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Abstract

Homeostasis of multicellular organisms is critically dependent on the correct interpretation of the
plethora of signals which cells are exposed to during their lifespan. Various soluble factors regulate
the activation state of cellular receptors which are coupled to a complex signal transduction network
that ultimately generates signals defining the required biological response. The epidermal growth
factor receptor (EGFR) family of receptor tyrosine kinases represents both key regulators of normal
cellular development as well as critical players in a variety of pathophysiological phenomena. The
aim of this review is to give a broad overview of signal transduction networks that are controlled by
the EGFR superfamily of receptors in health and disease and its application for target-selective
therapeutic intervention. Since the EGFR and HER2 were recently identified as critical players in the
transduction of signals by a variety of cell surface receptors, such as G-protein-coupled receptors
and integrins, our special focus is the mechanisms and significance of the interconnectivity between
heterologous signalling systems.
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Introduction

Cell surface receptors integrate a multitude of extracellular
signals such as environmental stresses, growth factors,
neuropeptides or hormones, thus regulating a large diversity of
signalling pathways and cell responses. Receptor tyrosine
kinases (RTKs) are a subgroup of transmembrane proteins
with an intrinsic tyrosine kinase activity which determines
various cellular functions as diverse as growth, differentiation,
cell motility or survival (reviewed in Van der Geeret al.1994).
The epidermal growth factor receptor (EGFR) family of RTKs
consists of four members: EGFR/ErbB1, HER2/ErbB2,
HER3/ErbB3 and HER4/ErbB4. The EGFR which was the
first cell surface signalling protein and protooncogene product
to be characterised by molecular genetic methods (Ullrichet
al. 1984) exemplified prototypical features of a receptor
molecule. All EGFR family members are characterised by a
modular structure consisting of an extracellular ligand-binding
domain, a single hydrophobic transmembrane region, and the
intracellular part harbouring the highly conserved tyrosine
kinase domain. Ligand binding induces the formation of
homo- or heterodimers which subsequently trigger the

Endocrine-Related Cancer (2001) 8 11–31 Online version via http://www.endocrinology.org
1351-0088/01/008–011  2001 Society for Endocrinology Printed in Great Britain

autophosphorylation of cytoplasmic tyrosine residues
(reviewed in Ullrich & Schlessinger 1990, Heldin 1995,
Alroy & Yarden 1997). These phosphorylated amino acids
represent docking sites for a variety of signal transducers
which regulate membrane-proximal steps of a complex
signalling network ultimately defining the biological response
to a given signal. Deregulation of this tightly controlled system
of hormone–receptor and receptor–receptor interactions by
overexpression, amplification or mutations of critical pathway
elements and/or autocrine stimulation through aberrant growth
factor loops is frequently linked to hyperproliferative diseases
such as cancer (reviewed in Huang &Harari 1999, Olayioyeet
al. 2000, Zwicket al. 2000). More recently, the EGFR and
HER2 have been identified as critical pathway elements in the
signalling from G-protein-coupled receptors (GPCRs),
cytokines,RTKs and integrins to a variety of cellular responses
such as mitogen activated protein (MAP) kinase activation,
gene transcription and proliferation. This growing field of
interreceptor cross-talk has receivedmuch attention during the
past four years and the elucidation of the molecular
mechanisms will provide new insights into a signalling
network of increasing complexity.
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The EGF receptor family signalling
network

The EGF receptor family signalling network employs several
modes of regulation which couple receptor activation to a
highly diverse repertoire of cellular signalling pathways.
Various EGF-like ligands are released following proteolytic
cleavage of their transmembrane precursors. Subsequently,
the mature growth factors activate four related receptors
which are able to form homo- and heterodimers thus
regulating a distinct subset of intracellular signalling
pathways. In addition to these classical layers of diversity the
role of receptor endocytosis for signal generation and
attenuation has recently received increasing attention.

EGF-like ligands and neuregulins

EGFR family members are activated by a large group of
EGF-related growth factors. Depending on their receptor
affinities and specificities these ligands can be subdivided
into four different categories. While EGF, amphiregulin (AR)
and transforming growth factorα (TGFα) specifically bind
the EGFR, betacellulin (BTC), heparin binding EGF-like
growth factor (HB-EGF) and epiregulin bind the EGFR and
HER4. Neuregulins (NRGs) or Neu differentiation factors
(NDFs) which exist in several alternatively spliced isoforms
directly bind and activate HER3 and HER4. Interestingly,
despite the overlapping receptor specificity of the NRG1 and
NRG2 isoforms they exhibit distinct biological activities
depending on the cellular context (Sweeney Crovelloet al.
1998). In line with this, earlier studies by Yarden and
co-workers revealed isoform-specific functional differences
of the two major NRG subtypes (Pinkas-Kramarskiet al.
1996a). More recently, NRG3 and NRG4 have been cloned
and identified as ligands which exclusively bind HER4
(Zhanget al. 1997, Harariet al. 1999).

Common to all these growth factors is the EGF domain
with six conserved cysteine residues characteristically spaced
to form three intramolecular disulphide bridges. In general,
EGF-like ligands are synthesised as glycosylated
transmembrane precursors which are proteolytically cleaved
from the cell surface to yield the mature growth factor
(reviewed in Massague & Pandiella 1993). Since 1991 when
the prototypical cleavage of proTGFα had been found to be
stimulated by serum factors, tetradecanoylphorbolacetate
(TPA) and calcium ionophores (Pandiella & Massague
1991a,b), structural determinants for this regulatory step
within the C-terminus and the juxtamembrane domain of
proTGFα (Bosenberget al. 1992, Arribaset al. 1997) and
within the EGF and HB-EGF precursors (Dong & Wiley
2000) have been identified. In contrast to the TGFα and NRG
precursors (Liuet al. 1998) which require the cytoplasmic
domains for efficient proteolytic processing, proHB-EGF
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shedding as well as the proteolytic release of amphiregulin
have been shown to be independent of their cytoplasmic
moieties (Thorne & Plowman 1994, Dethlefsenet al. 1998,
Vecchi et al. 1998). Besides these structural requirements,
and based on studies with broad spectrum inhibitors, serine
proteases (Pandiellaet al. 1992) and metalloproteases
(Arribaset al.1996, Dempseyet al.1997, Brownet al.1998)
have been identified as potential mediators of ectodomain
shedding. More recently, data obtained from transgenic
animals lacking the ADAM17 (TACE) zinc-dependent
transmembrane metalloprotease, revealed a critical
contribution to proTGFα processing (Peschonet al. 1998).
Interestingly, phenotypical changes of TACE knock-out mice
closely resemble those obtained from animals lacking TGFα
(Luettekeet al.1993) or the EGFR (Sibilia & Wagner 1995,
Threadgill et al. 1995), suggesting a general role of this
enzyme in EGFR signalling (Werb & Yan 1998). The
involvement of another family member, ADAM9/MDC9, in
TPA-induced proHB-EGF shedding further underlines the
critical role of this metalloprotease family in the generation
of mature EGF-like ligands (Izumiet al. 1998). However,
considering that there are more than fifteen ADAMs with an
active metalloprotease function the identity of the
metalloproteases involved in the processing of most of the
EGF-like growth factor precursors and the regulatory
mechanisms governing this important process are still
unknown.

