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Abstract—We explore the importance of modeling strategies when esti-
mating the emissions-income relationship. Using U.S. state-level panel
data on nitrogen oxide and sulfur dioxide emissions, we estimate several
environmental Kuznets curves using the standard parametric framework
as well as a more flexible semiparametric alternative. Formal statistical
comparisons of the results overwhelmingly reject the parametric ap-
proach. Moreover, the differences, particularly for sulfur dioxide, are
economically significant.

I. Introduction

RECENTLY, considerable attention has been given to
empirically modeling the relationship between eco-

nomic growth and the environment (for example, Grossman
and Krueger, 1995; Schmalensee et al., 1998). Although
there have been some notable disparities across the empir-
ical estimates from different studies, the typical shape of the
income-pollution relationship has been an inverted U. In
light of this evidence, some commentators have argued that
the “way to attain a decent environment in most countries is
to become rich” (Beckerman, 1992). Although this premise
is appealing, within this literature little attention has been
given to the econometric properties of the various reduced-
form models employed.

Our goal in this study is to formally test the appropriate-
ness of the traditional parametric regression specifications
commonly used in the Environmental Kuznets curve (EKC)
literature against the alternative of the semiparametric par-
tially linear regression (PLR) model. To carry out our
objective we employ a panel data set on U.S. state-level
sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions
from 1929 to 1994. Our empirical results provide several
important insights. First, regardless of empirical technique,
pollution projections across U.S. states appear to follow the
inverted-U shape commonly found (at the country level)
between emissions or ambient pollution levels and a mea-
sure of income. Second, concerning the exact nature of the
emissions-income relationship, modeling assumptions mat-
ter. Utilizing a recent specification test developed by Zheng
(1996) and Li and Wang (1998), we find that parametric and
semiparametric models provide statistically different esti-
mates of the EKC, especially in the SO2 models. In partic-
ular, we find that the parametric approach typically pro-
duces estimates of the EKC turning points that are too

pessimistic. Third, we specifically test—and fail to reject—
the assumption of no serial correlation in the PLR model.1

On the one hand, these results represent good news in that
the received estimates in the literature may be considered
conservative. Alternatively, since optimal regulatory poli-
cies critically depend on an accurate estimate of the peak of
the Kuznets curve, these findings should send a warning that
in some cases more flexible empirical techniques provide
much different policy conclusions. The remainder of the
study proceeds as follows. Section II describes the data and
empirical methods. Section III presents the empirical re-
sults. Section IV lays out a specification test, allowing us to
discern between the parametric and semiparametric models,
as well as a test for serial correlation. Section V concludes.

II. Data and Empirical Methods

A. Data

Data on the emissions of the two criterion air pollutants,
SO2 and NOx, were originally published in the U.S. Envi-
ronmental Protection Agency’s (EPA) National Air Pollut-
ant Emission Trends, 1900–1994, and cover fiscal years
1929–1994. The emission estimation methodologies fall
into two major regimes: 1929–1984 and 1985–1994. Emis-
sion estimates from 1929 to 1984 are derived using an
approach whereby information at the national level (such as
activity indicators, material flows, control efficiencies, and
fuel property values) is used to create nationwide emissions
estimates. Each state is then allotted a certain portion based
on its production activities. Emissions for the years 1985–
1994 are estimated using a methodology whereby emissions
are derived at the plant or county level and aggregated to the
state level.

As List and Gallet (1999) point out, these data are
particularly useful for modeling the EKC in that they offer
important advantages absent in most other data sets. One
major advantage of using U.S. data is that they probably
yield more reliable estimates than the Global Environmental
Monitoring System (GEMS) data used in many cross-
country studies (for example, Grossman, 1995; Stern et al.,
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1 Li and Hsiao (1998) recently developed tests for serial correlation in
the context of a panel data semiparametric partially linear model. The
statistics are developed assuming large numbers of individuals and a small
time horizon. In that case the asymptotic analysis is based on N 3 � for
a fixed value of T. Li and Stengos (2001) extend their results to the pure
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statistics to test the null of no serial correlation in a semiparametric
partially linear time series model.
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1996). Another advantage is the sheer length and breadth of
the U.S. emissions data set. Since the data set encompasses
48 states and a reasonably long time period (1929–1994),
there is a greater chance that it will capture the entire EKC,
alleviating some of the concerns about making out-of-
sample inferences.

