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Senescent or damaged red blood cells are removed from the circulation primarily 
in the spleen, liver, and bone marrow (2-5). In these tissues it is most likely that the 
red cells are sequestered by phagocytic cells that line the sinusoids and comprise part 
of the reticuloendothelial system (6, 7). The erythrocyte hemoglobin which in the 
intact rat is converted almost quantitatively to bilirubin (8) is thought to be catabo- 
lized within these phagocytic cells, but controversy regarding participation of other 
cells types in this process still exists (9). 

The enzyme system responsible for initiating the conversion of heine to bile pig- 
ment has been characterized recently (10-12). This enzyme complex, heme-oxygenase, 
is localized in the microsomal fraction of metazoan tissues (10), requires mixed func- 
tion oxidation with cytochrome P450 as the terminal oxidase (13) l, and converts 
heme to biliverdin. Subsequently, in the cytosol biliverdin is reduced to bilirubin in 
the presence of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent 
biliverdin reductase (14). Microsomal heme-oxygenase usually is rate-limiting in the 
overall conversion of heme to bilirubin. In  rats this enzyme is most active in those 
tissues normally involved in the sequestration and breakdown of red cells, namely 
the spleen, liver, and bone marrow (13). Moreover, it can undergo adaptive regula- 
tion in response to a substrate load (13, 15), for example, in the liver heme-oxygenase 
activity rises after spleuectomy or after induced hemolysis (13). 
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I t  has been known for a long time that at sites of blood extravasation, bilirubin also 
can be formed locally. In 1847, Virchow isolated hematoidin crystals from tissues 
harboring old hematomas (16) ; these crystals later were shown to be bilirubin crystals 
(17). In  1870, Langhans noted the presence of bile pigments in phagocytes that  sur- 
rounded blood extravasations in tissues and serous cavities (18), and in 1935, morpho- 
logical observations by Muir  and Niven conclusively demonstrated that bilirubin was 
formed within these reticuloendothelial ceils (19). Studies of macrophages in vitro 
confirmed and extended these observations. In  1924, Rich demonstrated that  macro- 
phages accumulate bilirubin if exposed to blood in tissue culture (20). More recently, 
Axline and Cohn (21) showed that  in macrophages erythrocytes ingested in vitro 
stimulate lysosomal hydrolases that  digest the globin moiety of hemoglobin (22). 

These  observa t ions  suggested t h a t  af ter  phagocytos is  of e ry throcytes ,  the  

macrophage  m a y  degrade the  hemoglob in-he ine  by  a h e m e - o x y g e n a s e  sys tem,  

s imilar  to t h a t  in the spleen and liver. 

Mater ia l  and Methods  

Animals.--All experiments were carried out in female Sprague-Dawley rats weighing 
250-350 g or in New Zealand white rabbits of 2-3 kg. All animals had free access to water and 
food (Berkeley diet laboratory rat chow or Purina Rabbit Chow, Ralston Purina Company 
Inc., St. Louis, Mo.). 

Preparation of Rat Peritoneal Macrophages.--Peritoneal macrophages in rats were obtained 
after chemical or immunological stimulation of the peritoneal cavity. Rats received a single 
intraperitoneal injection of 20-25 ml of i.2% (w/v) sodium caseinate (Eastman Organic 
Chemical Company, Rochester, N. Y.) in sterile isotonic saline. After 4 days approximately 
1 X l0 s macrophages were obtained from each animal. Zymosan granules (Sigma Chemical 
Company St. Louis, Mo., lot No. Z 4250 from Saccharomyces cereviseae yeast) suspended in 
0.9% sterile saline at a concentration of 2% (w/v) were given intraperitoneally to rats at a 
daily dose of 3 rag/100 g body weight for 3 consecutive days. On the 4th day 1-3 X l0 s 
macrophages were obtained from each rat. Methemalbumin was prepared as previously 
described (10) and injected intraperitoneally two to three times perday for 3 consecutive days 
at a daily dose of 7.5-10 #moles/100 g rat. When the rats were sacrificed 18 hr later, the 
average yield of macrophages per rat was 5 X l0 s. 

Rat hemoglobin was freshly prepared (23) and its concentration was measured as cyan- 
methemoglobin (24). Hemoglobin equivalent to 10 #mole of heine was injected intraperi- 
toneally every day in divided doses for 3 consecutive days. The animals were sacrificed 18 
hr after the last dose when the average yield of macrophages per rat was 0.5-1 X l0 s. 

Bacillus Calmette-Guerin (BCG),2'~ obtained as a water-washed lyophilized powder, was 
suspended in sterile isotonic saline at a concentration of 20 mg/ml, and rats were given 0.5 
ml intraperitoneally on each of 2 successive days. 3-5 wk later, when the peritoneum was 
studded with granulomas, macrophages were harvested with an average yield of 3 X l0 s 
cells/animal. The cells were mainly mononuclear with only a few giant cells. 

In a group of 16 BCG-treated rats, additional stimulation was given by administering 
Zymosan granules or methemalbumin intraperitoneally by the dosage and treatment schedules 

2 Abbreviation used in this paper: BCG, bacillus Calmette-Guerin. 
8 BCG was kindly supplied by the Tice Laboratory of the Institution for Tuberculosis 

Research at the University of Illinois and Research Foundation. 
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described earlier before collecting the macrophages. This additional treatment increased the 
yield of macrophages from about 3 X 108 (BCG alone) to approximately 7 X 10S/rat. 

The cells were harvested by lavaging the peritoneal cavity with isotonic saline and were 
identified by phase-contrast microscopy. Morphologically 95-100% of the cells obtained were 
macrophages that were viable when tested for their ability to phagocytize heat-killed Candlda 
alblcans (25). Samples containing more than 5%, polymorphonuclear leukocytes were dis- 
carded: 

Preparation of Rabbit Alveolar Macrophages.--Alveolar macrophages in rabbits were 
harvested by minor modifications of the procedure of Myrvik et al. (26). The average yield 
of cells per animal was 0.5-1 X l0 s of which 98% or more were macrophages bylight- or 
phase-contrast microscopy. In eight rabbits the yield of alveolar macrophages was increased 
by pretreatment with BCG (27) to 1-2 X 109 cells/animal, of which at least 85% were large 
mononuclear cells; many giant cells were present. 