Ectodomain cleavage affects not only ligands of the EGF
family but also some of their receptors (Vecchiet al. 1996,
reviewed in Blobel 2000). Proteolytic processing of HER2
and HER4 in response to pervanadate, a potent inhibitor of
tyrosine phosphatases, has been shown to be mediated by
metalloproteases, namely ADAM17 for HER4 (Vecchi &
Carpenter 1997, Vecchiet al. 1998, Codony-Servatet al.
1999, Rio et al. 2000). Taken together, the generation of
mature ligands from growth factor precursors and the
regulated cleavage of transmembrane receptors represents a
further mode of EGFR family signal regulation which is far
from being understood at the molecular level.

Homo- and heterodimerisation of EGFR family
members

The EGFR family of RTKs consists of four closely related
type I transmembrane receptors: the EGFR (Ullrichet al.
1984), HER2 (ErbB2/neu) (Coussenset al. 1985), HER3
(ErbB3) (Krauset al. 1989, Guyet al. 1994) and HER4
(ErbB4) (Plowmanet al. 1993). To study the physiological
functions of these receptors, cell model systems have been
established which ectopically express one individual RTK or
several in combination (Rieseet al. 1995, Olayioyeet al.
1998). Investigations based on these systems soon
established the unique role of HER2 as a receptor with high
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transforming activity (Di Fioreet al. 1987, Hudziaket al.
1987) which can be transphosphorylated through
heterodimerisation with the ligand-occupied EGFR (Stern &
Kamps 1988, Goldmanet al. 1990) and which acts
synergistically with the EGFR (Kokaiet al. 1989) or HER3
(Alimandi et al. 1995, Zhanget al. 1996) in transforming
NIH3T3 cells. Moreover, homo- and heterocomplexes
formed in response to NRG and EGF were characterised by
a complex but hierarchical network of interreceptor
interactions (Rieseet al. 1995, Wallaschet al. 1995,
Pinkas-Kramarskiet al.1996b, Tzaharet al.1996) (Table 1).
In this context the orphan HER2 was shown as the preferred
heterodimerisation partner within the EGFR family as it
decreases ligand dissociation from the receptor heterodimer
thus enhancing and prolonging the activation of the MAP
kinase signalling pathway (Graus-Portaet al. 1995, 1997,
Karunagaranet al. 1996). Heterodimers, particularly those
containing HER2 were generally found to induce signals with
the strongest biological activity. Generally, ligand-induced
signalling must be initiated by high affinity binding of
EGF-like ligands to the EGFR and HER4 (Beerli & Hynes
1996, Rieseet al. 1996a,b, 1998) or neuregulin binding to
HER3 or HER4 (Sliwkowskiet al. 1994, Pinkas-Kramarski
et al. 1998) followed by activation in trans via homo- or
heterodimerisation. Mechanistical studies of ligand–receptor
complex formation support a bivalence model of ligands
carrying a high and a low affinity binding site within each
terminus of the protein (Barbacciet al. 1995, Tzaharet al.
1997). This model readily explains EGF-induced EGFR
homodimerisation (Summerfieldet al. 1996, Lemmonet al.
1997) as well as NRG-induced heterodimerisation with
HER2 preferentially bound via the low affinity binding site
of the ligand (Tzaharet al. 1997). Complexity within the
EGFR family network is further increased since EGF and
betacellulin, which directly bind to the EGFR or HER4,
mediate signalling through co-expressed HER2 and HER3 in
the absence of the EGFR (Alimandiet al. 1997,
Pinkas-Kramarskiet al. 1998).

Table 1 Signalling network of EGFR family members. The table shows multiple EGF-like ligands with specificity to distinct
heterodimers and their cytoplasmic substrates. Note that only some of the known EGF-like ligands are represented

Heterodimer Ligands Substrates

EGFR/HER2 EGF/TGFα
Src, ras-GAP, PLCγ, Shc, Grb-2, Grb-7, Crk, c-Cbl, c-Abl, Shp2β-Cellulin

EGFR/HER3 EGF/TGFα
Src, ras-GAP, PLCγ, Shc, Grb-2, Grb-7, Crk, c-Cbl, c-Abl,β-Cellulin

NRG α/β PI3K, Src, ras-GAP, PLCγ, Shc, Grb-2, Grb-7, Crk,
EGFR/HER4 EGF/TGFα

Src, ras-GAP, PLCγ, Shc, Grb-2, Grb-7, Crk, c-Cbl, c-Abl,β-Cellulin
NRG α/β PI3K, Src, ras-GAP, PLCγ, Shc, Grb-2, Grb-7, Crk,

HER 2/HER3 NRG α/β PI3K, Src, ras-GAP, PLCγ, Shc, Grb-2, Grb-7, Crk, Shp2
HER 2/HER4 NRG α/β PI3K, Src, ras-GAP, PLCγ, Shc, Grb-2, Grb-7, Shp2
HER 3/HER4 NRG α/β PI3K, Shc,
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Attenuation of EGFR signalling by
ligand-induced endocytosis

