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CHAPTER 2
The environmenT wiThin:

HOw guT mICRObIOTA mAy INFLuENCE 

mETAbOLIsm ANd bOdy COmPOsITION

Anne Vrieze, Frits Holleman, Erwin G. Zoetendal, Willem M. de Vos, 

Joost B.L. Hoekstra, Max Nieuwdorp

Diabetologia	2010;	53:	606-613
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Abstract

Obesity, diabetes and consequently atherosclerotic vascular disease have become 

major health and public health issues worldwide. The increasing and staggering 

prevalence of obesity might not only be explained by nutritional habits or the reduction 

of energy expenditure through decreased physical activity. In addition, recent studies 

have focused on intestinal microbiota as environmental factors that increase energy 

yield from diet, regulate peripheral metabolism and thereby increase body weight. 

Obesity is associated with substantial changes in composition and metabolic function 

of gut microbiota, but the pathophysiological processes driving this bidirectional 

relationship have not been fully elucidated. This review discusses the relationships 

between the following: composition of gut microbiota, energy extracted from diet, 

synthesis of gut hormones involved in energy homeostasis, production of butyrate 

and the regulation of fat storage. 

Abbreviations:

FIAF, Fasting-induced adipose factor

FISH, Fluorescent in situ hybridisation

GBP, Gastric bypass surgery

GIP, Gastric inhibitory peptide

GLP-1, Glucagon like peptide-1

GPR41, G protein-coupled receptor 4

LPL, Lipoprotein lipase

LPS, Lipopolysaccharide

PYY, Peptide YY

SCFA, Short-chain fatty acids
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introduction

The twin epidemics of obesity and type 2 diabetes mellitus have generated a wealth 

of literature regarding the intricate mechanisms of human metabolism in general 

and insulin resistance in particular. To date, many of the mechanistic studies have 

mainly focused on the biology of relationships between various human organs and 

cell systems. In contrast, geneticists have mainly focused on the human genome in 

their attempts to unravel the risk factors for type 2 diabetes mellitus. Nevertheless, 

there is an increasing body of literature that directs its attention to a possible third 

culprit: the gut microbiota (1-3). These micro-organisms and thus their bacterial 

genome (also called the microbiome) are increasingly considered important 

pathogenic factors in various diseases ranging from gastrointestinal tract diseases 

such as inflammatory bowel disease to obesity (4). With hindsight, this should hardly 

have come as a surprise, given the ubiquity of symbiotic processes in nature. The 

purpose of this review is to elaborate on how gut microbiota might contribute to the 

pathophysiology of obesity and type 2 diabetes mellitus.

Obesity is an increasingly common condition associated with an increased risk of 

type 2 diabetes mellitus and cardiovascular disease (5). The causal role of obesity 

in type 2 diabetes is highlighted by the fact that preventive weight reduction is 

associated with a decreased incidence of diabetes mellitus in multiple studies (6;7). 

Moreover, weight loss following bariatric surgery in morbidly obese patients with 

type 2 diabetes leads to a rapid reversal of the pathophysiology and subsequent 

resolution of diabetes mellitus (7). Interestingly, this glycaemic improvement 

actually occurs before weight loss. In addition, there is growing evidence that the 

increasing prevalence of obesity might not only be explained by nutritional habits or 

the reduction of energy expenditure through decreased physical activity. Thus even 

within families, some individuals seem more susceptible to diet-induced weight gain 

and hyperglycaemia, suggesting that other factors than those residing in the human 

genome are involved (8-10). The gut microbiota could therefore be prime candidates 

to explain part of the residual differences in body weight between individuals. 
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The human gut microbiota

Until recently, our understanding of human gut microbiota was limited by technical 

issues. Although a large fraction of the dominant (anaerobic) gut microbiota still 

remains impossible to culture, the development of 16S ribosomal RNA gene-based 

approaches has facilitated the identification and classification of bacteria.

The human intestinal tract contains a large variety of micro-organisms, of which 

bacteria are the most dominant and diverse (Fig. 1). As a whole, the microbiome is 

more than 100 times larger than the human genome (11). Thus, intestinal microbiota 

can be viewed as an ‘exteriorised organ’ that contributes to overall metabolism 

and plays a role in converting food into nutrients and energy. The community of 

at least 1014 bacteria is dominated by anaerobic bacteria and composed of 500 to 

1000 different species (12). Three bacterial divisions, the Firmicutes (gram-positive), 

Bacteroidetes (gram-negative) and Actinobacteria (gram-positive) dominate the 

adult human gut microbiota. The Firmicutes is the largest bacterial phylum and 

contains more than 200 genera, including Lactobacillus, Mycoplasma,	Bacillus and 

Clostridium. The Bacteroidetes (including about 20 genera) and the Actinobacteria 

(gram-positive) also belong to the dominant gut microbiota, but the latter are 

frequently missed by RNA gene sequencing and can only be detected by fluorescent 

in situ hybridisation (FISH) (13).

