic plane curves with a divisorial condition

8. Examples

8.1. Plane curves. Type IIc components in this case are never enumeratively relevant, as
the elliptic curve C(0) must map to the line H with degree at least two. The recursive formulas
we get are identical to the genus 1 recursive formulas of Caporaso and Harris in [CH].

8.2. Cubic elliptic space curves. The number of smooth cubic elliptic space curves
through j general points and 12 − 2j general lines is 1500, 150, 14, and 1 for j = 0, 1, 2, and
3 respectively. (The number is 0 for j > 3 as cubic elliptic space curves must lie in a plane.)
The degenerations involved in calculating the first case appeared in Section 2.4. As the Chow
ring of the space of smooth elliptic cubics is not hard to calculate (see [H] p. 36), these results
may be easily verified.

The number of cubic elliptics tangent to H, through j general points and 11 − 2j general
lines is 4740, 498, 50, and 4 for j = 0, 1, 2, and 3 respectively. The number of cubic elliptics
triply tangent to H through j general points and 10 − 2j general lines is 2790, 306, 33, and 3
for j = 0, 1, 2, and 3 respectively.
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j # quartics
0 52,832,040
1 4,436,208
2 385,656
3 34,674
4 3,220
5 310
6 32
7 4
8 1

Table 3. Number of quartic elliptic space curves through j general points and
16 − 2j general lines

These numbers are needed for the next examples.

8.3. Quartic elliptic space curves. The number of smooth quartic elliptic space curves
through j general points and 16−2j general lines is given in the Table 3. These numbers agree
with those independently found by Getzler ([G], proof to appear in [GP]).

Other enumerative data can also be found en route. For example, Tables 4 and 5 give the
number of smooth quartic elliptic space curves through i0 general points and i1 general lines,
and h0 general points and h1 general lines in H, with

2i0 + i1 + 2h0 + h1 = 16.

At each stage, the number may be computed by degenerating a point or a line (assuming
there is a point or line to degenerate). Each row is labelled, and the labels of the different
degenerations that are also smooth quartics are given in each case, and a “+” is added if there
are other degenerations (where the curve breaks into pieces). (This will help the reader to
follow through the degenerations.) Keep in mind that these numbers are not quite what the
algorithm of this article produces; in the algorithm, the intersections with H are labelled, so
the number computed for (i0, i1, h0, h1) will be (4 − h0 − h1)! times the number in the table.

These computations are not as difficult as one might think (and were done by hand). For
example, if i0 and i1 are both positive, it is possible to degenerate a point and then a line,
or a line and then a point. Both methods must yield the same number, providing a means of
double-checking.

As an example, some of the degenerations used to compute the 52,832,040 quartic space
curves through 16 general lines are displayed in Figure 12, using the pictorial shorthand of
Section 2. Degenerations involving irreducible quartic elliptic space curves are given (as well as
a few more). The boldfaced numbers indicate the corresponding rows in Tables 4 and 5. The
phrase “etc.” indicates that further degenerations appear. A full diagram of degenerations is
available on request.
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16

14

13

12

11

# general
lines

10

9

15

8

7

18

1

10

40

4,436,268

26

4,436,268

48

33

4,028,112

55 68

75

2,849,436

62

81

312,348

87

31,056

93

150 756 225

2,519

98

11 62 756 231

52,832,010

52,832,010

48,395,772

39,347,736

23,962,326 385,656 22,500

384,156 1500

34,674

×2

etc.
×3

etc.

etc. ×2

etc.

×3

etc.

etc.

etc.

×2

×4 ×2
×3×6

×3 ×3 ×4

×4

175,500

Figure 12. Counting quartic elliptic space curves through 16 general lines
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(i0, i1, point line # curves
h0, h1) degen. degen.

1 (16,0,0,0) 10 52,832,040
2 (14,1,0,0) 40 11 4,436,268

3 (12,2,0,0) 41 12 385,656
4 (10,3,0,0) 42 13 34,674
5 (8,4,0,0) 43 14 3,220
6 (6,5,0,0) 44 15 310
7 (4,6,0,0) 45 16 32
8 (1,7,0,0) 46 17 4
9 (0,8,0,0) 47 1

10 (15,0,1,0) 18, 40 52,832,040
11 (13,1,1,0) 48 19, 41 4,436,268
12 (11,2,1,0) 49 20, 42 385,656
13 (9,3,1,0) 50 21, 43 34,674
14 (7,4,1,0) 51 22, 44 3,220
15 (5,5,1,0) 52 23, 45 310
16 (3,6,1,0) 53 24, 46 32
17 (1,7,1,0) 54 25, 47 4
18 (14,0,2,0) 26, 48+ 48,395,772
19 (12,1,2,0) 55+ 27, 49+ 4,050,612
20 (10,2,2,0) 56+ 28, 50+ 350,982
21 (8,3,2,0) 57+ 29, 51+ 31,454
22 (6,4,2,0) 58+ 30, 52 2,910
23 (4,5,2,0) 59 31, 53 278
24 (2,6,2,0) 60 32, 54 28
25 (0,7,2,0) 61 3