Four untreated and four BCG-treated rabbits received intravenously a microcrystalline 
suspension of hemin in isotonic saline (20 mg/ml) at a dose of 20 mg/kg, given three times a 
day for 3 successive days. On the 4th day, when the macrophages were harvested, the trapped 
heroin had stained the lungs dark brown. 

Production of Subcutaneous Hematoma.--Subcutaneous hematomas were prepared in rats 
by repeated injections of homologous blood into the lateral aspect of the thigh. Four injec- 
tions of 1 ml each, spaced over 2 days, were given at the same site. 7 days later, the thigh was 
incised, excess blood was washed out with isotonic saline, and the granulomatous tissue sur- 
rounding the extravasated blood was dissected out, homogenized, and the broken cells were 
fractionated. Granulomatous tissue was prepared also by injecting 10 mg of heat-killed 
lyophilized BCG into the thigh; the tissue surrounding the injected material was excised 3 
wk later. 

Quantitation and Fractionation of Macrophages.~l'he harvested macrophages were centri- 
fugedat 70-120gat4°Cfor5min, washed twice with cold isotonic saline and then suspended 
in 2-3 volumes of 0.25 M sucrose. Total cell counts on the original and washed samples were 
performed in a Spencer Brighfline hemacytometer (American Optical Company, Buffalo, 
N.Y.). Differential counts were made on Wright-Giemsa stained preparations 4 or by phase- 
contrast microscopy on wet mounts in the hemacytometer chamber. The washed macrophages 
were disrupted using a Potter-Elvehjem homogenizer with a motor-driven Teflon pestle and 
glass tube. Cell disruption was continued until at least 80% of the cells appeared disrupted 
as judged by phase-contrast microscopy. Broken cell preparations were centrifuged at 20,000 g 
for 10 rain in order to prepare a supernatant fraction relatively free of cell debris, nuclei, mito- 
chondria, and lysosomes. This supernatant fraction served as the enzyme source except when 
noted otherwise. Microsomes were prepared from a 20,000 g supernatant fraction by centrifu- 
gation at 105,000 g for 90 rain. The microsomal pellet was washed in 0.25 M sucrose, sedimented 
again, and resuspended in 0.25 ~ sucrose. 

Enzymatic and Chemical Assays.--The methods employed for the verification, characteriza- 
tion, and assay of heme~)xygenase (10-12) and biliverdin reductase (14) were described in 
detail previously. Modifications and adaptations of these procedures, if indicated, are listed 
under the individual experiments. 

Difference spectra were determined with a Shimadzu MPS-50L split-beam recording 
spectrophotometer (American Instrument Company, Silver Springs, Md.). Bilirubin (Pfan- 
stiehl Laboratories, Inc., Waukegan, Ill.) was dissolved in 0.05 n NaOH and added in small 
volumes to the reaction mixture when required. 

Kindly performed by Dr. Brecher and staff, Department of Clinical Pathology and 
Laboratory Medicine, University of California, San Francisco, Calif. 
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Hemin-14C was prepared in vitro from reticulocyte-rich rat cells incubated with glycine- 
2-14C (New England Nuclear Corp. Boston, Mass.) (28) or from freeze-thawed red cells in~ 
cubated with ~-aminolevulinic acid (ALA)-2-4-14C (New England Nuclear Corp.) (29). The 
hemin-14C was crystallized (30) from rat red cells and quantitated as pyridine hemochro- 
mogen (31). For the enzymatic synthesis of bilirubin-14C in vitro, the reaction mixture (150 
ml) contained a 20,000 g supernatant fraction of a macrophage homogenate (1 g protein), 34 
#M heme-14C, 360 #M NADPH, 1 m~ NADP, 2.6 m~ ghicose-6-phosphate, 3.8 m~t MgCl2, 
and 66 mM potassium phosphate buffer, pH 7.6. After 60 rain incubation at 37°C in 250 ml 
Ehrlenmeyer flasks in a shaking water bath, bilirubin-14C was extracted from the reaction 
mixture (10) and crystallized to constant specific activity (8). 

Production of 14CO from hemin-14C was measured by the method of White (32). The 
reaction mixtures (3 ml) were made up as in the standard assay, but were incubated aerobically 
in the dark in Ehrlenmeyer flasks (125 ml volume) for varying time intervals up to 20 rain. 
The reaction was stopped by immersing the flasks in ice. Bilirubin and carbon monoxide 
formed in each flask were determined immediately after stopping the incubation. 

Acid phosphatase activity was assayed using •-glycerophosphate as substrate (33) and the 
phosphorus liberated was measured by the method of Chen et al. (34). Protein was quantitated 
by the method of Lowry et al. (35). 

Methemalbumin-dependent oxygen comsumption was measured with a Clark-type electrode 
(36). Measurements were made with an electrode obtained from the Yellow Springs Instrument 
Company, Yellow Spring, Ohio, together with an Oxygraph Model KM manufactured by 
Gilson Medical Electronics Inc., Middleton, Wis. 

The cofactor requirements and the effect of atmospheric oxygen (02) and carbon monoxide 
(CO) were determined as described previously (10) but with the following modifications. The 
assay was performed in modified Thunberg cuvettes (Pyrocell Manufacturing Company, West- 
wood, N.J.) and the enzyme, placed in the side arm, was kept always at  0°C. The cuvette 
was evacuated at  room temperature and the partial vacuum replaced by the desired gas mix- 
ture. The enzyme was then mixed with the reaction mixture and heme-oxygenase activity 
determined in the standard way. Gas mixtures were purchased from the Matheson Company, 
East Rutherford, N. J. 