After growth factor binding, homo- and heterodimers
between the four EGFR family members are targeted to
clathrin-coated pits which are internalised in a process
termed ligand-induced endocytosis (reviewed in Carpenter
2000a, Ceresa & Schmid 2000). Investigations with chimeric
receptors and reconstitution systems revealed that the
ligand-occupied EGFR is rapidly internalised and degraded,
while all other RTKs of this family are not (Baulidaet al.
1996). In agreement with this, Pinkas-Kramarskiet al.
(1996b) showed that the rate of EGF uptake through the
EGFR was significantly higher than the HER3–mediated
endocytosis of NRG. Intracellular routing of EGF receptors
to the mildly acidic early endosome is followed by the
decision whether the ligand–receptor complex dissociates,
with the receptor being recycled or not. Complexes which
remain stable under these conditions, such as the EGF/EGFR
complex, are efficiently degraded in lysosomal compartments
thus reducing the cell surface content of the receptor and
its signal capacity. Interestingly, TGFα or NRG binding to
receptors is disrupted within the early endosomes, which
favours receptor recycling and results in more potent
mitogenic signalling (Watermanet al. 1998). EGF-induced
mitogenic responses through the EGFR were shown to be
potentiated by HER2 co-expression to the level achieved by
TGFα stimulation due to enhanced recycling of heterodimers
in contrast to EGF-bound EGFR homodimers (Lenferinket
al. 1998). Together with the finding that increased expression
of HER2 significantly reduces HER2 downregulation and
lysosomal targetting of the EGFR (Wanget al. 1999,
Worthylakeet al. 1999) these studies could further explain
the transforming potential of HER2. Specific structural
features regulate the sorting of internalised receptors. While
the c-terminal domain of HER3 accounts for receptor
recycling to the cell membrane (Watermanet al. 1999), the
EGFR recruits the ubiquitin-protein ligase c-Cbl which
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determines the lysosomal degradation of the receptor after
polyubiquitination (Joazeiroet al. 1999, Levkowitzet al.
1999). In addition to the receptor’s intrinsic kinase activity,
c-terminal residues of the EGFR were shown to be critical
for its lysosomal targeting (Kornilovaet al. 1996). EGFR
modifications through protein kinase C (PKC)-mediated
threonine phosphorylation prevented the receptor from
polyubiquitination and allowed sorting to the recycling
endosome (Baoet al. 2000).

EGFR signalling

Multiple ligands and various combinations of homo- and
heterodimerisation within the EGFR family couple to a
complex and diverse set of biochemical pathways. The
following summary highlights some basic features and recent
advances on EGFR signal transduction.

Ligand-induced receptor dimerisation and subsequent
autophosphorylation of distinct tyrosine residues creates
docking sites for various membrane-targeted proteins.
Cytoplasmic mediators which bind to EGFR phosphotyrosine
residues through SH2– or PTB-domains may either be
adaptor proteins or enzymes. Adaptors such as Shc, Grb2,
Crk or the recently characterised Dok-R protein (Jones &
Dumont 1999) show a modular structure containing protein–
protein interaction domains and putative phosphorylation
sites and act as signalling platforms which extend the
receptor’s repertoire of activated intracellular pathways. Shc
exists in three different isoforms, p46shc, p52shc and p66shc
which are tyrosine phosphorylated upon EGF stimulation and
bind to the activated EGFR and Grb2. Interestingly, while
the 46 and 52 kDa isoforms increase mitogenic signalling
after EGF stimulation and are able to transform NIH3T3 cells
(Pelicci et al. 1992), p66shc has no transforming potential
and negatively influences EGF-induced c-fos transcription
(Migliaccio et al. 1997). Furthermore, enzymes such as
phospholipase Cγ (PLCγ), which hydrolyzes PIP2 thus
generating diacylglycerol and inositol-trisphosphate, or the
cytoplasmic tyrosine kinase c-src link EGFR activation to
second messenger generation and calcium metabolism or
mitogenic signalling cascades respectively. Among the
multitude of signalling pathways activated by the EGFR, the
highly conserved MAP kinase pathway is currently the best
understood.

Activation of the MAP kinase cascade

So far, several distinct MAP kinases have been identified as
targets of the EGFR, among them the extracellular regulated
kinases (Erks) 1 and 2, jun N-terminal kinases (Jnks), p38
and Erk5. Since most of the key components of the Erk1/2
cascade have been characterised, EGF-induced activation of
these serine/threonine kinases serves as a paradigm for signal
transmission from cell surface receptors to the nucleus.
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Following membrane-proximal steps such as Shc and
Grb2 recruitment to the tyrosine phosphorylated receptor, the
small G-protein Ras is activated through the Grb2–bound
exchange factor Sos. Subsequent induction of the serine/
threonine kinase Raf and the dual specificity kinase MEK1
finally activates Erk1/2 which ultimately regulates
transcription factors such as Elk-1 and c-fos (Fig. 1).
Recently, characterisation of heterologous positive and
negative regulators of the Erk pathway generates a more
complete picture from this simplified model. While the
adaptors and EGFR binding proteins p66Shc and Dok-R
have been shown to attenuate EGF-induced Erk activation
(Okada et al. 1997, Jones & Dumont 1999), the Abl
interactor Abi-1 interferes with MAP kinase signalling
through binding to the exchange factor Sos (Fan & Goff
2000). In contrast, overexpression of SUR-8, a scaffolding
protein which complexes with Ras and Raf enhances MAP
kinase activation following EGF treatment as does the SH2
domain containing and Gab1–interacting protein tyrosine
phosphatase Shp-2 (Liet al. 2000, Shiet al. 2000).

Less well characterised is the EGF-induced activation of
Jnk via the small G-proteins Rac1 and Cdc42 (Cosoet al.
1995, Mindenet al.1995). Recent reports position the STE20
related serine/threonine kinase JIK and the adaptor protein
Crk upstream of the small GTPases (Dolfiet al. 1998, Tassi
et al. 1999). In contrast to Crk which is critical for Jnk
activation following EGF treatment of transfected COS7
cells, JIK activity is downregulated by the EGFR and
overexpression of this negatively regulating kinase
diminishes the EGF-induced Jnk activation. Crosstalk
between different RTK families was shown since
platelet-derived growth factor (PDGF) stimulation of Rat-1
fibroblasts induces inhibition of EGFR-mediated Jnk
activation while leaving the Erk signal unaffected (Bagowski
et al. 1999).