Table 1 presents summary statistics for our variables of
interest. It is important to note that, consistent with previous
EKC studies, we use variables in per capita terms. A second
observation from table 1 is that both per capita SO2 and NOx

have a good deal of variation. This is intuitively appealing,
given that a variety of temporally variant factors account for
state emissions activities, such as motor vehicle character-
istics (fuel type, vehicle type, technology, and extent of
travel), industry emissions, and other off-road activities.
Equally important, real per capita income levels over the
1929–1994 period vary significantly, from a low of $1,160
to a high of $22,460.2

B. Empirical Methods

The empirical analysis proceeds by examining the emis-
sions data to determine if estimates from simple reduced-
form models differ across parametric and semiparametric
models and, if so, analyzing whether the differences are
significant and robust to changes in sample composition.
The methodology employed involves estimating EKCs for
subsamples of the data set [namely, state-specific EKCs as
in List and Gallet (1999)] as well as for the entire sample
(referred to as the pooled model). In addition, where all
states are pooled together, we estimate both the parametric
and semiparametric model twice: once using the full data
set, 1929–1994, and once using a partial data set, 1985–
1994. Estimates based on the partial data set are obtained for
two reasons. First, we want to assess the effect, if any, of the
change in measurement scheme employed by the EPA

beginning in 1985 (discussed in the previous section). Sec-
ond, utilizing the full data set—spanning 66 years—restricts
the parameters of any model to be constant over this period.
Comparisons based on the restricted sample will help ensure
the robustness of our results.

Two parametric approaches are used. First, as is fre-
quently done in the literature, we estimate a two-way
fixed-effects panel data model using a cubic specification:

Pit � �i � �t � Yit� � �it, i � 1, 2, . . . , 48,

t � 1, 2, . . . , 66,
(1)

where Pit represents pollutant emissions in state i at time t;
Yit is a vector that includes (per capita) income, income
squared, and income cubed for state i at time t (Yit �
[ yit yit

2 yit
3]); � is a vector of slope coefficients; �i are state

fixed effects, which control for unobserved state factors that
affect emission rates; �t are time effects, which capture
relevant factors that are equivalent across the U.S. states,
such as macroeconomic effects and federal environmental
legislation; and �it is a contemporaneous error term. Second,
following Schmalensee et al. (1998), we replace the cubic
specification in (1) with a spline (piecewise linear) function
of income based on 10 segments, each containing an equal
number of observations.3 Equation (1), using the cubic and
the linear spline specifications, are estimated separately for
both pollutant types.

The semiparametric PLR model can be written as

Pit � �i � �t � g� yit� � uit, i � 1, 2, . . . , 48,

t � 1, 2, . . . , 66,
(2)

where yit is income, g� is an unknown function, uit is a
mean zero residual assumed to be uncorrelated with g�,
and everything else is as previously defined. Robinson
(1988) outlined a kernel-based method for obtaining 	n-
consistent estimates of 
 (the other parameters that enter the
PLR model; in this case, �i and ��) by conditioning on the
variables which enter (2) nonlinearly (in this case, yit).
Whereas in the empirical literature the emphasis is on
concentrating out the effect of the nonlinear variable(s) by
suppressing g�, in the present paper we provide estimates
of g� and analyze its behavior.4 The results presented here
are based on standard local constant kernel estimation using
the standard Gaussian density as the kernel and applying
cross-validation to obtain the smoothing parameter. We also
obtained local polynomial regression estimates (Fan, 1993).
However, since the results were very similar to the standard
kernel estimates, we only report the latter.

2 One potential shortcoming of the data is that the lowest income
observed is approximately $1,200 per capita (table 1). This is roughly
equivalent to the per capita GDP in Guatemala in 1999. However, because
many developing countries currently have per capita incomes below this
level, our results may not capture any peculiarities in the income-pollution
relationship that occur exclusively in extremely low income settings. A
quick calculation using data from the World Bank indicates that approx-
imately 38% of the world’s population in 2000 resided in countries with
a per capita GDP less than $1,200 (in 1987 U.S.$). Future research into the
effect of modeling assumptions on the shape of EKC at this end of the
income distribution appears warranted.

3 As in Schmalensee et al. (1998), we originally used 20 segments, each
with an equal number of observations. We were, however, unable to reject
the 10-segment spline model at standard significance levels ( p � 0.24 for
NOx; p � 0.26 for SO2).