Heme disappearance and bilirubin formation in the same sample were measured in a 
Gilford spectrophotometer (Gilford Instrument Laboratories, Inc., Oberlin, Ohio) at 37°C in 
the dark as described previously but  with varying amounts of substrate. Incubation was con- 
tinued until spectrophotometric measurements indicated that  the reaction had virtually 
ceased. Heme content was estimated as the pyridine hemochromogen (31). 

Ancillary Studies.--Methemalbumin was administered intraperitoneally to 40 rats in the 
dosage and treatment schedule described earlier; 30 control rats received comparable injec- 
tions of isotonic saline. 18 hr after the last injection, the livers and spleens were removed and 
peritoneal macrophages were harvested. Heme-oxygenase activity in all three tissues was 
assayed. 

RESULTS 

I n  p e r i t o n e a l  a n d  a lveo la r  m a c r o p h a g e s  o b t a i n e d  a f t e r  chemica l  or i m m u n o -  

logical  s t i m u l a t i o n ,  h e m e - o x y g e n a s e  a c t i v i t y  was  b a r e l y  d e t e c t a b l e  ( T a b l e  I ) .  

B y  con t r a s t ,  t h e  h e m e - o x y g e n a s e  s y s t e m  was v e r y  ac t ive  in all m a c r o p h a g e s  

t h a t  h a d  b e e n  exposed  to  he ine  p i g m e n t s  in  v i v o  before  h a r v e s t i n g  ( T a b l e  I ) .  

T h i s  he ld  t rue ,  w h e t h e r  t he  he ine  p i g m e n t s  were t he  in i t ia l  m e a n s  for  p r o c u r i n g  

t he  cells ( i n t r a p e r i t o n e a l  m e t h e m a l b u m i n  or h e m o g l o b i n )  or w h e t h e r  t h e y  were  

a d m i n i s t e r e d  in  a d d i t i o n  to  chemica l  or immuno log i ca l  i r r i t a n t s  ( T a b l e  I) .  Since 
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repeated intraperitoneal injections of methemalbumin produced macrophages 
with a high and readily reproducible level of heme-oxygenase activity, this 
technique was used in all subsequent experiments, except as noted otherwise. 

Under these conditions, enzyme activity in macrophages remained high for at 
least 36 hr after the last intraperitoneal injection; at that  time the peritoneal 
cavity still contained free heme pigment, as evidenced by easily discernible 
black discolaration. On the other hand, the yield of macrophages was highest 

TABLE I 
Microsomal Heme-Oxygenase Activity of Peritoneal or Ah,eolar Macrophages 

Source and procurement 
of macrophages* Additional stimulant* 

Heme-oxygenase 
activity 

#mole bilirubin/lO 
rag protein per min. 

(Mean 4- sI)) 

Rat peritoneal macrophages 
1.2% sodium caseinate - -  Trace 
Zymosan granules - -  Trace 
BCG (heat-killed) - -  Trace 
BCG (heat-killed) Zymosan granules i.p. Trace 
BCG (heat-killed) Methemalbumin i.p. 2.60 i 0.12 
Methemalbumin - -  2.61 =t= 0.11 
Hemoglobin --- 0.94 =t= 0.21 

Rabbit alveolar macrophages 
Saline:~ - -  Trace 
BCG (beat-killed) --  Trace 
Saline1: Microcrystalllne heroin i.v. 1.31 
BCG (heat-killed) Microcrystalline heroin i.v. 1.12 ± 0.10 

* F o r  de ta i l s ,  see text. 
:~ The macrophages collected from the lungs of four animals were pooled for analysis. 

after an interval of about 18 hr, at which time also their earlier gross contamina- 
tion with polymorphonuclear leukocytes had fallen to less than 5 %. I t  was 
apparent, therefore, that  an interval of 18 hr after the last injection of methem- 
albumin was the most desirable time to harvest the peritoneal macrophages for 
enzyme assay. 

In  methema]bumin-treated rats a striking pattern was obtained when the 

specific activity of heme-oxygenase in peritoneal macrophages was compared 

with that  in the liver and spleen (Fig. 1). Treatment  stimulated enzyme activity 
in the macrophages to levels far in excess of those found in the liver or spleen. 

Hepatic enzyme activity also increased, while splenic activity remained almost 
unchanged. In the experimentally produced subcutaneous hematomas, the 
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granulomatous tissue surrounding the blood extravasations regularly exhibited 
heme-oxygenase activity at a level of approximately 0.25 m/~moles bilirubin 
formed/minute per 10 rng protein. By contrast, granulomatous tissue produced 
by heat-killed BCG was virtually devoid of enzyme activity. 

The heme-oxygenase system in macrophages closely resembled that  pre- 
viously described in the spleen and liver (10-13). On incubation of the substrate 
methemalbumin with a 20,000 g supernatant fraction of homogenized heine- 
stimulated macrophages, a new broad absorption band appeared with a peak at 
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• F I G .  1. Stimulatory effect of intraperitoneal injections of methernalbumin on heme- 
oxygenase activity in the peritoneal macrophages, livers, and spleens of rats. 

about 468 m~ (Fig. 2). An additional smaller band was frequently seen exhibit- 
ing a peak at 423 m~. Since this latter band seemed to be particularly noticeable 
when the harvested macrophages had been contaminated with red blood cells, it 
most likely was due to carboxyhemoglobin (37) that had been formed by the 
carbon monoxide evolved on heme cleavage ( l l ) .  That  these two new peaks 
reflected bilirubin and carbon monoxide formed from heine was indicated by the 
following observations: 

(a) Addition to the reaction mixture of an aqueous solution of bilirubin aug- 
mented the 468 m~ peak; addition of carbon monoxide to the system contami- 
nated with red cells increased the 423 m~ peak. 
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(b) After incubation of the complete reaction mixture, a yellow pigment could 
be extracted with chloroform. This pigment had the spectroscopic properties of 
bilirubin and gave a positive reaction with the van den Bergh reagent (38). 