Lee and colleages revealed the critical contribution of
Erk5 for EGF-induced cell proliferation and cell cycle
progression. Distinct from Erk1/2 activation, this signalling
pathway does not require Ras activity and is controlled by
the MAP kinase kinase MEK5 (Katoet al. 1998).

Activation of phosphatidylinositol-3–kinase
(PI3K)

Stimulation with EGF results in the activation of the lipid
kinase PI3K which consists of the regulatory subunit p85 and
the catalytic subunit p110 that phosphorylates PIP2
generating the second messenger PIP3 (Bjorgeet al. 1990).
Since the EGFR has no binding site for the SH2–domain
of PI3K, EGF-induced activation of PI3K is relatively weak
compared with other RTKs. In contrast to the EGFR, HER3
contains six putative binding sites for PI3K and potently
activates this enzyme (Soltoffet al. 1994).
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Figure 1 EGFR signalling. Ligand-induced receptor dimerisation and subsequent autophosphorylation of distinct tyrosine
residues creates docking sites for SH2 or PTB domain containing effector proteins. The resulting signalling network initiates
diverse cellular pathways leading to proliferation, migration, gene transcription, cell cycle progression and cell survival. ECM,
extracellular matrix.

The adaptor protein Gab1 was reported as a candidate
for mediating the activation of PI3K by the EGFR and a
recent report demonstrates a positive feedback loop in
EGFR signalling through Gab1 and PI3K (Rodrigueset
al. 2000). EGF-induced tyrosine phosphorylation of Gab1
activates PI3K, and the subsequent generation of PIP3
results in enhanced membrane recruitment and further
increased activation of Gab1. PTEN, a phosphatase
hydrolyzing PIP3, modulates this feedback by decreasing
membrane targeting of Gab1. An important downstream
target of PI3K, protein kinase B (PKB)/Akt is
phosphorylated after membrane recruitment and
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activation of the threonine kinase PDK1 (reviewed in
Alessi & Cohen 1998). Activation of PKB exerts
antiapoptotic effects involving the transcription factor
NF-κB, and recently the EGF-induced activation of
NF-κB via PI3K and PKC has been demonstrated to be
crucial for cell cycle progression in estrogen receptor-
negative breast cancer cells (Biswaset al. 2000) (Fig. 1).
However, PKB is not only a target of the EGFR/PI3K
pathway, it is also involved in the regulation of the
Ras-MAP kinase pathway by phosphorylating Raf and
thereby inhibiting its kinase activity (Zimmermann &
Moelling 1999).
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Activation of Src

The cytoplasmic tyrosine kinase c-Src is involved in
important cellular processes such as mitogenic signalling or
cytoskeletal organisation (reviewed in Belscheset al. 1997).
Substrates of Src upon EGF stimulation include the EGFR
itself, transcription factors of the signal transducer and
activator of transcription (STAT) family, Shc, cytoskeletal
components and proteins of the endocytic machinery such as
dynamin and clathrin (Wildeet al. 1999).

Co-expression and synergistic function of the EGFR and
c-Src for cellular proliferation, invasiveness and tumour
formation point to a close functional connection of these
tyrosine kinases (Maaet al. 1995). In this context, Src
inhibition was shown to reverse the transformed phenotype
of either EGFR- or HER2-overexpressing cells (Karniet al.
1999). Parsons and co-workers showed that c-Src directly
binds the EGFR and phosphorylates two tyrosine residues
distinct from the known autophosphorylation sites, one of
them being critical for EGF-induced mitogenic responses in
murine fibroblasts (Biscardiet al. 1999, Ticeet al. 1999).
However, the indirect activation of Src by the EGFR via the
GTPase Ral leading to STAT3 but not Erk activation has
been reported (Goiet al. 2000). Another study demonstrated
Src-dependent activation of Jak2 and STAT proteins
following stimulation with EGF (Olayioyeet al. 1999).

EGFR and cell adhesion

Growth factor receptors like the PDGFR or the EGFR
interact with integrins which mediate cell–cell adhesion,
cell–matrix association and intracellular signalling
(Miyamato et al. 1996, Schnelleret al. 1997). In a recent
report, the focal adhesion kinase (FAK) has been
demonstrated to link EGFR and integrin signalling pathways,
thereby promoting EGF-induced cell migration independent
of FAK’s intrinsic kinase activity (Sieget al.2000). Together
with its relative Pyk2, FAK has been shown to be important
for EGFR and integrin signalling in neurons where it is
essential for neurite outgrowth, demonstrating the necessity
of a collaboration of growth factor–receptor signalling and
integrin engagement for efficient signal generation
(Ivankovic-Dikic et al. 2000).

EGFR family and cancer

Members of the EGFR family have frequently been
implicated in various forms of human cancers and serve both
as prognostic markers or as therapeutic targets. Several
phenomena are responsible for abnormal activation of these
receptors in tumours, including overexpression,
amplification, constitutive activation of mutant receptors or
autocrine growth factor loops (reviewed in Voldborget al.
1997, Zwicket al. 2000). Recently, Herceptin, an antibody
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against HER2, was applied in the treatment of breast cancer
patients overexpressing this RTK, and inhibitors which target
the EGFR are in clinical trials.

EGFR and HER2 gene aberrations in human
cancers

Elevated expression and/or amplification of the EGFR and
HER2 have been found in a variety of human cancers (Table
2) underlying the critical role of RTKs in human tumour
growth. In most of these cases receptor overexpression is
caused by gene amplification.

In human breast cancer HER2 gene amplification was
correlated with a shorter overall survival and relapse-free
survival (Slamonet al. 1987). Furthermore, Watanabe and
co-workers described a correlation between HER2
overexpression and the absence of estrogen receptors in
breast carcinomas which is consistent with the
non-responsiveness of HER2–positive tumours to endocrine
therapy (Watanabeet al.1993, Nicholsonet al.1994, Wright
et al. 1989, 1992).

Receptor mutations

EGFR mutations

Several deletions in the extra- and intracellular domain of the
EGFR have been found in glioblastomas (Ekstrandet al.
1992), non-small-cell lung carcinomas (Garcia de Pallazzoet
al. 1993), breast cancer (Wikstrandet al. 1995) and ovarian
carcinomas (Moscatelloet al.1995). Genetic alterations were
predominantly observed in human glioblastomas with EGFR
gene amplification; furthermore, in this tumour type multiple
variants of EGFR mutations could be detected within
individual tumours (Fredericket al. 2000).