4 Stock (1989) also focuses on estimating the nonlinear portion of the
PLR model, treating fixed effects as nuisance parameters.

TABLE 1.—SUMMARY STATISTICS, 1929–1994a

Variable Mean Std. Dev. Minimum Maximum

Per capita sulfur dioxide
emissions 0.16 0.21 0.00 1.62

Per capita nitrogen oxide
emissions 0.09 0.07 0.02 1.14

Per capita state income 9.09 4.24 1.16 22.46

Observations 3168
a Emissions measured in thousands of short tons. Income measured in thousands of 1987 U.S.$.
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Prior to continuing, it is worth noting that the PLR
estimates are computed using standardized data due to the
nonidentification of an unrestricted intercept term. This is
very similar to the conditional scatterplots (which remove
state and time effects) that are presented in figures 1 and 2
in the next section, which are also centered around 0 and of
roughly the same scale. However, although these condi-
tional scatterplots are overall in agreement with the PLR
estimates, the nonidentification leads to a scaling issue when
comparing the parametric and semiparametric results. The
scaling issue becomes less important for the middle range of
the distribution of the data, corresponding to per capita
incomes between approximately $15,000 and $20,000. For
further details on the estimation of (2), the reader is referred
to Härdle (1990).

III. Empirical Results

The parametric results from the cubic specification using
the full and partial pooled samples are given in table 2. In
the full sample, we find evidence consistent with an inverted-
U EKC for the U.S. states for NOx. The coefficients on the
individual income terms in both the NOx and SO2 model are
significantly different from 0 at the p � 0.01 level. Addi-
tionally, the income coefficients are jointly significant in
each regression at the p � 0.01 level. These findings are
consistent with coefficient estimates presented in List and
Gallet (1999). For the partial sample, however, the individ-
ual estimates are only significant in the SO2 model, although
the pattern of alternating signs still holds in the NOx model.
Moreover, the cubic specification now indicates an inverted-
U emissions-income path for SO2.

For ease of comparison, we present sketches of the
estimated parametric (cubic and linear spline specifications)
and semiparametric paths in figures 1–4. Figures 1 and 2
illustrate the results for nitrogen oxide and sulfur dioxide
emissions using the full and partial pooled samples. Vertical
lines are added at the predicted peak of the parametric EKC
(as estimated by the cubic specification), if such a peak
exists, and at the upper and lower limit of the 95% confi-
dence interval for the estimated parametric peak (if the

bounds are within the range of the graph).5 As stated
previously, it is important to note that the apparent flatness
of the parametric EKCs in the upper right-hand panel does
not imply that after a critical level of income is reached per
capita income and per capita emissions fail to be negatively
related; rather, the different scales across the parametric and
semiparametric models render the curvature of the paramet-
ric EKCs minute. Nonetheless, coefficient estimates in table
2 and the other panels in figures 1 and 2, which separate out
the parametric plots, confirm that the inverted U holds for
both pollutant types in the parametric models as well.6

Finally, specification tests presented in the next section
provide formal tests for differences between the parametric
and semiparametric specifications.

Overall, the empirical results in figures 1 and 2 are quite
striking. First, there is little difference between the two
parametric models. Second, according to the full-sample
estimates, whereas the estimated NOx peaks obtained via the
parametric cubic specification and semiparametric models
do not differ substantially (roughly between $8,000 and
$12,000 in 1987 dollars), the estimation strategies do yield
drastically disparate results in the SO2 model.7 In both
parametric models, SO2 emissions are a positive monotonic
function of income. However, according to the semipara-
metric model, emissions decline with incomes over approx-
imately $7,000–$9,000. As the PLR results appear more in
line with conditional scatterplots in figure 2, it appears that
the parametric results may be overly driven by a few
outliers, or by a few observations in the tail of the income
distribution. From a policy perspective, this difference is
quite important, for the semiparametric estimates suggest
that by 1977 all states were on the downward-sloping
portion of the EKC (and all states except for Mississippi

5 Standard errors of the estimated peaks based on the cubic specification
are obtained via the delta method (Greene, 1993, p. 297).

6 Although not presented, the slopes of the linear segments in the spline
model are statistically different from 0 in the majority of segments as well.