(c) When hemin-t4C prepared from glycine-2-~4C (theoretically 8 atoms of 

4 2 3  

0 . 1 2  - -  

0.I0 -- 

I l 
i 

li 
'- i 0 . 0 8 - -  i 
z 

i / 
0.06 - I" \ ' ' / ' /"  

o i 

0.02 

I 

I l l .  I I I 
40(3 420 440 

Z E R O  TIME 
. . . .  AFTER 30 MIN 

INCUBATION AT 37°C 

468 

/ \ 

\ 
\ 

\ 
"\ 

\ 
\ 

\ .  
\ 

/ I I I I [ I . . I  
460 480 500 520 

WAVE LENGTH m2u, 

FIe. 2. Enzymatic conversion of methemalbumin to bilirubin by a 20,000 g supernatant 
fraction of homogenized heine-stimulated macrophages. The difference spectra are (macro- 
phage enzyme + methemalbumin + NADPH) minus (macrophage enzyme + methem- 
albumin). 

14C/molecule of heme) was used as substrate, bilirubin-14C (7 atoms of 14C/ 
molecule) was extracted from the incubation mixture and obtained in crystalline 
form. The molar radioactivity of the recovered bilirubin-14C (1.63 X l0 n dpm) 
was 85 % of the molar activity of the hemin-t4C (1.92 X 1011 dpm) used as sub- 
strate. This figure approximates the calculated value of 87.5 %. 

(d) When hemin-UC prepared from glycine-2J4C (14C contained in the meth- 
ene bridge carbon atoms) was used as substrate, macrophage heme-oxygenase 
produced equimolar amounts of bilirubin and carbon monoxide (Fig. 3) ; carbon 
monoxide is presumed to be derived solely from oxidation of the a-methene 
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carbon atom of heme (39). By contrast, when hemin-14C prepared from ALA- 
2,4--14C (lacking 14C atoms in the methene bridge carbon positions) was used as 
substrate, production of bilirubin-14C was of comparable magnitude but no 
14CO was formed (Fig. 3). In both series of experiments no 14CO2 was detected. 
Under the conditions of this assay, which involves incubation in Ehrlenmeyer 
flasks placed in a shaking water bath, the rate of bilirubin and carbon monoxide 
formation is maximal for only about 4 min (Fig. 3). In the standard assay, on 
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FIG. 3. Formation of bilirubin-14C and 14CO from heme-14C by macrophage heme- 
14 ozygenase. The heine- C was prepared either with glycine-2-14C or ALA-2,4-14C as precursor. 

the other hand, in which the reaction mixture is incubated in a cuvette without 
vigorous agitation, the production of bilirubin is linear for at least 15 rain (10). 

Microsomal preparations obtained from 20,000 g supernatant fractions of 
homgenized macrophages showed only slight lysosomal contamination in that 
they contained no more than 10% of the acid phosphatase activity of the initial 
whole homogenates. Although microsomal preparations alone were active in 
converting heine to bilirubin (10), this activity was considerably enhanced by 
the addition of a 105,000 g supernatant fraction of homogenized macrophages or 
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of purified bil iverdin reductase step 5 (14) (Table II). The 105,000 g superna tan t  
fraction alone had no heme-oxygenase ac t iv i ty  bu t  contained bil iverdin reduc- 
tase ac t iv i ty  of 3.4 re#mole/ rag protein per rain, which is comparable to soluble 
biliverdin reductase ac t iv i ty  in other tissues (14). 

TABLE II 
Conversion of Methemalbumin to Bilirubin by Microsomal Preparations from Heine-Stimulated 

Macrophages 

Enzyme system 

Bilirubin formed 

m/~mole/10 mg 
protein per rain. 

Microsomes alone 
Microsomes + boiled 105,000 g supernatant 
Microsomes + 105,000 g supernatant 
Microsomes + step 5 purified biliverdin reductase 
105,000 g supernatant alone 

0.41 
0.41 
2.25 
2.28 
0 
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FIG. 4. Lineweaver-Burke plot of the reaction rate of macrophage heme-oxygenase as a 
function of substrate concentration under standard assay conditions. The line was drawn by 
the method of least squares. 

The kinetics of microsomal heme-oxygenase in macrophages were similar to 
those reported for the liver and spleen. The rate of bil irubin formation was a 
linear function of the amount  of enzyme assayed, at  least up to concentrat ions 
of 2 mg enzyme pro te in /ml  reaction mixture. The apparent  Km for the macro- 
phage enzyme, calculated from a Lineweaver-Burke plot  (Fig. 4) (40), was 5.2 
/zM, which is similar to the value found in normal ra t  spleen (11) and in st imu- 
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lated rat liver (13). As in other tissues the heme-oxygenase system in macro- 
phages has an absolute requirement for NADPH and oxygen and is inhibited by 
carbon monoxide (Fig. 5). For every mole of bilirubin formed, an average of 3.0 
moles (range 3.0-3.1) of oxygen was consumed. 

When under standard assay conditions heine disappearance was compared 
with bilirubin formation, it was apparent that less than half of the consumed 
heine was recovered as bile pigment (Table III) .  On the other hand, if the com- 
plete reaction mixture was kept at ice temperature, or if NADPH was omitted 
from the incubation mixture, 95-100% of the added substrate was recoverable 
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FIo. 5. Effect of atmospheric oxygen, carbon monoxide, or omission of NADPH from the 
incubation mixture on macrophage heme-oxygenase activity in vitro. 

as heme (Table III) .  Thus, on incubation of the complete system, a significant 
portion of the heine that disappeared could not be accounted for as bilirubin. 
This discrepancy did not appear to result from further metabolism of the formed 
bilirubin because under the conditions of the enzyme assay, bilirubin was stable. 
When the reaction was carried to completion, the bilirubin formed enzymati- 
cally was not further catabolized by prolonged incubation. Moreover, when 
bilirubin in amounts equal or greater than those enzymatically formed was 
added to the reaction mixture, incubation at 37°C for up to 1 hr did not reduce 
the absorption band at 468 m#. 