The EGFRvI deletion, which lacks the extracellular
domain, resembles the v-erb-B oncoprotein and has been
observed in xenografts derived from a malignant human
glioma (Bigneret al. 1990, Sugawaet al. 1990). EGFRvII,
found in gliomas with amplified EGFR genes (Humphrey
et al. 1991), contains an 83 amino acid deletion, spanning
the region between the ligand binding and the
transmembrane domain. EGFRvII responds in a similar
manner to the wildtype receptor and is still capable of
mediating EGF-induced cell proliferation and invasiveness
(Humphreyet al. 1991). The best characterised and most
common EGFR mutant in human cancer is EGFRvIII. The
receptor lacks amino acids 6–273 (801 bp) and arises from
intragene rearrangements or from alternative mRNA
splicing, resulting in the insertion of a glycine residue at
the deletion point (Wonget al. 1992). This deletion has
been observed in malignant gliomas, breast carcinomas
(Moscatello et al. 1995, Wikstrand et al. 1995),
non-small-cell lung carcinomas (Garcia de Pallazzoet al.

Downloaded from Bioscientifica.com at 08/23/2022 06:04:01AM
via free access



Endocrine-Related Cancer (2001) 8 11–31

Table 2 Overexpression of the EGFR and HER2 in human cancers

Type of tumour Receptor Over- Reference
expression (%)

Mammary EGFR 14–91 Klijn et al. (1992); Beckmann et al. (1996); Walker & Dearing (1999)
HER2 21 Paik et al. (1990)

Bladder EGFR 31–48 Salomon et al. (1995); Chow et al. (1997)
HER2 36 Sauter et al. (1993)

Colon EGFR 25–77 Salomon et al. (1995); Messa et al. (1998)
HER2 50 Caruso & Valentini (1996)

Glioma EGFR 40–50 Ekstrand et al. (1991); Salomon et al. (1995); Rieske et al. (1998)
Non-small-cell lung EGFR 40–80 Salomon et al. (1995); Fujino et al. (1996); Rusch et al. (1997);

Fontanini et al. (1998)
Pancreatic EGFR 30–50 Salomon et al (1995); Uegaki et al. (1997)
Ovarian EGFR 35–70 Salomon et al. (1995); Bartlett et al. (1996); Fischer-Colbrie et al.

(1997)
HER2 32 Berchuck et al. (1990)

Gastric HER2 26 Lemoine et al. (1991)
Lung HER2 28 Tateishi et al. (1991)
Salivary HER2 32 Stenman et al. (1991)
Head and neck EGFR 80–100 Salomon et al. (1995); Grandis et al. (1996)

1993) and ovarian tumours (Moscatelloet al. 1995). The
EGFRvIII mutation causes a receptor with a constitutively
active kinase function thus stimulating cellular proliferation
in the absence of ligands (Ekstrandet al. 1994). EGFRvIII
is able to transform NIH3T3 cells (Moscatelloet al. 1996)
and strongly enhances the tumorigenicity of human glioma
cells in nude mice (Nishikawaet al. 1994). However, the
inserted glycine residue which creates a new epitope at the
splice site and the tumour-selective expression of EGFRvIII
qualify this mutant as a target for specific inhibitory
antibodies (Humphreyet al. 1990, Hills et al. 1995,
Lorimer et al. 1995). Moreover, the expression of
EGFRvIII in gliomas leads to resistance to cisplatin, a
commonly utilised chemotherapeutic agent (Naganeet al.
1998), suggesting the need for specific EGFRvIII inhibition
in combination with chemotherapy.

HER2 mutations
In tumours from MMTV/Neu mice a deletion was found in
the extracellular region of Neu, the rat HER2 homologue,
resulting in a constitutively activated receptor capable of
transforming Rat-1 fibroblasts (Bouchardet al. 1989, Guyet
al. 1992, 1996). Furthermore, Bargmann and co-workers
(1986) found a point mutation (V664E) in the transmembrane
domain of the neu oncogene in chemically induced rat
neuroblastomas causing increased tyrosine phosphorylation
of the receptor (Bargmannet al. 1986). Nevertheless, no
similar mutations have been described in human tumours to
date. Distinct from this, a polymorphism in the
transmembrane domain of human HER2 has been reported
in healthy individuals as well as in neuroectodermal tumours
(Papewaliset al. 1991). Recently, this mutation has been
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correlated with a decreased risk to develop breast cancer (Xie
et al. 2000).

Autocrine growth factor loops

While the transforming capacity of overexpressed HER2 was
shown as a ligand-independent process, constitutive EGFR
activation has often been associated with autocrine growth
factor loops. In colon cancer cell lines amphiregulin acts as a
potent autocrine factor (Damstrupet al. 1999). TGFα is the
most prominent EGFR ligand which is frequently
co-expressed with the EGFR in non-small-cell lung cancers
(Hsieh et al. 2000), prostate cancer (Sethet al. 1999) and
gastrointestinal stromal tumours (Caiet al. 1999). In human
mammary epithelial cells the critical contribution of
metalloproteases in generating biologically active TGFα could
be shown since batimastat, a metalloprotease inhibitor, is able
to inhibit cell proliferation and migration (Donget al.1999).

EGFR family members as therapeutic
targets

Due to their frequent overexpression and high signalling
capacity the EGFR and HER2 are promising targets for
therapeutic intervention in human cancer. Recent studies
linked these receptors and their ligands to drug resistance
(Wosikowski et al. 1997), and receptor overexpression has
also been correlated with tumour resistance to cytotoxic
agents including radiation. Therefore, selective drugs may
contribute to improved cancer therapy and various
approaches based on the biochemical properties of these
cell surface receptors are under investigation (Fig. 2).
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Figure 2 A schematic representation of the EGFR as a target for anti-cancer therapies. Four different strategies for inhibiting
EGFR expression or activity are shown: monoclonal antibodies (Mab) against the extracellular ligand-binding domain; antisense
oligonucleotides against EGFR mRNA; ligand–toxin conjugates which kill target cells following endocytosis; small molecular
tyrosine kinase inhibitors (TKI) which inhibit ligand-induced EGFR activation.
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Monoclonal antibodies