Fetuses are sterile in uteri, but in the first year of life the infant intestinal tract 

progresses from sterility to extremely dense colonisation with a mixture of microbes 

broadly similar to that found in the adult intestine. During birth and rapidly thereafter, 

bacteria from the mother and the surrounding environment colonise the infant’s 

gut. After this inoculation, the microbiota changes rapidly, presumably under the 

influence of diet. At the age of 4 years, the gut microbiota in host individuals has fully 

matured. The final composition of the microbiota is influenced by the host genotype, 

colonisation history, the physiology of the host and an array of environmental factors 

(14). Genetic make up of the individual also influences the composition of the core 

microbiota, as was shown in several studies (10;14). For instance, the microbiota 

of monozygotic twins living separately, is notably more similar than the microbiota 

of unrelated individuals (10). In contrast, the environment seems to be of less 
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importance, since marital partners did not have a significantly greater similarity 

of bacterial communities than unrelated individuals, despite the fact that these 

partners lived in the same environment and had similar dietary habits (14). 

Figure 1 Phylogenetic tree representing the groups of bacteria most frequently detected in 
human feces using 16S rRNA gene sequencing. 
The extent of the bold areas indicate diversity and abundance of the bacterial groups

The effect of diet on the composition of the infant microbiota is not clear; numerous 

studies report a lower abundance of bifidobacteria in the microbiota of formula-fed 

infants relative to breast-fed infants (15;16), yet other reports have found no such 

differences (17). The transformation to adult-type microbiota is probably triggered 

by multiple host and external factors (18). After the transformation to adult-type 

microbiota, the gut microbiota remains remarkably constant until the 7th decade, 

fluctuating around an individual core of stable colonisers (13;19;20). During life, the 

composition of these micro-organisms can be modulated by antibiotics. Short-term 
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treatment in humans with a single dose of oral antibiotics affects the gut microbiota 

for as long as 4 weeks before it then tends to revert to its original composition (21). 

In conclusion, each individual has his or her own personal and unique microbiota, 

with a large variability in microbiota between individuals. This impressive diversity 

complicates the studies that attempt to establish relationships between the host’s 

health and the presence of specific microbial populations (13;19). 

Gut microbiota and metabolism

A number of studies have revealed that specific relationships exist between intestinal 

microbiota and human metabolism (Fig. 2). Gordon and his colleagues pioneered the 

investigation of gut microbiota as an environmental factor influencing fat storage 

and obesity. They found that young conventionally reared mice have 42% more total 

body fat and 47% more gonadal fat than germ-free mice (22). This was surprising, 

since the control mice had a lower energy intake than germ-free mice. The presence 

of microbiota in itself apparently increased the energy yield from the host organism’s 

diet. Following up on this observation, the authors demonstrated that colonisation 

of young germ-free mice with microbiota from conventionally reared mice produces 

a 60% increase in body fat mass that is associated with increased insulin resistance, 

despite lower energy intake. These same researchers also demonstrated that feces 

transplantation with microbiota from obese mice (ob/ob) results in a significantly 

greater increase in total body fat than colonisation with microbiota from lean donors 

(23). Again, these findings underscore, in obese individuals, the increased efficiency 

of microbiota in extracting energy from diet (22;24).
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Studies of germ-free and control mice have also revealed that microbiota direct the 

host to increased hepatic triacylglycerol and glucose production. In fact, microbial 

colonisation of the gut might suppress expression of the fasting-induced adipose 

factor (FIAF), leading to suppression of this lipoprotein lipase (LPL) inhibitor and 

hence to increased activity of LPL. Increased LPL activity promotes increased uptake 

of fatty acids and triacylglycerol accumulation in adipocytes. The physiological 

importance of FIAF was further established by studying germ-free Fiaf (also known 

as Angptl4)-knockout and wild-type mice. In contrast to the situation in wild-type 

mice, germ-free Fiaf-knockout mice are similarly obese to their conventionally 

reared counterparts, indicating that FIAF is a key modulator of the microbiota-

induced increase in fat storage (22). Furthermore, Backhed and colleagues have also 

demonstrated that germ-free mice have increased levels of phosphorylated AMP-

activated protein kinase in muscle and liver, which would stimulate NEFA oxidation 

(25). Therefore, germ-free animals seem protected from diet-induced obesity by two 

complementary, but independent mechanisms, which result in decreased fatty acid 

storage: (1) elevated levels of FIAF and (2) increased AMP-activated protein kinase 

activity.