7 No formal statistical test exists for testing the equality of the peaks
across the parametric and semiparametric specifications. In the next
section, however, we do test for overall differences in the two functional
forms.

TABLE 2.—PARAMETRIC (CUBIC SPECIFICATION) RESULTS: POOLED MODEL, FULL AND PARTIAL SAMPLEa

Variable

Dependent Variable

Full Sample (1929–1994) Partial Sample (1985–1994)

NOx SO2 NOx SO2

Income 3.0E
05 (9.5) 1.1E
04 (13.3) 6.2E
05 (0.8) 2.5E
04 (5.5)
Income2 
2.4E
09 (
8.2) 
5.6E
09 (
7.3) 
4.2E
09 (
0.8) 
1.4E
08 (
5.0)
Income3 4.8E
14 (5.5) 1.1E
13 (4.6) 8.0E
14 (0.8) 2.7E
13 (4.7)

Estimated peakb 8,657 (1,850) 10,570 (18,439) 16,417 (1,863)
a Emissions measured in per capita levels. t-ratios in parentheses. “Pooled model” refers to the models estimated using data from all states. The pooled specification includes state and time fixed effects.
b Standard errors in parentheses; obtained via the delta method.
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were on it by 1972), whereas the parametric estimates are
much more pessimistic.

Since the data utilized in this study span a long time
period and two distinct measurement schemes, as a check
for robustness we reestimate the models using data only
from 1985 to 1994. The emission-income relationships, also
plotted in figures 1 and 2, are not overly different from those
based on the full sample, with the exception that the partial
sample plots cover a much smaller range of incomes. As a
result, the plots primarily capture the downward-sloping
portion of the EKCs documented using the full sample. Two
minor differences do emerge, however. First, NOx emissions
are now invariant with respect to income according to the
parametric cubic specification (see table 2). The cubic
model indicates a peak at an income of roughly $11,000, but
the standard error is over $18,000. Second, the parametric
cubic specification now yields a peak for the SO2 EKC. The
peak occurs between approximately $13,000 and $20,000.
The linear spline model, however, indicates that SO2 emis-
sions remain monotonically increasing in income. Despite
these changes, the parametric models still paint a much
more pessimistic model than the semiparametric specifica-
tion.

Finally, in line with List and Gallet (1999), we allow each
state to follow its own EKC. In the interest of brevity, we
select nine different states and estimate state-specific para-
metric and semiparametric EKCs.8 The states were chosen
somewhat arbitrarily, although with an eye on the results
found in List and Gallet. Estimated plots—analogous to
those presented in figures 1 and 2—are presented in figures
3 and 4. The NOx plots in figure 3 show that an inverted-U
relationship typically exists between emissions and income
for this particular subsample of states. In addition, the
turning-point estimates are generally similar (between
$10,000 and $15,000) across the states and across the
various estimation methods. The results for SO2 (figure 4),
on the other hand, are quite variable across the set of states
examined. For example, whereas the semiparametric EKCs
for Nevada and Utah show a downward trend in emissions
at higher income levels, the parametric models provide a
stark contrast—suggesting that the prospect for declines in
SO2 emissions is bleak. Moreover, for states such as Mis-
souri and Oklahoma, the parametric models continue to

8 In the state-specific specifications the time fixed effects are replaced
with a linear time trend.

FIGURE 1.—POOLED NOx RESULTS
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yield more pessimistic results than the semiparametric
model.

IV. Specification Tests

A. Parametric versus Semiparametric

To formally test if the parametric and PLR models yield
statistically different results, we employ a recently proposed
specification test by Zheng (1996) and Li and Wang (1998).
The test compares the null hypothesis of a linear regression
model (cubic and spline specifications) against a PLR alter-
native formulation such as that suggested in Robinson
(1988). Continuing with the notation from the previous
section and omitting the time subscripts, the data are given
by {Pi, Xi, yi}i�1

n , distributed as an i.i.d. process, where Xi

includes the variables entering linearly (in our case, the state
and time fixed effects). The dimension of Xi is q, and in the
present case yi is of dimension 1 (although in general may
be of higher dimension). The null hypothesis is given by

H0 : Pi � Xi
 � Yi� � ui, i � 1, . . . , n, (3)

where Yi is a vector of transformed values of yi (such as a
cubic specification), and the alternative by

H1 : Pi � Xi
 � g� yi� � ui, i � 1, . . . , n. (4)