To assess the possible role of contaminating lysosomal enzymes in this exces- 
sive heme disappearance, microsomes prepared from a 20,000 g supernatant 
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fraction of macrophages were washed several times with 0.25 M sucrose in order 
to remove soluble lysosomal enzymes. The microsomes were then freeze-thawed 
three times to disrupt intact  lysosomes, after which the preparation was washed 
again. Although in this purified microsomal preparation acid phosphatase ac- 
t ivity was vir tual ly absent, on incubation the ratio of heme disappearance to 
bilirubin formation differed little from that  observed with the initial 20,000 g 
supernatant  fraction (Table I I I ,  experiment 3). 

TABLE III 
Rdationship Between Heine Disappearance and Billrubin Formation In Vitro 

Reaction mixture Heme substrate 
Bilirubin 

Enzyme Incubation Disap- formed 
protein NADPH Before After pearance 

Experiment 1 
5 mg 

10 mg 

(re#mole) (mtZmole ) 

Absent 165 163 2 0 
Absent 230 223 7 0 
Present 226 158 68 25 
Absent 190 188 2 0 
Absent 258 253 5 0 
Present 253 138 115 41 

Experiment 2 
9.8 mg 

19.8 mg 

Experiment 3 
5.1 mg (20,000 g sup~rnatant) 

2.4 mg (washed microsomes) 

Present 209 177 32 16 
Present 222 147 75 39 

Absent 216 201 15 0 
Present 229 173 56 19 
Absent 216 203 13 0 
Present 226 180 46 14 

The reaction mixture incubated for 30 min contained a 20,000 g supernatant fraction of 
stimulated macrophages as the enzyme source. In experiment 3, a microsomal preparation 
washed free of lysosomal contamination was compared with a 20,000 g supernatant fraction 
of the same macrophage homogenate. 

Heme breakdown was insignificant, as was bilirubin formation, if N A D P H  
(180/~M) was omitted (Table I I I )  or if it was replaced by N A D H  (180 #M) or 
by reduced glutathione (360 #M). Moreover, heine disappearance was minimal if 
the complete system contained a 20,000 g supernatant  fraction of macrophages 
that  had not  been stimulated in vivo by prior exposure to heine, and conse- 
quent ly  exhibited only insignificant heme-oxygenase activity. Thus excessive 
and unaccounted heme disappearance was observed only in those incubation 
systems that  also exhibited heme-oxygenase activity. 
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DISCUSSION 

These findings provide direct evidence that peritoneal and alveolar macro- 
phages possess the enzymatic machinery for the degradation of hemoglobin- 
heine to bilirubin. While this enzyme activity is very low in native macrophages, 
it may be stimulated by exposure of these cells to heme pigments in vivo. This 
suggests that heme stimulates the activity of its own degradative pathway in 
macrophages. The nature of this stimulation is uncertain, but observations in 
rats with experimental hemoglobinuria suggest that the adaptive response of the 
enzyme in the renal tubules is the result of substrate-mediated enzyme induc- 
tion (15). A similar adaptive response of heme-oxygenase to substrate load has 
been described in the liver of rats after splenectomy or after production of hemo- 
lytic anemia (13). Thus, it may be postulated that native macrophages do not 
exhibit heme-oxygenase activity because they are not exposed to the stimula- 
tion of heine pigments. However, these cells do indeed have the potential to 
effectively degrade not only the protein moiety of hemoglobin (21) but also the 
prosthetic heine group. 

The enzyme system in macrophages closely resembles that in the spleen (10- 
12) and liver (10, 13). The rate-limiting enzyme complex, heme-oxygenase, is 
localized in the microsomal fraction and converts the substrate heine to equi- 
molar amounts of biliverdin and carbon monoxide. The biliverdin is then re- 
duced to bilirubin by the soluble biliverdin reductase (14). The apparent Km 
of the enzyme system in macrophages of 5.2 #M is similar to that reported for the 
liver (13) and spleen (11). Microsomal heme-oxygenase in macrophages has an 
absolute requirement for molecular oxygen and NADPH and is inhibited by 
carbon monoxide. Thus, the reaction has the characteristics of a mixed function 
oxidation, seemingly requiring a carbon monoxide-binding cytochrome with the 
properties of cytochrome P450. This appears to be the first example of a micro- 
somal monooxygenase system (41-43), similar to the drug-metabolizing enzyme 
systems in the liver, that has been identified in cells belonging to the reticulo- 
endothelial apparatus. 

Microsomal heme-oxygenase activity in macrophages undergoes adaptive 
regulation in response to the ingestion of methemalbumin, particular hemin, or 
hemoglobin. Lysosomal enzymes concerned with peptide hydrolysis also are 
induced by the hemoglobin of phagocytized erythrocytes (21). Thus in macro- 
phages microsomal and lysosomal enzyme systems responsible for the catabo- 
lism of both the heine and the globin moiety of hemoglobin are activated by 
ingestion of the substrate. In the intact rat the accelerated hepatic and splenic 
removal of red cells that have been coated with antibodies are associated with 
increased heme-oxygenase activity in the liver and spleen (13). This suggests 
that at least in part this adaptive increase may be localized in the Kupffer cells 
of the liver and in the splenic macrophages, both of which are reticuloendothelial 
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cells morphologically and functionally similar to the macrophages employed in 
the present study. 