26 (13,0,3,0) 33, 55+ 39,347,736
27 (11,1,3,0) 62+ 34, 56+ 3,266,100
28 (9,2,3,0) 63+ 35, 57+ 280,752
29 (7,3,3,0) 64+ 36, 58+ 24,972
30 (5,4,3,0) 65+ 37, 59+ 2,290
31 (3,5,3,0) 66+ 38, 60+ 214
32 (1,6,3,0) 67+ 39, 61+ 20
33 (12,0,4,0) 62+ 23,962,326
34 (10,1,4,0) + 63+ 1,939,857
35 (8,2,4,0) + 64+ 161,735
36 (6,3,4,0) + 65+ 13,908
37 (4,4,4,0) + 66+ 1,222
38 (2,5,4,0) + 67+ 104
39 (0,6,4,0) + 8
40 (14,0,0,1) 48+ 4,436,268
41 (12,1,0,1) 68 49 385,656
42 (10,2,0,1) 69 50 34,674
43 (8,3,0,1) 70 51 3,220
44 (6,4,0,1) 71 52 310
45 (3,5,0,1) 72 53 32
46 (2,6,0,1) 73 54 4
47 (0,7,0,1) 74 1

48 (13,0,1,1) 55, 68+ 4,436,268
49 (11,1,1,1) 75+ 56, 69+ 385,656
50 (9,2,1,1) 76+ 57, 70+ 34,674
51 (7,3,1,1) 77+ 58, 71+ 3,220

Table 4. Quartic elliptic space
curves with incidence conditions

(i0, i1, point line # curves
h0, h1) degen. degen.

52 (5,4,1,1) 78+ 59, 72 310
53 (3,5,1,1) 79 60, 73 32

54 (1,6,1,1) 80 61, 74 4
55 (12,0,2,1) 62, 75 4,028,112
56 (10,1,2,1) 81+ 63, 76+ 349,032
57 (8,2,2,1) 82+ 64, 77+ 28,340
58 (6,3,2,1) 83+ 65, 78+ 2,901
59 (4,4,2,1) 84+ 66, 79+ 278
60 (2,5,2,1) 85+ 67, 80+ 28
61 (0,6,2,1) 86+ 3
62 (11,0,3,1) 81+ 2,849,436
63 (9,1,3,1) + 82+ 243,507
64 (7,2,3,1) + 83+ 21,310
65 (5,3,3,1) + 84+ 1,909
66 (3,4,3,1) + 85+ 172
67 (1,5,3,1) + 86+ 14
68 (12,0,0,2) 75+ 385,656
69 (10,1,0,2) 87 76+ 34,674
70 (8,2,0,2) 88 77+ 3,220
71 (6,3,0,2) 89 78+ 310
72 (4,4,0,2) 90 79 32
73 (2,5,0,2) 91 80 4
74 (0,6,0,2) 92 1
75 (11,0,1,2) 81, 87+ 384,156
76 (9,1,1,2) 93+ 82, 88+ 34,524

77 (7,2,1,2) 94+ 83, 89+ 3,206
78 (5,3,1,2) 95+ 84, 90+ 309
79 (3,4,1,2) 96 85, 91+ 32
80 (1,5,1,2) 97 86, 92+ 4
81 (10,0,2,2) 93+ 312,348
82 (8,1,2,2) + 94+ 28,340
83 (6,2,2,2) + 95+ 2,612
84 (4,3,2,2) + 96+ 246
85 (2,4,2,2) + 97+ 24
86 (0,5,2,2) + 2
87 (10,0,0,3) 93+ 34,674
88 (8,1,0,3) 98+ 94+ 3,220
89 (6,2,0,3) 99+ 95+ 310
90 (4,3,0,3) 100+ 96 32
91 (2,4,0,3) 101 97 4
92 (0,5,0,3) 102 1
93 (9,0,1,3) 98+ 31,056
94 (7,1,1,3) + 99+ 3,052
95 (5,2,1,3) + 100+ 304
96 (3,3,1,3) + 101+ 32
97 (1,4,1,3) + 102+ 4
98 (8,0,0,4) + 2,519

99 (6,1,0,4) + + 277
100 (4,2,0,4) + + 31
101 (2,3,0,4) + + 4
102 (0,4,0,4) + 1

Table 5. Quartic elliptic space
curves with incidence condi-
tions, cont’d
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Appendix A. Background: The moduli space of stable maps

For the convenience of the reader we recall certain facts about moduli stacks of stable maps
to smooth varieties, without proofs.