Let Ê(Pi�yi) and Ê(Xi�yi) be the nonparametric kernel
estimates of E(Pi�yi) and E(Xi�yi), respectively. The kernel
method employed to estimate E(Pi�yi), for example, relies
on a weighting scheme—the kernel function—that gives
more weight to observations local to the one that defines the
regression function. Specifically, an estimate of E(Pi�yi) is
given by

E�Pi�yi� �

1

nhp ¥j�1
n K�yi � yj

h �Pi

1

nhp ¥j�1
n K�yi � yj

h � , (5)

where K� denotes the kernel function. We can use as the
kernel function the product of univariate kernel functions
(see Härdle, 1990), and we have opted for the product of the

FIGURE 1.—(CONTINUED)

“Pooled model” refers to the models estimated using data from all states and includes state and time fixed effects. Vertical lines represent the peaks (if there is one) and 95% confidence interval (if the bounds
lie within the range of the graph) according to the cubic specification model. Spline results based on 10 piecewise linear segments. Full sample uses all data, 1929–1994; partial sample only 1985–1994.
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univariate Gaussian density function. The parameter h de-
notes the bandwidth, which is chosen to balance the bias and
variance terms that enter the approximate mean squared
error (MSE) expression for Ê(Pi�yi). We chose h using
cross-validation. Though it is well known that cross-
validation is slow to converge, it is nonetheless an accept-
able and widely used method; alternative methods (such as
the plug-in rule) have their drawbacks as well (see for
example Park and Turlach, 1992; Park and Marron, 1988).

The null and alternative hypotheses are given by equa-
tions (3) and (4) above. Under the null hypothesis, E(ui�Xi,
yi) � 0 for i � 1, . . . , n. Therefore, a consistent test
statistic can be constructed based on E{uiE(ui�yi)}, since
E{uiE(ui�yi)} � E{E(ui�Xi)2} � 0 with equality holding if
and only if H0 is true. To obtain a feasible test statistic one
replaces ui with ûi, the OLS residuals from the linear
regression model given by equation (3). In that case,
E(ûi�yi) can be consistently estimated using nonparametric
kernel estimation techniques. The test statistic is given by

Jn �
nhp/ 2In

��̂
, (6)

where In � [1/n(n 
 1)hp] ¥i�1
n ¥j�1, j�i

n ûiûjKi, j, Ki, j �
K(( yi 
 yj)/h) is the kernel function, h is the smoothing
parameter, and �̂ � [2/n(n 
 1)hp] ¥i�1

n ¥j�1, j�i
n ûi

2ûj
2Ki, j

2 .
The test statistic is shown by Zheng (1996) and Li and Wang
(1998) to have an asymptotic standard normal distribution
under H0. However, in small samples its distribution ap-
pears to be skewed to the left, and Li and Wang suggest
bootstrapping to obtain its distribution and critical values.
This is the route we follow here, using 999 bootstraps to
obtain the critical values.

Table 3 presents the test statistics and 95% critical values,
comparing the null hypotheses of the cubic specifications
with the semiparametric PLR model. Table 4 presents the
analogous results for the spline model compared with the
PLR model. In all cases, we clearly reject the null hypoth-
esis of the parametric model.9 This only confirms what we
suspected from visual inspection of the graphs in the pre-
vious section; estimation strategy plays a vital role in

9 We also conducted the same specification tests using a linear and a
quadratic specification as the null. Consistent with table 3, we reject the
null in all cases at conventional levels of significance.

FIGURE 2.—POOLED SO2 RESULTS
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understanding the emissions-income relationship for nitro-
gen oxide and sulfur dioxide emissions.

B. Serial Correlation

The assumption of i.i.d. errors in the various models is
convenient and typically employed in the EKC literature.
However, failure of this assumption to hold in practice may
have unanticipated consequences for the reliability of the
specification tests in section IV A. To test this assumption in
the modeling of state-specific EKCs, we utilize a time series
test of serial correlation for the PLR model recently devel-
oped by Li and Stengos (2001). Consider the time series
counterpart of equation (4),

Pt � Xt
 � g� yt� � ut,

t � 
L � 1, . . . , 0, 1, . . . , T (7)

where Xt and yt are of dimensions q and 1 as before
(although again yt in general may be of higher dimension)
and g� is an unknown smooth function. The hypotheses of
interest are whether the error term ut exhibits zero first-

order serial correlation, or zero finite-order serial correla-
tion.