While these observations indicate that a portion of the total body heme- 
oxygenase activity is located in reticuloendothelial cells of mesenchymal origin, 
they do by no means rule out the presence of this enzyme activity in other cell 
types. Indirect evidence suggests that cells of epithelial origin also may exhibit 
heme-oxygenase activity. Hemoglobin (44), hematin, and hemopexin-bound 
heine (45) have been found to gain access to hepatic parenchyal cells where 
they presumably are catabolized. Moreover, recent evidence indicates that 
filtered hemoglobin may induce heme-oxygenase in the epithelial cells of the 
renal tubules (15). Finally, biliverdin has been detected in the intestinal epithe- 
lial cells of blood-sucking arthropods (46). This last observation suggests the 
possibility that the intestinal absorption of hemoglobin-iron in carnivorous and 
omnivorous mammals (47-50), but not in herbivorous guinea pigs (51), may be 
explained by a heme-oxygenase system operational in the mucosal cells of the 
intestine. 

The presence of heme-oxygenase in macrophages probably derived from 
monocytic precursors (52-54) provides a ready explanation for the well-docu- 
mented observation of local bilirubin formation in old blood extravasations 
(16-19). When blood is extruded into tissues, macrophages move to the site of 
injury (19) and phagocytize the trapped erythrocytes. After induction of the 
appropriate lysosomal (21) and microsomal enzymes, the hemoglobin is de- 
graded into its catabolites, bilirubin, iron, and amino acids, which then are re- 
leased gradually into the extracellular space. The successive enzymatic conver- 
sion by macrophages of the ingested hemoglobin (dark red), methemoglobin or 
hematin (dark brown) to biliverdin (green-blue) and eventually to bilirubin 
(yellow) is responsible for the characteristic color play in subcutaneous bruises. 
Hemosiderin-laden macrophages (brown) may contribute to the color spectrum 
(19). On the other hand, in intraepidermal blood blisters or in subungual splinter 
hemorrhages where little cellular response is elicited (55), the extruded hemo- 
globin-heme remains essentially unchanged until the horny layer of the super- 
posed skin or the nail is shed. This accounts for the dark purple or black color 
of these superficial extravasations that often persist for several wk. 

In assaying heme-oxygenase in macrophages, it was noted in all instances 
that during incubation, heme disappearance exceeded the amount of bilirubin 
and carbon monoxide formed (Table III).  Under the conditions of the assay 
system, bilirubin appeared stable and the production of bilirubin and carbon 
monoxide always was equimolar. These observations suggest that in addition to 
being converted to bilirubin, heine may in part be metabolized to other catabo- 
lites whose structure has not yet been determined. These alternative pathways 
neither appear to require bilirubin as intermediate nor do they usually seem to 
yield carbon monoxide. This is not a novel concept as similar observations made 
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in vivo (8, 56) indicated that the formation of bilirubin, albeit predominant, is 
not the sole pathway of biological heine degradation. The present observations 
in macrophages suggest that breakdown of heme to nonbilirubin catabolites does 
not involve lysosomal enzymes. Moreover, breakdown of heme by alternate 
routes appears also to be an adaptive mechanism requiring NADPH. When the 
macrophages had not been exposed to heme pigments in vivo, or when NADPH 
was absent from the incubation mixture or was replaced by NADH or reduced 
glutathione, no heme was consumed. Identification of this alternate pathway(s) 
of heme catabolism is hampered by the lack of information about the nature and 
structure of the products formed (29, 39). It  is attractive to speculate about the 
possible role of H202 in this process, since during phagocytosis oxygen consump- 
tion is increased and H20~ is generated (57, 58). Macrophages have low or 
absent myeloperoxidase activity but do have catalase activity (59). In the pres- 
ence of low concentrations of H~O2, catalase may act as a peroxidase (60) and 
catalase-dependent peroxidation reactions have been demonstrated in alveolar 
macrophages (59). The oxidative denaturation of hemoglobin to Heinz bodies 
by phenylhydrazine and oxygen (29) may serve as a possible model of a pathway 
for hemoglobin catabolism that does not lead to bilirubin. 

SUMMARY 

Recent studies have identified and characterized the enzymatic mechanism by 
which hemoglobin-heine is converted to bilirubin. Under physiologic conditions 
the enzyme system, microsomal heme-oxygenase, is most active in the spleen 
followed by the liver and bone marrow, all of which are tissues that normally 
are involved in the sequestration and metabolism of red cells. Indirect evidence 
suggested that the reticuloendothelial system is important in this process. To 
test this hypothesis, conversion of heme to bilirubin was studied in macrophages 
obtained by chemical or immunological means from the peritoneal cavity or 
from the lungs of rodents. Homogenates of pure populations of these cells were 
devoid of heme-oxygenase activity, unless before harvesting the macrophages 
had been exposed to methemalbumin, microcrystalline hemin, or hemoglobin in 
vivo. In macrophages exposed to heme pigments, the specific activity of heme- 
oxygenase was far in excess of that in the spleen or liver. Enzyme activity was 
also present in the granulomatous tissue surrounding subcutaneous hematomas. 

The heme-oxygenase system in macrophages resembles that in the spleen and 
liver in that it is localized in the microsomal fraction, has an absolute require- 
merit for molecular oxygen and NADPH, is inhibited by carbon monoxide, and 
has a similar Km. These findings indicate that cells of the reticuloendothelial 
system, presumably including the Kupffer cells of the liver and the macrophages 
of the spleen, possess the enzymatic machinery for converting hemoglobin-heine 
to bilirubin. The reaction is a mixed function oxidation, probably involving 
cytochrome P450 as the terminal oxidase. Enzyme activity in macrophages is 
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capable of regulatory adapta t ion  in response to substra te  loads. In  the s tandard  
assay system for the enzyme, disappearance of heme always was in excess of the 
amount  of bil irubin formed, suggesting the simultaneous presence of a l ternate  
routes of heme degradat ion not involving bilirubin as an end product  or inter- 
mediate.  

BIBLIOGRAPHY 

1. Pimstone, N. R., R. Tenhunen, P. T. Seitz, R. Schmid, and H. S. Marver. 1970. 
The enzymatic degradation of hemoglobin to bile pigment by macrophages. 
Gastroenterology. 58:304. 