A family of m-pointed nodal curves over a base scheme S (or a nodal curve over S) is a
proper flat morphism ρ : C → S whose geometric fibers are reduced and pure dimension 1,
with at worst ordinary double points as singularities, with sections σi : S → C (1 ≤ i ≤ m)
whose images are disjoint, and lie in the smooth locus of ρ. If X is a scheme, then a family
of maps of nodal curves to X over S (or a map of a nodal curve to X over S) is a morphism
π : C → X ×S of schemes over S, where the induced morphism ρ : C → S is a family of nodal
curves over S. A nodal curve (with no base scheme specified) is a nodal curve over Spec C, and
a map of a nodal curve to X is a map over Spec C. Similar definitions hold for families of nodal
curves (and maps) over Deligne-Mumford stacks (see [DMu] for definitions).

A stable map is a map π from a connected pointed nodal curve to a smooth variety X such
that π has finite automorphism group. The arithmetic genus of a stable map is defined to be
the arithmetic genus of the nodal curve C. If [C] ∈ H2(C) is the fundamental class of C, and
β = π∗[C] ∈ H2(X), then we say the image of C is in class β. If X is a projective space, and β
is d times the class of a line, we say that d is the degree of the stable map. The requirement that
the automorphism group be finite is equivalent to requiring each collapsed genus 0 component
to have at least three special points and each contracted genus 1 component to have at least
one special point, where a special point is defined to be either a marked point or a branch of a
node.

A family of stable maps to X is a family of maps of connected pointed nodal curves to X
whose fibers over closed points are stable maps. Let Mg,m(X,β) be the stack whose category of
sections of a scheme S is the category of families of stable maps to X over S of arithmetic genus
g with m marked points, with image in class β. If X is a smooth projective variety, Mg,m(X,β)
is a fine moduli stack of Deligne-Mumford type. There is an open substack Mg(X,β) (possibly
empty) that is a fine moduli stack of maps of smooth curves.

The stack Mg,m+1(X,β) is the universal curve over Mg,m(X,β). A morphism of smooth
projective varieties f : X → Y induces a morphism of stacks Mg,m(X, f∗β) → Mg,m(Y, β)
([BM], Remark after Theorem 3.14). There are natural evaluation maps evi : Mg,m(X,β) → X
(1 ≤ i ≤ m) that informally give “the image of the ith marked point”.

The versal deformation space to the map (C, {pi}, π) in Mg,m(X,β) is obtained from the
complex

Ωπ = (π∗ΩX → ΩC(p1 + · · · + pm)) .

The vector space Hom(Ωπ,OC) parametrizes infinitesimal automorphisms of the map (C, {pi}, π)
(denoted Aut(C, {pi}, π)); if (C, {pi}, π) is a stable map, Hom(Ωπ,OC) = 0. The space of in-
finitesimal deformations to the map (C, {pi}, π) (i.e. the Zariski tangent space to Mg,m(X,β)
at the point representing this stable map, denoted Def (C, {pi}, π)) is given by Ext1(Ωπ,OC)
and the obstruction space (denoted Ob(C,{pi},π)) is given by Ext2(Ωπ,OC).

By applying the functor Hom(·,OC) to the exact sequence of complexes

0 → ΩC(p1 + · · · + pm) → Ωπ → π∗ΩX [1] → 0

we obtain the long exact sequence

0 → Hom(Ωπ,OC) → Hom(ΩC(p1 + · · · + pm),OC) → H0(C, π∗TX)

→ Ext1(Ωπ,OC) → Ext1(ΩC(p1 + · · · + pm),OC) → H1(C, π∗TX)

→ Ext2(Ωπ,OC) → 0.
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By the identifications given in the previous paragraph, and using Hom(ΩC(p1+· · ·+pm),OC) =
Aut(C, {pi}) and Ext1(ΩC(p1 + · · · + pm),OC) = Def(C, {pi}), this long exact sequence can be
rewritten as

0 −→ Aut(C, {pi}) −→ H0(C, π∗TX)

−→ Def(C, {pi}, π) −→ Def(C, {pi}) −→ H1(C, π∗TX)

−→ Ob(C, {pi}, π) −→ 0.

The term H0(C, π∗TX) can be interpreted as first order deformations of the map π, with the
pointed curve (C, {pi}) fixed.

If H1(C, π∗TX) = 0 at a point (C, {pi}, π), then the obstruction space vanishes, and the
moduli stack is smooth. Thus M0,m(Pn, d) is smooth of dimension (n+ 1)(d+ 1) +m− 4, and
M1,m(Pn, d) is smooth of dimension (n+ 1)d+m− 1 at points (C, {pi}, π) where d > 1 and C
is smooth.

The construction of the versal deformation space from Ωπ is discussed in [Ra], [Vi], and [LT].
All other facts described here appear in [BM] or in the comprehensive introduction [FP].
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