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The skin is an efficient barrier which protects our bodies from the
external environment but it is also an important site for the perception of
various stimuli. Sensory neurones of the peripheral nervous system send
many primary afferent fibres to the skin. They pass through the dermis
and penetrate the basement membrane to innervate epidermal cells or
remain as free endings. Nerve fibres are clearly involved in somato-
sensation. However, they are not always so numerous, for example in
distal parts of the limbs, and some kinds of sensors can be at a distance of
hundreds of micrometers from each other. The skin can detect patterns at
a very fine and smaller scale, which suggests that nerve terminals are
helped by epidermal sensors.All epidermal cells (keratinocytes, melano-
cytes, Langerhans cells and Merkel cells) express sensor proteins and
neuropeptides regulating the neuro-immuno-cutaneous system. Hence,
they must play a part in the epidermal sensory system. This review will
consider the epidermal components of this forefront sensory system and
the stimulations they perceive. The epidermis can be considered a true
sensory tissue where sensor proteins and neurone-like properties enable
epidermal cells to participate in the skin surface perception through
interactions with nerve fibres.
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O ver the last 15 or 20 years, numerous studies have
shown an impressive number of interactions be-
tween the skin, immunity and the nervous system.

These new data were so fascinating that they relegated to
the middle distance the sensory function of the skin nervous
system! Since some nerve endings and sensory receptors
appear to be not so numerous in distal part of the body [1-5],
the participation of epidermal cells is investigated. New
studies reveal that interactions between the epidermis and
nerve endings are involved in sensory functions and that the
epidermis can be considered as a sensory organ.

The neuro-immuno cutaneous system

It has been widely demonstrated that the skin is an organ of
communication [6]. Epidermal cells connect the skin to the
mind through a complex communication network, tightly
related to the neuroendocrine and the immune systems
[7-9]. Langerhans cells and mast cells are key cells to
bridge the gap between neuroendocrine and immune sys-
tems in the skin [10, 11]. They take part in the endocrine
system through the metabolism of vitamin D or the produc-
tion of neurohormones [12-14]. They affect the permeabil-
ity of blood vessels [15] and are implicated in wound
healing [16], pruritus and other dermatological disorders
like psoriasis [17-19]. Furthermore, epidermal cells act on
the nervous system at local and central levels, so much so
that 30 to 40% of dermatological patients also have psycho-
logical problems [20]. Epidermal cells are believed to
modulate the sensory information of touch [21] or pain [22,
23].After ultraviolet (UV) exposure, they lead to a decrease
in the pain threshold [24, 25] and immunomodulatory ef-
fects through pro-opiomelanocortin (POMC)-peptide re-
lease [26]. Conversely, the brain can affect cutaneous func-
tions in an efferent manner to stimulate target tissues; for
example during neurogenic inflammation [27, 28]. Hence,
the brain-epidermis connection is multi-directional and
leads us to consider the integrated neuro-immuno-
cutaneous system (NICS) [8, 25].
The NICS consists of a common language shared by sen-
sory neurones, keratinocytes, melanocytes, Langerhans
cells and Merkel cells, with the neuromediators as letters.
These powerful molecules are widely involved in skin
physiology and the response to a stimulus. Skin cells are
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able to recognize the relevant biological signals transmitted
through neuromediators with high specificity because they
synthesize the receptors themselves [12, 16]. Such neuro-
endocrine capabilities are critical for the activity of the
NICS. In the NICS, it is currently understood that substance
P (SP) plays a key role in pain sensitization [29] and leads to
mast cell degranulation [13], that POMC and derivatives
are immunomodulators, that neurotrophines, like the nerve
growth factor (NGF), are mitogenic proteins which also
stimulate nerve fibre sprouting, regulate neuropeptides syn-
thesis and probably take part in psoriasis [30] and that
catecholamine acts as an inflammatory factor. Acetylcho-
line, calcitonin gene-related peptide (CGRP), vasoactive
intestinal peptide (VIP) and neuropeptideY (NPY) seem to
act differentially, depending on the skin environment.
Therefore, the NICS acts locally, at the level of the neuro-
genic inflammation, but it is also considered to affect the
whole organism via the endocrine and neurocrine pathways
[31, 32]. Until now, the concept of NICS mainly described
the effects of the nervous system on skin cells through the
presence of synapses, neurotransmitters and specific recep-
tors in the skin. We now know that the epidermis also
appears at the forefront of the sensory system [33], as
revealed by new data on the sensory abilities of epidermal
cells.