2. Miescher, P. 1957. The role of R. E. S. in haematoclasia. In Physiopathology of 
R. E. S. B. N. Halpern, editor. Blackwell Scientific Publications Ltd., Oxford, 
England. 

3. Wagner, H. N., Jr., M. A. Razzak, R. A. Gaertner, W. B. Caine, Jr., and O. T. 
Feagin. 1962. Removal of erythrocytes from the circulation. Arch. Intern. _lied. 
110:90. 

4. Jandl, J. H., A. R. Jones, and W. B. Castle. 1957. The destruction of red cells by 
antibodies in man. I. Observations on the sequestration and lysis of red cells 
altered by immune mechanisms. J. Clin. Invest. 36:1428. 

5. Keene, W. R., and J. H. Jandl. 1965. Studies of the reticuloendothelial mass and 
sequestering function of rat  bone marrow. Blood J. Hematol. 26:157. 

6. Aschoff, L. 1924. Das retikulo-endotheliale System. Ergeb. Inn. Med, Kinderheilk. 
26:1. 

7. Biozzi, G., and C Stiffel. 1965. The physiopathology of the reticuloendothelial 
cells of the liver and spleen. In  Progress in Liver Diseases. I-I. Popper and F. 
Schaffner, editors. Grune and Stratton Inc., New York. 2:166. 

8. Ostrow, J. D., J. H. Jandl, and R. Schmid, 1962. The formation of bilirubin from 
hemoglobin in vivo. J. Clin. Invest. 41:1628. 

9. With, T. 1968. Bile Pigments, Chemical, Biological, and Clinical Aspects. 
Academic Press Inc., New York. 101. 

10. Tenhunen, R., H. S. Marver, and R. Schmid. 1968. The enzymatic conversion of 
heine to bilirubin by microsomal heme oxygenase. Proc. Nat. Acad. Sci. U.S.A. 
61:748. 

11. Tenhunen, R., H. S. Marver, and R. Schmid, 1969. Microsomal heme oxygenase. 
Characterization of the enzyme. J. Biol. Chem. 244:6388. 

12. Tenhunen, R., H. S. Marver, and R. Schmid. 1969. The enzymatic conversion of 
hemoglobin to bilirubin. Trans. Ass. Amer. Physicians. 82:363. 

13. Tenhunen, R., H. S. Marver, and R. Schmid. 1970. The enzymatic catabolism of 
hemoglobin: stimulation of microsomal heine oxygenase by hemin. J. Lab. 
CIin. Med. 75:410. 

14. Tenhunen, R., H. S. Marver, and R. Schmid. 1970. Reduced nicotinamide 
adenine dinucleotide phosphate-dependent biliverdin reductase. Partial purifi- 
cation and characterization. Biochemistry. 9:298. 

15. Pimstone, N. R., P. Engel, P. T. Seitz, H. S. Marver, and R. Schmid. 1970. 
Inducible heine oxygenase in the kidney: a model for the homeostatic control 
of hemoglobin catabolism. J. Clin. Invest. 49:74. (Abstr.) 



PIMSTONE, TENHUNEN~ SEITZ~ MARVER, AND SCItMID 1279 

16. Virchow, R. 1847. Die pathologischen Pigmente. Arch. Pathol. Anat. Physiol. 
Klin. Med. 1:379. 

17. Rich, A. R. 1925. The formation of bile pigment. Physiol. Rev. 8:182. 
18. Langhans, T. 1870. Beobachtungen tiber Resorption der Extravasate und 

Pigmentbildung in denselben. Arch. Pathol. Anat. Physiol. Klin. Med. 49:66. 
19. Muir, R., and J. S. F. Niven. 1935. The local formation of blood pigments. J .  

Pathol. Bacteriol. 41:183. 
20. Rich, A. R. 1924. The formation of bile pigment from haemoglobin in tissue 

cultures. Bull. Johns Hopkins Hosp. 35:415. 
21. Axline, S. G., and Z. A. Cohn. 1970. In vitro induction of lysosomal enzymes by 

phagocytosis. J. Exp. Med. 131:1239. 
22. Ehrenreich, B. A., and Z. A. Cohn. 1968. Fate of hemoglobin pinocytosed by 

macrophages in vitro. J. Cell. Biol. 38:244. 
23. Bunn, H. F., W. T. Esham, and R. W. Bull. 1969. The renal handling of hemo- 

globin. I. Glomerular filtration. J. Exp. Med. 19.9:909. 
24. Crosby, W. H., and D. N. Houchin. 1957. Preparing standard solutions of cyan- 

methemoglobin. Blood J. Hematol. 12:1132. 
25. Lehrer, R. I., and M. J. Cline. 1969. Interaction of Candida albicans with human 

leukocytes and serum. Y. Bacteriol. 98:996. 
26. Myrvik, Q. N., E. S. Leake, and S. Oshima. 1962. A study of macrophages and 

epitheloid-like cells from granulomatous (BCG-induced) lungs of rabbits. J .  
Immunol. 89:745. 

27. Cohn, Z. A., and W. Eiwner. 1963. The particulate hydrolases of macrophages. 
I. Comparative enzymology, isolation, and properties. J. Exp. Mecl. 118:991. 

28. Custer, L. E., T. Abei, B. R. Chipman, and F. L. Iber. 1964. Preparation of 
bilirubin-C 14. J. Lab. Clin. Med. 64:820. 

29. Goldstein, G. W., L. Hammaker, and R. Schmid. 1968. The catabolism of Heinz 
bodies: an experimental model demonstrating conversion to non-bilirubin 
catabolites. Blood J. Hematol. 31:388. 

30. Labbe, R. F., and G. Nishida. 1957. A new method of hemin isolation. Biochim. 
Biophys. Acta. 26:437. 

31. Falk, J. E. 1964. Prophyrins and Metalloporphyrins: Their General Physical and 
Coordination Chemistry, and Laboratory Methods. Elsevier Publishing 
Company, Amsterdam, The Netherlands. 181. 