 

Another pathway affecting host energy storage is the bacterial fermentation of 

complex dietary carbohydrates to monosaccharides and short-chain fatty acids 

(SCFA). These SCFAs bind to G protein-coupled receptor 4 (GPR41), which is produced 

by enteroendocrine cells in the intestine. Activation of GPR41 enhances production 

of peptide YY (PYY), an enteroendocrine cell hormone that normally inhibits gut 

motility, increases intestinal transit rate and reduces extraction of energy (SCFAs) 

from the diet, thus affecting peripheral glucose utilisation (26).

In summary, a large body of evidence generated in animal models has revealed 

a relationship between gut microbiota composition and obesity; however, this 

hypothesis remains to be tested in the human setting. 
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Altered gut microbiota in obesity

It is now increasingly accepted that the composition of intestinal microorganisms 

may change with body weight. Ley et al. recently analysed 5088 bacterial 16S 

rRNA gene sequences from fat ob/ob mice, lean ob/+ mice and wild-type siblings. 

They demonstrated that obese animals have a 50% reduction in the abundance 

of Bacteroidetes and a proportional increase in Firmicutes (27). Ob/ob mice also 

harboured more methanogenic Archaea, which may increase the efficiency of bacterial 

fermentation (23). Metagenomic analyses revealed that the caecal microbiota in the 

ob/ob mice were producing more SCFA through increased fermentation of dietary 

polysaccharides. The increased extraction of energy from dietary fibres may partly 

contribute to the excessive weight gain of ob/ob mice (23). In this study, changes in 

Bacteroidetes and Firmicutes were noted across the division, i.e. they were not due 

to blooms or extinction of specific organisms. However, upon induction of obesity 

in mice, the increase in Firmicutes seemed mainly attributable to an increase in 

the Mollicutes class (28). Similar to these animal experiments, Bacteroidetes tend 

to decrease and Firmicutes to increase in the feces of obese compared with lean 

humans (19). Obese people harbour fewer Bacteroidetes and more Firmicutes 

than lean controls, whereas upon a carbohydrate- or fat-restricted low-energy diet, 

Bacteroidetes increased and Firmicutes decreased. These data suggest a relationship 

between obesity and the diversity of intestinal microbiota. Interestingly, in both 

studies the increase in Bacteroidetes was significantly correlated with weight loss 

achieved, but not with total energy intake, suggesting interactions between diet, gut 

microbiota and host metabolism (19;29). 

However, other human studies do not support these specific changes. Duncan et 

al, using FISH to monitor fecal bacteria, could not confirm this ‘high Firmicutes/ low 

Bacteroidetes’ hypothesis. In fact, they reported no differences in the proportion of 

Bacteroidetes measured in fecal samples between obese and non-obese participants 

(3). They also found no significant relationship between BMI and the proportion of 

Bacteroidetes. They did, however, confirm a significant diet-dependent reduction 

in Firmicutes in fecal samples from obese individuals on a low-carbohydrate 

diet. In accordance with this last study, Zhang et al. found in a sequencing-based 
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study that there was no difference between the fractions of Bacteroidetes in 

obese and non-obese participants (30). These authors showed that gastric bypass 

surgery (GBP) strongly altered gut microbiota and resulted in a large increase in 

Gammaproteobacteria (members of the family Enterobacteriaceae), a proportional 

decrease in Firmicutes and a loss of methanogens. 

In line with this, a recent study by Schwiertz et al. linked obesity as well as the 

composition of human microbiota with the production of SCFA (31). Moreover, 

the authors were unable to identify any correlation between obesity and 

higher proportions of Firmicutes; they also suggested that not the ratio of 

Firmicutes:Bacteroidetes is important, but rather the amount of SFCA produced. 

Finally, Kalliomaki et al. examined whether early differences in fecal microbiota 

composition in children predict subsequent obesity. The bifidobacterial numbers in 

fecal samples during infancy, as assessed by FISH with additional flow cytometry, 

were lower in children with subsequent obesity, suggesting that variations in gut 

microbiota early in life may confer an increased risk of developing obesity in later life 

(32). Thus, the relationships between the various bacterial groups and obesity still 

remain a matter of debate.