Sensor proteins
Various sensor proteins are present on neurones of the
peripheral nervous system, which are believed to be the
unique transducers in skin perception. Nerve fibres are
densely packed within the face and tactile areas like finger
tips or ano-genital areas but the number of nerve endings
decreases from the trunk to the distal parts of the limbs,
without decreasing touch sensitivity [1]. Epidermal cells
are thought to relay the signal transduction because they
express many sensor proteins like those found in neurones.
These proteins are mainly transmembrane proteins which
allow transformation of stimuli like touch, osmotic pres-
sure, temperature or chemical stimulations to biochemical
intra-cellular messages (table 1) [5, 33]. Such neurone-like

properties permit the whole epidermis to have sensory
functions.
Among these sensor proteins, the transient receptor poten-
tial (TRP) family is the most important. TRP channels
belong to a family of six transmembrane domain receptors
which are divided into seven subtypes. TRPV1 (TRP vanil-
loid 1) is the most characterized receptor and probably the
most expressed within the epidermis. TRPV1 is highly
expressed in neurones involved in pain transmission and
neurogenic inflammation (C and Ad-fibres [34]) but also
shows a strong immunoreactivity in keratinocytes from the
upper and the basal layers of the epidermis (figure 1) [5,
35]. In humans, the temperature responsiveness ranges
from – 10 to 60 °C. Pharmacological data are consistent
with a major role of TRPV1 in the detection of temperatures
over 42 °C and acidic conditions below a pH of 6.6 [36].
Another interesting property of TRPV1 is its ability to bind
capsaicin, the molecule which confers spiciness to chili
peppers, with high affinity. Thus TRPV1 activation evokes
sensations ranging from warmth to burning pain, as well as
piquant taste [35]. Consequences of its activation vary
according to the context. Once activated by capsaicin, the
TRPV1 channel first leads to calcium influx and neuropep-
tide release. But the lasting calcium influx, with too high
intracellular calcium concentrations, leaves the neurone
desensitized, thus it loses its ability to induce the release of
neuropeptides such as SP, which is co-localized [37]. This
is responsible for a transient insensitivity, which is ex-
ploited by dermatologists to induce analgesia or anti-
inflammatory effects [38]. The heat-gated TRPV2 channel
is strongly expressed in Ad-fibres; it is activated for tem-
peratures above 53 °C, for example in the case of burns,
where it must be involved in the warning stimulation [39].
The TRPV3 channel is a camphor sensitive receptor found
in sensory neurones and keratinocytes of the inner bound-
ary of the epidermis. It is activated by heat from 31 °C to
39 °C [40]. This discrepancy in the results obtained may be
due to the thermal history of the cell [39]. The TRPV4
channel, present in keratinocytes and Merkel cells, exhibits
an apparent threshold of about 27 °C and reacts to hypo-

Table 1. Putative ion channels believed to be implied in somatosensation in mammals

Name Physical stimuli Chemical stimuli Cells

TRPA1 Thermal, mechanical Isothiocyanates, Ca2+, icilin C-fibres
TRPC1 Mechanical Store-operated calcium channel Mechanosensory neurones
TRPM8 Thermal Menthol, icilin C-fibres
TRPN1 Mechanical None known Hair cell, bristles
TRPV1 Thermal, osmotic Capsaicin, proton, endocanabinoïds,

Amandamide, protons, diphenyl
compounds

C, Ad-fibres, keratinocytes

TRPV2 Thermal, osmotic, mechanical Diphenyl compounds Ad, Ab-fibres, immune cells
TRPV3 Thermal Camphor, carvacrol, diphenyl

compounds
Keratinocytes, C-fibres

TRPV4 Thermal, osmotic cell swelling Phorbol ester (4aPDD),
epoxyeicosatrienoic acid