To test zero (finite-order) serial correlation of ut, we need
an estimator of ut. To avoid the random denominator prob-
lem associated with nonparametric kernel estimation, we
estimate a density-weighted version of equation (7) above
(see for example Powell, Stock, & Stoker, 1989). Let f� be
the density function of Zt, and f̂ � f̂( yt) be its kernel
estimate. Li and Stengos (2001) suggest a density-weighted
test statistic for testing the absence of finite-order serial
correlation, and they derive its asymptotic distribution un-
der the stronger condition that the error ut follows a mar-
tingale difference process. Under this condition we have
�f � E(utftut
1ft
1) � 0 and � � E(utut
1) � 0. The
construction of the test statistic for testing first-order serial
correlation can be based on either of the sample analogs of
�f or �. However, it is easier to construct a test statistic
based on a sample analogue of �f, as opposed to �, because
the former avoids the technical difficulty associated with the
random denominator in the kernel estimation. We will use �f

as the basis to construct our test statistic.

FIGURE 2.—(CONTINUED)

See note to figure 1.
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Therefore, our test statistic for testing zero first-order
serial correlation is given by

IT � �T Sũf̂ ũ
1 f̂
1 �
def 1

�T
�
t

ũtũt
1 f̂t f̂t
1, (8)

where ũt is the residual from the semiparametric estimation
of equation (7), defined as

ũt � Pt � Ê�Pt�yt� � �X̂t � Ê�Xt�yt��
̂

It can be shown that under certain mixing and regularity
conditions, IT is asymptotically normally distributed.

The above may be generalized to the case of higher-order
serial correlation. In that case, if we define �s �
E(ut ftut
s ft
s) (s � 1, 2, . . . , p), the test considers the
joint null hypothesis �1 � �2 � . . . � �p � 0. Denoting
�̂s � 1/T ¥t ũtũt
1 f̂ t f̂ t
s and �̂ � (�̂1, . . . , �̂p)T, the test

statistic is based on a quadratic form of 	T �̂ with a �2( p)
asymptotic distribution.

Li and Hsiao (1998) considered the problem of testing
zero-error serial correlation in a partially linear panel data
model with a large N (N being the number of cross-
sectional observations) and a fixed value of T. Li and
Stengos (2001) derive the asymptotic distributions of the
test statistics for testing zero first-order (or finite-order)
serial correlation when T is large (N can be large or small)
provided that for each i, {Pit, Xit, yit} satisfy certain mixing
conditions. The test statistic for zero first-order serial cor-
relation is a simple adaptation of the test statistic in (8) to
the case of panel data:

In �
1

�NT
�
i�1

N �
t�1

T

ũitũi,t
1 f̂ it f̂ i,t
1, (9)

where ũit and f̂ it are defined similarly to ũt and f̂ t above. We

FIGURE 3.—NITROGEN OXIDE EMISSIONS: SELECTED STATES

The vertical lines correspond to the peaks and 95% confidence intervals as estimated by the cubic specification. Results based on the full sample (1929–1994). Spline results based on 10 piecewise linear segments.
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utilize (9) to test for first-order serial correlation in the
pooled PLR models.

Table 5 presents the p-values associated with the null
hypotheses of no first-order serial correlation in the PLR
models. In all 22 cases analyzed, we fail to reject the null
hypothesis of no serial correlation at conventional levels.

V. Conclusion

The literature on the environmental Kuznets curve has
developed rapidly over the past five years. This paper takes
a step back from this burgeoning body and examines
whether traditional econometric modeling assumptions have

TABLE 3.—SPECIFICATION TEST RESULTS: CUBIC SPECIFICATION VERSUS PLRa

State (NOx Sample)