Gut microbiota and inflammation

Obesity and diabetes are both characterised by low-grade inflammation of unclear 

origin. In in vitro and animal models an increase in proinflammatory cytokines, such 

as TNF-α, has led to tissue insulin resistance (33). Cani et al. demonstrated that 

bacterial lipopolysaccharide (LPS) is a gut microbiota-related factor that triggers 

secretion of proinflammatory cytokines (34). LPS is continuously produced in the 

gut through lysis of gram-negative bacteria. In fact, in the study mentioned above, 

continuous subcutaneous low-rate infusion of LPS led to excessive weight gain and 

insulin resistance in mice. Moreover, LPS receptor Cd14-knockout mice tend to be 

resistant to this chronic inflammatory state. Cani et al showed that a high-fat diet 

decreases the number of bifidobacteria and increases plasma LPS (35). They also 

demonstrated that modulation of gut microbiota, e.g. by antibiotic treatment or 

dietary intervention with oligofructoses, reduced glucose intolerance, decreased 
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body weight gain and inhibited inflammation in mice (36;37). These findings suggest 

that changes in the gut microbiota could be responsible for increased endotoxaemia 

in response to a high-fat diet, which in turn would trigger the development of obesity 

and diabetes mellitus. 

Another putative pathway linking microbiota to chronic inflammation could be 

butyrate bioavailability as obese participants are characterised by decreased plasma 

butyrate levels (38). Apart from its well-known function as an essential energy source 

for colon epithelial cells, butyrate also has anti-inflammatory properties (39-41). The 

two major butyrate-producing bacterial groups are the Roseburia/E.	rectale species 

and F.	prausnitzii	(cluster of Firmicutes).	Many studies show that the dietary intake of 

fermentable carbohydrates can influence butyrate production (42;43). Particularly, 

diets containing high levels of non-digestible carbohydrates stimulate the growth of 

particular butyrate-producing bacteria and therefore lead to elevated plasma levels 

of butyrate. Interestingly, older publications showed that increasing plasma levels of 

butyrate improve insulin sensitivity and increase energy expenditure in animal models 

of diet-induced obesity (44;45). Thus, the available evidence suggests that butyrate 

production from food glycans could be a contributing factor to obesity. Although 

the exact pathophysiological processes driving this bidirectional relationship are not 

yet elucidated (46), the potential involvement of this SCFA may open up interesting 

therapeutic avenues in the fight against obesity.

Gut microbiota and gut hormones

The gut communicates with areas in the hypothalamus that control energy balance 

by means of neural and endocrine pathways. Gut hormones are produced by 

specialised enteroendocrine cells scattered along the gastrointestinal tract from the 

stomach to the distal colon. Although these account for only 1% of the cells in the 

intestinal mucosa, the gastrointestinal tract can be regarded as a major endocrine 

organ. 

Incretins are gut hormones that potentiate glucose-induced insulin secretion and 

may be responsible for up to 70% of postprandial insulin secretion (47). The two 
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main incretins are gastric inhibitory peptide (GIP) and glucagon like peptide-1 (GLP-

1). GIP is secreted by K-cells and released from the upper small intestine (duodenum 

and proximal jejunum) in response to oral ingestion of carbohydrates and lipids. GLP-

1 is mainly produced in mucosal L cells, located in the distal intestine (ileum and 

colon), but also in pancreatic alpha cells as well as in neurons from several brain 

areas. The secretion of GIP in type 2 diabetes is normal, whereas that of GLP-1 is 

reduced (47;48). GLP-1 secretion also seems to be reduced and delayed in obese 

patients compared with lean, healthy controls (49). Therefore, different intestinal 

microbiota composition in obese humans may possibly contribute to this reduced 

GLP-1 secretion.

The secretion pattern of GLP-1 is biphasic, with an initial rapid rise that occurs 15 to 

30 min after ingestion of a meal (50). This quick rise occurs before nutrients can reach 

the ileum, where the GLP-1-producing L cells are located. These observations make it 

unlikely that GLP-1 release is only stimulated by direct action of nutrients on L cells. In 

line with the idea of a neuroendocrine loop, several peptides and neurotransmitters 

have been suggested to trigger GLP-1 secretion (51). For example, GIP released when 

nutrients are present in the upper intestine was shown to be a potent stimulus of the 

first peak in GLP-1 secretion (51). GLP-1 release is also believed to be triggered by 

the autonomic nervous system (51).The second peak of GLP-1 secretion is believed 

to occur as a result of direct interactions between nutrients and L cells, which also 

stimulate GLP-1 secretion. In this regard, different nutrient compositions of a meal 

result in different peptide release as glucose and fat have been found to be potent 

stimulators of GLP-1 secretion, whereas proteins do not appear to stimulate GLP-1 

release (52). Experiments with alpha-glucosidase inhibitors such as acarbose, which 

delays digestion and absorption of carbohydrates and causes a transfer of nutrients 

to distal segments of the intestine, support this action. Thus treatment with acarbose 

reduces GIP secretion, but augments GLP-1 secretion and improves glucose tolerance 

in diabetic participants (53). 