Keratinocytes, Merkel cells, Ad
and C-fibres

ASIC1 Mechanical Protons Ad, Ab and C-fibres
ASIC2 Mechanical Protons Ad and Ab-fibres
ASIC3 Mechanical Protons Ad and Ab-fibres
MEC4 Mechanical None known mechanosensory neurones
MEC 10 Mechanical None known mechanosensory neurones
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osmolarity [41, 42]. Cold transduction is mainly ensured by
the melastatin cation channel TRPM8, which is menthol-
sensitive. This receptor gates at temperatures below 30 °C.
TRPM8 is expressed almost exclusively in a subpopulation
of C-fibres representing 10% of the sensory neurones [43].
TRPA1, a member of the TRP ankyrin-repeats family has
been reported to be activated below 18 °C, so it may also
participate in the cold responsive behaviour [44].
The molecular transduction mechanism of touch is largely
unknown. Three models have arisen to explain touch per-
ception. First, high speed channels convert stimuli into an
electrical signal. This may occur in hair cells of the organ of
Corti because of their remarkable transduction speed. In
mammals, hair cells are the most commonly used model to
study the molecular basis of the mechanotransduction. The
second possibility is that the ion channels are tethered to the
cytoskeleton or extracellular matrix. Membrane move-
ments induce the opening of ion channels to generate elec-
trical activity [45]. The 3rd possibility is that a mechano-
sensory protein initiates a second messenger cascade
leading to the opening of the ion channels, thus producing
depolarization [44].
To better understand the intimate mechanisms of touch,
invertebrate models were used. Genetic screenings based
on the light-touch machinery in C. elegans have led to the
discovery of 2 proteins, MEC-4 and MEC-10, which be-
long to the Degenerin/Epithelial sodium channel family
(Deg/ENaC). This family is characterized by common N
and C terminals, two membrane-spanning sequences and a
large extracellular loop with 14 conserved cysteins. The
receptors are organized into homo- or heteromultimers of 4
to 9 subunits, forming nine voltage-insensitive Na+ perme-
able channels in mammals. Thus the mechanosensitive
Deg/ENaC is composed of a, b, c and d ENaC, the acid-
sensing ion channel (ASIC), the brain Na+ channel 1

(BNC1 or ASIC2), the dorsal root acid-sensing ion channel
(DRASIC or ASIC3), the brain-liver-intestine amiloride-
sensitive Na+ channel (BLINaC) and the ASIC4, which is
not proton-gated despite its name. Some of them are par-
ticular to cutaneous mechanosensory structures, including
pacinian and Meissner corpuscles, lanceolate endings of
hair follicles and the neurites contacting to Merkel cells
[45]. The exact role of the Deg/ENaC family in mechan-
otransduction is not clear in mammals because many stud-
ies utilize invertebrate models where some genetic disrup-
tions of these channels cause neonatal lethality. In
mammals, the involvement of Deg/ENaC in the mechan-
otransduction was conveyed by their expression in many
mechanosensory neurones of the dorsal root and trigeminal
ganglia and hair cells of the inner ear. However, the elec-
trophysiological properties of these channel are not yet
consistent with transduction channels [46]. A possible role
in the sensation of acid-evoked pain is also implicated in
cardiac ischemia and cutaneous nociception. Due to their
broad expression in the nervous system and their ability to
sense acidification, it is possible that they regulate synaptic
excitability [47].
Evidence for TRP family participation in touch has been
found for several members: the Osm-9-like protein TRPV4,
which rescues mechanosensory deficit in C. elegans [48],
the stretch-sensitive ion channels TRPC1, gated by mem-
brane deformation [49], TRPA1 whose mutation attenuates
mechanical responsiveness [50] and even NOMPC (ana-
logue to TRPN1 in Xenopus), implicated in the somatosen-
sation of Drosophila and newly found in the vertebrate
zebrafish, where it behaves as a mechanically-gated ion
channel in sensory hair cells [51]. The participation of
TRPV4 is probable because it is expressed in the Merkel
cell-neurite complexes, anatomical structures composed of
the association of mainlyAb-fibres and Merkel cells, which
play a key role in the slowly adapting type I mechanorecep-
tion [52]. However, TRPV4 is highly expressed in non-
sensory tissues too. There, TRPV4 is believed to control the
systemic fluid balance by its osmolarity-sensitive capabil-
ity [53].
In addition to the TRPV family, purinergic receptors are
also thought to participate in many cutaneous phenomena.
They are involved in cell growth, differentiation, neuronal
regeneration, wound healing, inflammation, etc [54]. They
are also counted among the sensor proteins. Two types of
receptors belong to this family, grouped according to the
ligand they bind. P1 receptors bind adenosine and are
divided into 4 subtypes, whereas P2 receptors, which bind
ATP, ADP, and UTP, are divided into ionotropic P2X recep-
tors and metabotropic G protein-coupled P2Y receptors.
Keratinocytes express both the P2Y receptors, implicated
in the mobilisation of intracellular calcium stores in re-
sponse to noxious stimulation [55], and the P2X ion chan-
nel [56]. The latter is involved in the initiation of afferent
signals on sensory neurones and plays a key role in sensing
tissue-damaging and inflammatory stimuli [57]. Immuno-
histochemical investigation into Merkel cells has revealed
expression of P2Y2 receptors, which could argue for a
putative role of this channel in mechanoreception [58].