Dependent Variable

State (SO2 Sample)NOx SO2

Pooledb (1929–1994) 1.8495 (0.3822) 1.7434 (0.3556) Pooledb (1929–1994)
Pooledb (1985–1994) 1.6787 (0.3872) 1.9552 (0.4135) Pooledb (1985–1994)
Alabama 3.3220 (0.4731) 2.1239 (0.4431) Arizona
Georgia 4.3893 (0.4435) 1.1926 (0.4325) Connecticut
Iowa 3.0176 (0.3918) 1.4175 (0.4155) Georgia
New Mexico 1.0501 (0.4011) 1.7827 (0.4730) Missouri
North Carolina 1.3475 (0.4222) 2.3774 (0.4053) Nevada
Ohio 3.5470 (0.4077) 2.2324 (0.4053) Oklahoma
South Carolina 5.7276 (0.4875) 1.7049 (0.4435) Rhode Island
West Virginia 1.0750 (0.4522) 5.6161 (0.3988) Utah
Wisconsin 3.3073 (0.4658) 1.8813 (0.4600) Wisconsin

a Table reports the test statistic given in (6) along with the 95% critical value in parentheses.
b “Pooled” refers to the models estimated using data from all states. The pooled models include state and time fixed effects.

FIGURE 4.—SULFUR DIOXIDE EMISSIONS: SELECTED STATES

See note to figure 3.
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been unduly restrictive. In the spirit of the advances made in
Schmalensee et al. (1998), we use a semiparametric par-
tially linear regression model to present three new findings.
First, we find that regardless of modeling assumptions, the
data follow the inverted-U shape commonly found (at the
country level) between emissions or ambient pollution lev-
els and a measure of income. Second, utilizing the test of Li
and Stengos (2001) for serial correlation in the PLR model,
we fail to reject the null hypothesis of no first-order auto-
correlation. Finally, based on recently developed specifica-
tion tests due to Zheng (1996) and Li and Wang (1998), we
reject in all cases the null hypothesis of the parametric
model—either a cubic or a piecewise linear spline specifi-
cation—in favor of the more flexible semiparametric alter-
native. In particular, we find that for sulfur dioxide emis-
sions, parametric EKC modeling is especially problematic,
in that the location of the estimated peak of the EKC is quite
sensitive to modeling assumptions. Given that properly
estimating the peak of the EKC is invaluable (see for
example Cropper and Griffiths, 1994), our findings suggest
that a closer look at a good deal of the empirical modeling
in this area is warranted.
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TABLE 4.—SPECIFICATION TEST RESULTS: SPLINE SPECIFICATION VERSUS PLRa

State (NOx Sample)

Dependent Variable

State (SO2 Sample)NOx SO2

Pooled (1929–1994) 1.7592 (0.4436) 1.7481 (0.4935) Pooled (1929–1994)
Pooled (1985–1994) 1.7873 (0.4066) 1.6464 (0.4711) Pooled (1985–1994)
Alabama 1.0892 (0.4411) 1.2897 (0.4511) Arizona
Georgia 1.2273 (0.3922) 1.3310 (0.3991) Connecticut
Iowa 1.4678 (0.4835) 1.2650 (0.4751) Georgia
New Mexico 1.4308 (0.4125) 1.2105 (0.4810) Missouri
North Carolina 0.9177 (0.3788) 0.8327 (0.5013) Nevada
Ohio 1.3421 (0.4125) 0.9911 (0.4318) Oklahoma
South Carolina 0.8969 (0.4611) 1.2927 (0.4091) Rhode Island
West Virginia 0.9083 (0.3828) 1.1170 (0.4438) Utah
Wisconsin 1.1691 (0.4017) 1.0855 (0.4663) Wisconsin

a Spline model based on 10 piecewise linear segments. See table 3.

TABLE 5.—TEST RESULTS FOR FIRST-ORDER SERIAL CORRELATIONa

State (NOx Sample)

Dependent
Variable

State (SO2 Sample)NOx SO2

Pooledb (1929–1994) 0.8018 0.4839 Pooledb (1929–1994)
Pooledb (1985–1994) 0.1645 0.2327 Pooledb (1985–1994)
Alabama 0.7717 0.7550 Arizona
Georgia 0.5834 0.2067 Connecticut
Iowa 0.4578 0.2517 Georgia
New Mexico 0.3653 0.1122 Missouri
North Carolina 0.4398 0.3221 Nevada
Ohio 0.2493 0.1841 Oklahoma
South Carolina 0.2293 0.1229 Rhode Island
West Virginia 0.2941 0.2839 Utah
Wisconsin 0.2426 0.8746 Wisconsin

a Table reports the p-value associated with the test given in (8). The null hypothesis is no first-order
serial correlation.

b “Pooled” refers to the models estimated using data from all states. The pooled models include state
and time fixed effects.
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