Monoclonal antibodies raised against several epitopes of the
EGFR or HER2, as well as EGF and TGFα blocking
antibodies are now in clinical trials, either alone or in
combination with other therapeutic agents. The prototypical
therapeutic antibody Herceptin (Trastuzumab, rhu4D5)
which targets HER2 recognises the receptor’s extracellular
domain (Fendlyet al. 1990). Herceptin binding leads to a
decreased kinase activity combined with the inhibition of
proliferation and the hypersensitivity to both pro-apoptotic
tumour necrosis factorα (TNFα) as well as cytotoxic
which targets HER2 recognises the receptor’s extracellular
domain (Fendlyet al. 1990). Herceptin binding leads to a
decreased kinase activity combined with the inhibition of
proliferation and the hypersensitivity to both pro-apoptotic
tumour necrosis factorα (TNFα) as well as cytotoxic
cisplatin, paclitaxel and doxyrubicin in HER2 overexpressing
cells (Hudziaket al. 1989, Hancocket al. 1991). In clinical
trials, Herceptin was well tolerated in women with metastatic
breast cancer overexpressing HER2 and produced durable
objective responses (Baselgaet al. 1996, Cobleighet al.
1999). Recently, Park and co-workers (2000) developed a
structure-based 1.5 kDa peptide mimic functionally similar
to Herceptin that is able to reduce HER2 signallingin vitro
and in vivo which could be a viable candidate for use in
clinical trials. However, Herceptin which was approved by
the Food and Drug Administration in 1998 is the first
target-selective drug raised against an oncogenic cell surface
receptor and therefore represents the first example of a new
era of anti-cancer therapy.

Cetuximab (C225), a monoclonal antibody directed
against the extracellular domain of the EGFR, efficiently
competes with EGFR ligand binding due to its high affinity
for the receptor (Goldsteinet al. 1995). Furthermore,
Cetuximab-like antibodies were shown to induce receptor
internalisation and therefore downregulate EGFR signalling
(Sunadaet al. 1986). The general antitumour effect of C225
has been shown in human ovarian, breast, colon and renal
carcinoma cell lines (Prewettet al. 1998, Ciardielloet al.
1999). In combination with radiotherapy, C225 increases
tumour cell terminal differentiation and inhibits tumour
angiogenesis thus enhancing the response to radiation, as
shown in xenografts from epidermoid carcinomas and head
and neck squamous cell carcinomas (Huang & Harari 2000,
Milas et al. 2000). Finally, treatment of ovarian cancer cells
with both C225 and Herceptin results in an additive
anti-proliferative effect, suggesting a potential synergistic
effect for anti-cancer treatment (Yeet al. 1999).

Ligand–toxin and immunotoxin conjugates

Ligand–toxin fusion proteins against the EGFR are
constructed using NRG, EGF or TGFα conjugated to various
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truncated forms ofPseudomonasexotoxin A and other less
immunogenic cellular toxins (reviewed in Noonberg & Benz
2000). These ligand–toxin conjugates enter the cells through
receptor-mediated endocytosis and kill the target cell through
inhibition of protein synthesis (Fitzgerald 1996, reviewed in
Noonberg & Benz 2000). Based on a similar principle,
approaches with immunotoxins which contain the EGF
ligand fused to genistein, a broad spectrum tyrosine kinase
inhibitor, are currently under investigation (Uckunet al.
1998a,b, Shaoet al. 1998).

Antisense oligonucleotides

Another strategy to inhibit the receptor activity are antisense
oligonucleotides, short pieces of synthetic DNA or RNA
which interact with the mRNA and therefore efficiently block
transcription of specific cellular target proteins (Marcussonet
al. 1999). Growth inhibition using oligonucleotides directed
against the EGFR or TGFα has been shown in cancer cell
lines such as ovarian carcinoma, breast, prostate cancer and
head and neck squamous cell carcinoma cell lines (Grandis
et al. 1998, Rubensteinet al. 1998, Witterset al. 1999).

Tyrosine kinase inhibitors

Taking advantage of structure-based drug design and the
variability of combinatorial chemistry, small molecule drugs
developed against RTK kinase domains represent another
promising approach in cancer therapy (reviewed in Levitzki
1999). ATP analogues of the Tyrphostin family have been
developed to show specificity towards the ATP-binding sites
of the EGFR and HER2 thereby inhibiting these kinases
(Moyer et al. 1997, reviewed in Levitzki 1992, Gazitet al.
1991, Osherovet al.1993). The EGFR-specific AG1478 was
shown to prevent primary glioblastoma cells from invading
brain aggregates (Penaret al. 1997) and to abrogate
proliferation of prostate cancer cells (Kondapaka & Reddy
1996). In addition, AG1478 inhibits EGFR as well as HER2
signalling in MMTV/Neu+MMTV/TGFα bigenic mice and
suppresses mammary tumorigenicity (Lenferinket al. 2000).
Another promising EGFR inhibitor, ZD-1839, which shows
an antiproliferative effect in ovarian, breast and colon cancer
cells is under clinical development (Ciardielloet al. 2000).

Transactivation of EGF receptor family
members

Cross-communication between heterologous signalling
systems is essential to integrate the variety of extracellular
stimuli into a limited number of signalling pathways. The
EGFR and HER2 have been identified as critical elements in
signal transduction networks utilised by G-protein-coupled
receptors, cytokine receptors, integrins, ion channels and
RTKs (reviewed in Gschwindet al. 2001, Carpenter 2000b,
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Prenzelet al. 2000). To distinguish this non-classical mode
of activation from receptor activation by its cognate ligands
this process has been termed EGFR transactivation.

RTK transactivation by cellular stress

Since 1989 when Schlessinger and colleagues found that the
EGFR and its relative HER2 become tyrosine phosphorylated
in response to hyperosmotic shock (Kinget al.1989), various
other non-physiological stimuli such as UV and gamma
radiation, membrane depolarizing agents and several
oxidants have been shown to regulate the activation state of
RTKs (Sachsenmaieret al. 1994, Cofferet al. 1995, Huang
et al.1996, Knebelet al.1996, reviewed in Weisset al. 1997
and Carpenter 1999). Furthermore, the association of the
EGFR with Shc and Grb2 adapter proteins or with
phospholipase Cγ following UV treatment underlined the
functional importance of this ligand-independent RTK
transactivation (Huanget al. 1996, Knebelet al. 1996).
Based on the findings which revealed the critical involvement
of RTK antagonistic protein tyrosine phosphatases (PTPases)
in UV-induced effects (Knebelet al.1996), PTPases together
with generated reactive oxygen intermediates (ROIs) are
thought to be key modulators of the RTK activation state.