Sensory nerve endings
The peripheral nervous system innervating the skin origi-
nates from the dorsal root ganglia and the trigeminal gan-
glia. The neurites that they send into the skin form sub-

Figure 1. Expression of TRPV1 in frozen section of 10 lm of
human epidermis. The capsaicin sensitive ion channel TRPV1,
involved in the noxious perception, was highlighted using the
rabbit polyclonal anti-VR1 (Santa Cruz, sc-20813, 1:100)
revealed by the donkey-anti-rabbit FITC (Santa Cruz, sc-2090,
1:400). TRPV1 is expressed by sensory nerve fibres and the
basal layer of keratinocytes.
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epidermal plexus from which some fibres cross the dermo-
epidermal junction to innervate epidermal cells or to keep it
free of targets (figure 2). Nerve endings are diverse and can
be classified according to many characteristics such as:
diameter, the degree of myelinisation, the velocity at which
action potentials travel along the fibres, or even the neuro-
peptides present at the nerve terminals and the information
they transduce up to the central nervous system. Functional
properties (table 2) are not strictly related to morphological
aspects. However, it is currently accepted that cutaneous
large myelinatedAb-fibres of low-threshold are suited to be
mechanoreceptors which feel pressure, stretch or hair
movement. Unmyelinated C-fibres and lightly myelinated
Ad-fibres are often thermoreceptors which respond to heat
and cold with different thresholds of activation. Nocicep-
tors, containing opioid receptors, are mainly high-threshold
C-fibres and Ad-fibres which transduce painful sensations
[3, 44]. A pruritus-specific pathway was recently defined.
Pruritus is described as an unpleasant sensation provoking
the desire to scratch. The pathway processing the itch is
functionally and anatomically separate from the pain path-
way. The itch pathway implies its own subgroup of periph-

eral, mainly mechano-insensitive, C-fibres in the skin. In
the central nervous system, histaminergic spinal neurones
transduce the itch sensation initiated by dedicated pruricep-
tors, to the thalamus. The pruriceptors are activated by
histamine which consistently provokes pruritus, and rarely
pain. However, other inflammatory molecules such as pros-
taglandin E2, serotonin, acetylcholine, bradykinin or even
capsaicin may induce a moderate itching sensation [59].
Thus a complex interaction exists between the pain and the
itch pathway. Scratching that induces pain is well-known to
inhibit the pruritus and conversely, the inhibition of pain-
processing by l-opioïd can generate pruritus [60]. There-
fore, the distinction between cutaneous fibres is not easy
and disrupting criteria are frequently evoked, like nocicep-
tive signalling, normally particular to Ad and C-fibres, with
the conductance speed of Ab-neurones [61]. Further inves-
tigations have revealed that Ab-fibres can phenotypically
switch into fibres expressing SP; whereas normally, SP is
only contained in a subpopulation of small C and Ad-fibres
involved in pain perception. This occurs following nerve
injury [62] but also after inflammation [63]. Thus the pe-
ripheral endings of primary sensory neurones participate in
neurotransmission. But they also participate in the immune
response by the release of proinflammatory peptides, from
unmyelinated C-fibres or myelinated Ad-fibres, leading to
the set of changes referred to as neurogenic inflammation
[34].
The ability of neurones to bind isolectin B4 (IB4) from
Bandeiraea simplicifolia was also assessed with the aim of
segregating subpopulations of sensors. In this way two
kinds of nociceptors were identified, based on the binding
of IB4 [64]. Those which bind IB4 are usually small diam-
eter non-peptidergic neurones involved in acute pain [65].
However, only half of them seem to answer to noxious
stimuli, with the remainder containing less mechanosen-
sory C-fibres [66]. The polymodality of sensory endings
hampers classification, but some overlapping characteris-
tics were highlighted anyway. Within the epidermis, nerve
viability and sensitivity can be modulated by neurotrophic
factors secreted by epidermal cells. The responsiveness of
each type of sensory neurone to these factors is fairly
well-correlated to their class. Thus IB4-negative neurones
containing SP and CGRP are NGF-responsive, small diam-
eter nociceptors, whereas IB4-positive neurones, which
lack such neuropeptides, respond to glial-derived neu-
rotrophic factor (GDNF) [67]. Moreover, it was found that