The modulation of gut peptides involved in the control of glucose homeostasis could 

be one mechanism by which the modulation of gut microbiota via specific dietary 

fibres is associated with an improvement of metabolic disorders. For example, 
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feeding rats with the prebiotic fibre oligofructose led to an increase in jejunal 

GIP concentrations and caecal GLP-1 (54). Interestingly, oligofructose feeding in 

rats promotes L-cell differentiation in the proximal colon, contributing to higher 

endogenous GLP-1 production and subsequent improvement of diabetes induced 

by high-fat diet in mice (55). Several studies have shown that prebiotics containing 

short-chain oligosaccharides decrease food intake, fat mass development and 

hepatic steatosis in normal and obese rats. In humans, the addition of non-digestible 

carbohydrates (oligofructose) to the diet also protects against body weight gain, fat 

mass development and serum triacylglycerol accumulation induced by a high-fat diet 

(56;57). Furthermore, oligofructose has been shown to promote satiety in healthy 

humans (57). 

Similarly, GBP results in improvement of glycaemic control (58-60). This effects 

seems to occur rapidly after surgery and often prior to substantial weight loss. The 

rapid effect of GBP on weight loss and metabolic improvement could be partly due 

to changes in gut hormone levels after surgery. Several studies have reported an 

increase in postprandial plasma levels of PYY and/or GLP-1 as early as 2 days after 

bypass (61). The mechanism by which GBP causes increased gut hormone production 

still remains unclear, but it is obvious that the altered anatomy after GBP is the main 

raison for changes in gut hormone release. For example after GBP, nutrients reach the 

distal small intestine more rapidly, enhancing the release of GLP-1, which improves 

glucose metabolism. Altered microbial composition after GBP may also contribute 

to the increased release of gut hormones. Secretion of PYY, another hormone 

produced in the distal gut, was also found to be increased after GBP. This exaggerated 

beneficial response observed after GBP could be another reason that explains the 

improvement in glucose homeostasis after surgery (62). In line with this, as the 

large gut microbiota population also shifts in patients after GBP (30), it cannot be 

excluded that motility disorders associated with long-standing obesity and diabetes 

mellitus (e.g. due to autonomic diabetic neuropathy) may affect small intestine gut 

microbiota composition, yet data on this topic are lacking. Thus, further research 

investigating the impact of intestinal anatomical alteration on gut microbiota and 

consequent changes in food ingestion and digestion is warranted. 
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Potential intervention in microbiota composition

The use of antibiotics to alter gut microbiota in genetically obese mice reduced 

body weight, and improved fasting glycaemia and glucose tolerance, suggesting that 

the gut microbiota could be a novel target for treating metabolic diseases (36;63). 

Concomitant reduction of LPS as well as increased adiponectin levels enhanced 

the glucose-lowering effects of antibiotics. Taking a reductionist approach, the 

composition of intestinal microorganisms could be influenced by changing exogenous 

dietary factors (e.g. butyrate supplementation, oligofructose) or by transplantation 

of human donor feces (23;44). We are currently investigating the effect of donor feces 

transplantation (derived from lean healthy participants) on glucose homeostasis and 

(intestinal) inflammation in otherwise healthy participants with metabolic syndrome 

(FATLOSE trial). This double-blind, randomised, controlled trial will hopefully provide 

more insight into microbiota and host physiology, as well as into the effectiveness of 

gut microbiota manipulation in humans. 

Conclusions

Intestinal microbiota may play a pivotal role in converting nutrients into energy. 

Variations in the composition of microbiota are found in obese humans and mice. 

Increased energy yield from diet in obese mice and humans could be a contributing 

factor to obesity, although the pathophysiological processes driving this bidirectional 

relationship have not been fully elucidated. With the rapid developments in (relatively 

cheap) high-throughput techniques (involving phylogenetic microarrays based on 

SSU rRNA sequences and metagenomics approaches exploiting rapid sequencing 

technologies), we might actually be able to unravel the endocrinological potential 

of gastrointestinal tract microbiota (64). The last important clinical question then 

remains: Is it possible to modify the gut microbiota to reduce the impact of high-fat 

feeding on the occurrence of metabolic disease in humans? 
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