GPCR-induced EGFR transactivation

In 1996, Daub and co-workers found that the EGFR was an
essential element in coupling ligand stimulation of
G-protein-coupled receptors specific for lysophosphatidic
acid (LPA), thrombin and endothelin-1 (ET-1) to the
Ras-MAP kinase pathway, c-fos gene transcription and cell
growth (Daubet al. 1996). In this report, specific inhibition
of the EGFR function by either the small molecule drug
AG1478 or a dominant negative receptor mutant blocked
GPCR-induced mitogenic signalling in Rat-1 cells. The
ligand-independent mechanism described was reminiscent of
stress-induced EGF receptor activation thus pointing to
inactivation of PTPase activity rather than the involvement
of EGF-like ligands. This initial finding was followed by a
number of studies which showed the crucial contribution of
the EGFR for signalling of various GPCRs via all classes
of G-proteins to a variety of different cellular messengers
(reviewed in Gschwindet al. 2001, Carpenter 1999, Zwick
et al. 1999a). In general, EGFR transactivation is
characterised by rapid and transient kinetics (Daubet al.
1997, Keelyet al. 1998, Li et al. 1998) and the critical
dependence on the receptor’s intrinsic tyrosine kinase
domain (Daubet al. 1996, Tsaiet al. 1997, Zwick et al.
1997, Eguchiet al. 1998).

Mechanism of EGFR transactivation

Based on the rapid onset of GPCR-induced EGFR tyrosine
phosphorylation and the absence of EGF-like ligands in the
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cell culture media after G-protein activation (Tsaiet al.1997,
Eguchi et al. 1998), a mechanism exclusively attributed to
intracellular elements was postulated (Daubet al. 1996,
reviewed in Zwicket al. 1999a). In this context, several
candidate cytoplasmic tyrosine kinases, Ser/Thr kinases and
second messengers have been discussed as potential
mediators of EGFR transactivation.

Involvement of Src kinases
Non-receptor tyrosine kinases of the Src family have
frequently been implicated in GPCR-induced activation of
the Ras-MAP kinase pathway (Luttrellet al. 1996).
Gi-mediated and therefore pertussis toxin (PTX)-sensitive or
βγ-mediated EGFR tyrosine phosphorylation and MAP
kinase activation via Src-kinases was shown in COS-7 cells
(Luttrell et al. 1997). In contrast, while LPA-induced Erk2
induction was abrogated by Src inhibition, EGFR
transactivation was unaffected in the same cell line (Daubet
al. 1997). In vascular smooth muscle cells, PP1, an inhibitor
of Src-like kinases blocked angiotensin II (ATII)-induced
EGFR tyrosine phosphorylation (Bokemeyeret al. 2000). In
line with these reports GPCR ligands such as
gonadotrophin-releasing hormone and neuropeptide YY
(PYY) activate the MAP kinase pathway in various cell types
dependent on both EGFR function and Src kinase activity
(Grosseet al.2000a, Mannon & Mele 2000). However, these
newer findings did not depict the concrete position of Src
acting up- or downstream of the EGFR in further detail. The
idea that Src family kinases represent a point of convergence
for different pathways (Della Roccaet al. 1999) is further
supported by the existence of Src-EGFR complexes
following ATII or carbachol stimulation (Eguchiet al.1998,
Keelyet al.2000) and Src-GPCR association in isoproterenol
treated cells (Luttrell et al. 1999). The finding that
ATII-induced Src recruitment to the EGFR is not sensitive
to AG1478 suggested the EGFR as a scaffold for
pre-activated Src (Eguchiet al. 1998). Remarkably, Parsons
and colleagues showed that mutation of Tyr845, a Src
phosphorylation site within the EGFR, is critically involved
in LPA and EGF-induced mitogenic signalling without
altering the receptor’s intrinsic kinase activity (Ticeet al.
1999). In conclusion, regardless of their signalling position,
Src kinases act as critical players in GPCR as well as in
EGFR signalling and may contribute to GPCR-induced
EGFR transactivation to varying extents, depending on the
cellular context and the activated receptor.

Involvement of calcium and Pyk2
Based on the observation that calcium influx is sufficient to
trigger MAP kinase activation and EGFR tyrosine
phosphorylation in PC12 cells (Rosen & Greenberg 1996),
Zwick et al. (1997) revealed the functional role of the EGFR
as a critical mediator of both calcium-induced and
bradykinin-triggered MAP kinase activation. This cell
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type-specific picture has recently been extended since several
findings have demonstrated Ca2+ to be necessary for ET-1,
ATII, UTP and carbachol-induced EGFR transactivation in
several model systems (Eguchiet al. 1998, 1999, Matsubara
et al. 1998, Soltoff 1998, Keelyet al. 2000) and for the
action of interleukin-8 in ovarian cancer cells
(Venkatakrishnanet al. 2000). Due to this critical function
of Ca2+, the Ca2+-regulated FAK family kinase Pyk2 (Levet
al. 1995) was discussed as a mediator of EGFR
transactivation in the signalling elicited by carbachol in
intestinal epithelial cells (Keelyet al. 2000) and UTP in
PC12 cells (Soltoff 1998). While Keelyet al. (2000) reported
the transactivation-dependent recruitment of Pyk2 and Src to
the EGFR, the failure of AG1478 to inhibit Pyk2 tyrosine
phosphorylation in response to UTP led to the speculation
that Pyk2 acts upstream of the EGFR signal (Soltoff 1998).
However, inducible-expression of a kinase-inactive Pyk2
mutant did not affect either GPCR- or calcium-induced
transactivation suggesting a role of this kinase in parallel to
the EGFR (Zwicket al.1999b). Similar to Src kinases, Pyk2
may exert diverse biological functions depending on its
restricted expression and the activating receptor or stimulus
(Lev et al.1995, Dikicet al.1996, Della Roccaet al.1999).
Very recently, Pyk2 was shown as a potent mediator of
ATII-induced c-Jun NH2–terminal (Jnk) kinase activation
and c-jun gene expression (Murasawaet al.2000), a process
distinct from EGFR and Ras activation which mediate
ATII-induced Erk induction (Eguchiet al. 1998, Murasawa
et al. 1998).