Figure 2. Immunofluorescence staining of neurofilaments in a
cryofixed human foreskin epidermis. The rabbit-anti-pan-
neurofilament monoclonal antibody (Biomol Int., NA1297,
1:100) revealed by the donkey-anti-rabbit FITC (Santa Cruz,
sc-2090, 1:400) shows sensory nerve endings of the sub-
epidermal plexus going upward the epidermis.

Table 2. Physiological classification of cutaneous sensory endings

Type Sub-type Stimuli Type of fibre

Mechanoreceptor Type I Quivering Meissner, Ab-fibres
Touch Merkel cells, Ab-fibres,

low-threshold C-fibres
Type II Vibration Pacini, Ab-fibres

Pressure Ruffini endings
Thermoreceptor Cold < 30 °C C and Ad-fibres

Heat 32-48 °C C-fibres predominantly
Nociceptors Mechano Significant pressure, inflammatory

mediators, ischemia mediators
Ab and Ad-fibres

Polymodal Inflammatory mediators C-fibres
Pruriceptors Histamine, inflammatory mediators Histaminergic C-fibres
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NGF, produced in large quantities by keratinocytes
(figure 3), increases nociceptive-neurone survival [68, 69]
while brain-derived neurotrophic factor (BDNF) decreases
the activation threshold of mechanosensory Ab-fibres [70],
and finally neurotrophin-3 (NT3) enhances the innervation
by slow adapting mechanosensory neurones [71, 72].
Once activated, cutaneous sensory neurones can of course
induce action potentials, but also the release of neurotrans-
mitters, which modulate inflammation, cell growth or pru-
ritus. Such neuronal modulations of cutaneous properties
regularly bring heterotrimeric G proteins into play at the
beginning of the metabolic cascade, and endopeptidases at
the end, for termination of the response degrading the
messengers [73]. Finally, cutaneous neurites play a major
role in the sensory behaviour, but there is much evidence
suggesting a modulation of their sensitivity by epidermal
cells [74, 75].

Keratinocytes
Keratinocytes play an important role as a forefront of the
sensory system because they are equipped with sensing
proteins similar to those found in neurones [33]. Kerati-
nocytes express receptors like TRPV1 (figure 1), TRPV3
and TRPV4 [76]. TRPV channels enable them to sense
thermal and noxious stimuli and perhaps osmotic variation.
The stimulation of these receptors is followed by the release
of neuropeptides like SP, which can act as neurotransmit-
ters onto target cells or modulators of epidermal functions.
The ability of keratinocytes to interact with neurones has
been demonstrated in vitro. In co-culture models, kerati-
nocytes exhibit a strong trophic effect toward sensory neu-

rones and close contact was found between these two
elements [77-79]. The mechanism involved in signal trans-
duction from keratinocytes to sensory neurones remains
unclear. One hypothesis is that the signal goes through the
purinergic receptors P2X2, P2X3 and P2Y2. It has been
shown that ATP-activated cells can increase their intracel-
lular calcium concentration, producing a calcium wave able
to propagate to neighbouring cells. The ATP-dependant
calcium waves so produced by keratinocytes can induce an
increase in intracellular calcium concentration not only in
adjacent keratinocytes, but also in sensory neurones [74].
Such events are interesting when keratinocytes are in such
close contact with sensory neurones that synaptic transmis-
sion was considered [77, 78], but it may allow keratinocytes
to communicate with neurones in the long-range too. An-
other putative pathway of communication from kerati-
nocytes to neurones implicates the activation of bioactive
substances like NGF or the inflammatory cytokine interleu-
kins, IL-1a and IL-8, released subsequent to the receptor
activation. These mediators are released upon activation of
the keratinocytes by neuropeptides like SP, CGRP, VIP,
galanin, and probably other proteins expressed by kerati-
nocytes themselves [80]. Hence, the activation of one kera-
tinocyte must lead to the activation of neighbouring cells in
a paracrine manner, and finally by the depolarisation of
nerve terminals. Thus, keratinocytes synthesize the key
components which endow them to sense many physical
variations and process the information perceived. The ion
channels and neuropeptides originally found in the brain
make the keratinocytes true partners for neurones.