32. White, P., B. C. Sharer, M. L. Rother, and W. J. Williams. 1968. Production of 
carbon monoxide by bone marrow and reticulocytes in vitro. J. Clin. Invest. 
47:102. (Abstr.) 

33. Palade, G. I. 1951. Intracellular distribution of acid phosphatase in rat liver cells. 
Arch. Biochem. 80:144. 

34. Chen, P. S., Jr., T. Y. Toribara, and H. Warner. 1956. Microdetermination of 
phosphorus. Anal. Chem. 28:1756. 

35. Lowry, O. H., N. H. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein 
measurement with the Folin Phenol reagent. J. Biol. Chem. 193:265. 

36. Clark, L. C. 1956. Monitor and control of blood and tissue oxygen tensions. 
Trans. Amer. Soc. Artif. Intern. Organs 2:41. 

37. Lemberg, R., and J. W. Legge. 1949. Hematin Compounds and Bile Pigments. 
Interscience Publishers Inc., New York. 228. 



1280 HEME--OXYGENASE IN  MACROPHAGES 

38. Mallow, H. T., and K. A. Evelyn. 1937. The determination of bilirubin with the 
photoelectric colorimeter. J. Biol. Chem. 119:481. 

39. Landaw, S. A., E. W. Callahan, Jr., and R. Schmid. 1970. Catabolism of heme 
in vivo: comparison of the simultaneous production of bilirubin and carbon 
monoxide. J. Clin. Invest. 49:914. 

40. White, A., P. Handler, and E. L. Smith. 1964. Principles of Biochemistry. 
McGraw-Hill Book Company, New York., 3rd edition 220. 

41. Conney, A. H. 1967. Pharmacological implications of microsomal enzyme induc- 
tion. Pharmacol. Rev. 19:317. 

42. Omura, T., R. Sato, D. Y. Cooper, O. Rosenthal, and R. W. Estabrook. 1965. 
Function of cytochrome P450 of microsomes. Fed. Proc. 24:1181. 

43. Cooper, D. Y., S. Levin, S. Narasimhulu, O. Rosenthal, and R. W. Estabrook. 
1965. Photochemical action spectrum of the terminal oxidase of mixed function 
oxidase systems. Science (Washington). 147:400. 

44. Goldfischer, S., A. B. Novikoff, A. Albala, and L. Biempica. 1970. Hemoglobin 
uptake by rat hepatocytes and its breakdown within lysosomes. J. Cell. Biol. 
44:513. 

45. Mtiller-Eberhard, U., C. Bosman, and H. H. Liem. 1970. Tissue localization of 
the heme-hemopexin complex in the rabbit and the rat  as studied by light 
microscopy with the use of radioisotopes. J. Lab. Clin. Med. 76:426. 

46. Wigglesworth, V. A. 1942-43. The fate of haemoglobin in Rhodnius prolixus 
(Hemiptera) and other blood sucking arthropods. Proc. Roy. Soc. Set. B. 
Biol. Sei. 131:313. 

47. Awai, M., and E. B. Brown. 1969. Examination of the role of xanthine oxidase in 
iron absorption by the rat. J. Lab. Clin. Med. 73:366. 

48. Wheby, M. S., G. E. Suttle, and K. T. Ford III .  1970. Intestinal absorption of 
hemoglobin-iron. Gastroenterology. 5:647.  

49. Brown, E. B., Y. F. Hwang, S. Nicol, and J. Ternberg. 1968. Absorption of 
radioiron-labeled hemoglobin by dogs. J. Lab. Clin. Med. 72:58. 

50. Conrad, M. E., B. I. Benjamin, H. L. Williams, and A. L. Foy. 1967. Human 
absorption of hemoglobin-iron. Gastroenterology. 53:5. 

51. Conrad, M. E., L. R. Weintraub, D. A. Sears, and W. H. Crosby. 1966. Absorp- 
tion of hemoglobin-iron. Amer. J. Physiol. 211:1123. 

52. Ebert, R. H., and H. W. Florey. 1939. The extravascular development of the 
monocyte observed in vivo. Brit. J. Exp. Pathol. 20:342. 

53. van Furth, R., and Z. A. Cohn. 1968. The origin and kinetics of mononuclear 
phagocytes. J. Exp. Med. 128:415. 

54. Roser, B. 1970. The origins, kinetics and fate of macrophage populations. J .  
Reticuloendothel. Soc. 8:139. 

55. Shuster, S., and H. Scarborough. 1961. Senile purpura. Quart. J. Med. 30:33. 
56. Snyder, A. L., and R. Schmid. 1965. The conversion of hematin to bile pigment 

in the rat. J. Lab. Clin. Med. 65:817. 
57. Sbarra, A. J., and M. L. Karnovsky. 1959. The biochemical basis of phagocytosis. 

I. Metabolic changes during the ingestion of particles by polymorphonuclear 
leukocytes. J. Biol. Chem. 234:1355. 



PIMSTONE, TENHUNEN~ SEITZ~ MARVER, AND SCHMID 1281 

58. McRipley, R. J., and A. J. Sbarra. 1967. Role of the phagocyte in host-parasite 
interactions. XI. Relationship between stimulated oxidative metabolism and 
hydrogen peroxide formation, and intracellular killing. J. Bacteriol. 94:1417. 

59. Gee, J. B. L., C. L. Vassallo, P. Bell, J. Kaskin, R. E. Basford, and J. B. Field. 
1970. Catalase-dependent peroxidative metabolism in the alveolar macrophage 
during phagocytosis. Y. Clin. Invest. 49:1280. 

60. Keilin, D., and E. F. Hartree. 1955. Catalase, peroxidase and methmyoglobin as 
catalysts of coupled peroxidatic reactions. Biachem. J. 60:310. 