Involvement of PKC
The serine/threonine kinase PKC has often been implicated
as a mediator of EGFR transactivation especially following
stimulation of Gq-coupled receptors. Nevertheless, even
though both the M1 and M3 subtypes of muscarinic
acetylcholine receptor couple to Gq-proteins, carbachol-
induced EGFR tyrosine phosphorylation was blocked by the
PKC inhibitor GF109203X only in M1R expressing HEK293
cells (Tsaiet al.1997, Slack 2000). Interestingly, abrogating
PKC function even enhanced M3R-induced crosstalk
significantly (Slack 2000), while in colonic epithelial cells,
Keely and colleaques (1998) observed no prominent role of
PKC in signalling from M3R to Erk activation. While EGFR
transactivation was strictly PKC-dependent in gonado-
trophin-releasing hormone-stimulatedαT3–1 gonadotrophs
and PC12 cells treated with UTP (Soltoff 1998, Grosseet al.
2000b), PKCε was found downstream of the EGFR in a gut
epithelial cell line treated with the peptide GPCR agonist
PYY (Mannon & Mele 2000). ATII-stimulated EGFR
transactivation in rat liver epithelial cells was shown only if
PKC function was blocked (Liet al. 1998). Finally,
bradykinin stimulation of COS-7 cells was mediated by both
EGFR transactivation and PKC activation via independent
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signalling pathways which converged at the small GTPase
Ras (Adomeitet al. 1999).

Taken together, EGFR transactivation links stimulation of
various G-protein-coupled receptors to a plethora of cellular
phenomena such as MAP kinase activation (Cunnicket al.
1998, Castagliuoloet al.2000), gene transcription (Daubet al.
1996, Vaingankar & Martins-Green 1998, Moriguchiet al.
1999), regulation of ion channels (Tsaiet al. 1997), PI3K
activation (Daubet al. 1997, Laffargueet al. 1999) and
cytoskeletal rearrangements (Gohlaet al.1998, 1999).

Several cytoplasmic mediators contribute to varying
extents to GPCR-induced EGFR transactivation but a general
and new principle which extended the classical mechanistic
view by some new and previously unexpected elements will be
summarised in the following section.

Triple membrane-passing signal mechanism of
GPCR-induced EGFR transactivation
As discussed above, EGFR transactivation has been
considered to be mediated exclusively by intracellular
elements in a ligand-independent mechanism. In contrast to
this, stimuli such as TPA and Ca2+ ionophores which are
known to induce tyrosine phosphorylation of the EGFR, and
activators of heterotrimeric G-proteins, AlF4− and GTPγS,
were shown to induce the cleavage of EGF-like growth factor
precursors thus generating mature ligands (Bosenberget al.
1993, Goishiet al. 1995, Dethlefsenet al. 1998). Moreover,
the finding that a chimeric receptor, consisting of the
ligand-binding domain of the EGFR and the PDGF receptor’s
transmembrane and intracellular part, can be transactivated
supported the notion that the EGFR extracellular domain is
involved in the GPCR-EGFR cross-talk (Prenzelet al.1999).
Intercellular EGFR transactivation after carbachol
stimulation of co-cultured cell lines stably expressing either
the M1R or the human EGFR further underlines the thesis that
a diffusible factormaymediate the effects observed. In another
set of experiments we could show that several ligands for
GPCRs such as LPA, thrombin or bombesin can induce the
proteolytic processing of the proHB-EGF precursor, and
inhibition of HB-EGF function abrogated EGFR
transactivation in COS-7 and HEK 293 cells. Finally,
treatment of cells with the broad-spectrum metalloprotease
inhibitor Batimastat completely blocked GPCR-induced
proHB-EGF shedding and subsequent EGFR and Shc tyrosine
phosphorylation thus leading to themolecular model of a triple
membrane-passing signal mechanism (Prenzelet al. 1999)
(Fig. 3). Despite the identification of these previously
unexpected but critical pathway elements, the nature of the
metalloprotease and the mechanism of its G-protein-mediated
activation are not yet clear. Very recently, however, other
studies confirmed this concept of metalloprotease-mediated
and therefore ligand-dependent transactivation mechanism.
Thrombin-induced EGFR transactivation and cell migration in
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Figure 3 Triple-membrane-passing signal mechanism (TMPS) of the EGFR transactivation. GPCR-induced and
metalloprotease-mediated proteolytic cleavage of EGF-like growth factor precursors leads to transactivation of the EGFR. This
mechanistic signalling model for ligand-dependent interreceptor communication encloses three membrane passages and
couples GPCR activation to the Ras-MAP kinase (MAPK) pathway.

smoothmuscle cells was shown to bemediated by proHB-EGF
shedding (Kalmeset al.2000). The same ligand is critical for
estrogen-induced and GPCR-mediated EGFR transactivation
and Erk activation in breast cancer cell lines (Filardoet al.
2000). This finding, together with the observation that
bombesin-induced EGFR tyrosine phosphorylation and basal
EGFR activation are Batimastat sensitive in PC3 prostate
cancer cells (Prenzelet al.1999) underlines the putative role
of the transactivated EGFR in hyperproliferative disorders
such as cancer (Vaccaet al.2000, reviewed in Gschwindet al.
2001).

Conclusion

Since the initial cloning of the EGFR in 1984 and the following
characterisation of HER2 and its relatives, the investigation of
theEGFR family of RTKs has contributed to the understanding
of fundamental cellular processes such as growth,
differentiation and transformation. Despite the high
complexity of signal generation with a variety of activating
ligands, four related receptors and multiple intracellular
effectors, numerous elegant studies have shed light on the
basic mechanisms of this interconnected signalling network.
Additionally, cross-communication between other cell surface
receptors and the EGFR and their potential involvement in
hyperproliferative diseases underlines the critical position of
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EGFR family members as hot spots of signalling and
promising therapeutical targets. However, key network
components, such as the regulators of growth factor precursor
shedding and receptor-specific antagonistic phosphatases are
still not identified, but the growing field of proteomics and
additional information from genomics will provide tools and
knowledge to unravel their identity.
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