Melanocytes
When the skin is exposed to the sun, melanocytes synthe-
size photoprotective melanin pigments with tyrsoinase, a
key enzyme of the melanogenesis, and its homolog pro-
teins, tyrosinase-related protein (TRP)-1 and TRP-2 [81].
UV radiation-stimulated melanocytes produce pro-opio-
melanocortin (POMC), a precursor which, once cleaved by
pro-hormone convertases, can give bioactive releasable
peptides [26, 82]. Hence, a, b, c-melanotropin, adrenocor-
ticotropin, b, c-lipotropin and b-endorphin [83], can acti-
vate melanogenesis, stimulate epidermal cell proliferation,
induce melanocytes and Merkel cells to rise to a suprabasal
location [84], have immunosuppressive and anti-
inflammatory effects, probably through CGRP and
interleukin-10, or can even elevate the intensity of the
cutaneous innervations [82]. Melanocytes are often in close
contact with sensory endings and electron microscopy has
revealed a thickening of the apposing membrane, suggest-
ing a synaptic communication [85]. Thus, the enhanced
epidermal innervation might be due to proliferating mel-
anocytes following UV radiation exposure, to maintain the
connections.
Hence, melanocytes fully belong to the NICS and therefore
appear to be sensory and regulatory cells for epidermis
homeostasis [86]. Until now, melanocytes have never been
clearly implicated in touch reception, thermal sensation or
nociception. However, they are found in the outer root
sheath (ORS), often as precursors or as poorly differenti-
ated cells [87]. The ORS is the location of Merkel cells,
where they are found in number, and therefore it is a place
of mechanotransduction. In contrast, the function of bulbar
melanocytes is more evident. They produce melanised
granules toward keratinocytes of the bulb which will form

Figure 3. Expression of NGF in human foreskin epidermis.
Immunofluorescence was performed using the rabbit poly-
clonal anti-NGF (Cedarlane, 1:100) revealed by the donkey-
anti-rabbit FITC (Santa Cruz, sc-2090, 1:400). It elicits a
strong expression of NGF within supra-basal keratinocytes up
to the corneal layer, while the sensory nerve endings appear as
thin neurites in the dermis.
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the pigmented hair shaft during the anagen phase of the hair
cycle. The TRP receptors are present on melanocytes. In
addition to retinal pigmented epithelium and brain, they
express the melastatin cation channel TRPM1 [88] and the
TRPM7 [89]. In contrast to the TRPV subfamily, TRPM1
and TRPM7 does not seem to sense physical conditions but
rather act as a tumour suppressor [90] because it was found
to be greatly decreased or lost in invasive melanoma [91], or
in the detoxification of intermediate metabolites during
melanogenesis [89], respectively. Few researchers have
studied the ion channels expressed by melanocytes.
Voltage-gated sodium and potassium channels were re-
vealed to have an interesting rectifying potassium current,
similar to those observed in neurones [92]. Nevertheless,
melanocytes are not considered as excitable cells like
Merkel cells, even if synaptic-like structures and excitable
cell-specific ion channels are present.

Langerhans cells
Langerhans cells (LC) are antigen-presenting cells. After
binding the antigen, LC migrate from the epidermis to the
local lymph nodes to initiate protective immunity [93].
Until recently, LC were not known to express TRPV or
TRPM channels but, like other dendritic cells, LC are
sensitive to thermal stimulations like those occurring dur-
ing fever or inflammation. A mild elevation of temperature
enhances the immune potential of LC, the antigen-up take,
their migration and their maturation [94]. Because sensor
channels were not demonstrated to be present, the thermal
perception by dendritic cells might involve sensory mol-
ecules with a second messenger cascade, rather than com-
mon thermo-sensitive ion channels. At least, LC express
ionotropic ATP-specific P2X receptors, like monocyte-
derived dendritic cells [95]. Activation of these receptors
enhances the antigen-presenting function of LC and contact
hypersensitivity in mice. Some metabotropic purinergic
receptors P2Y also seem to be synthesized, as revealed by
mRNA analysis, but only in an LC-like cell line [96].
Voltage-gated channels have not been found but mouse
spleen dendritic cells, homologues to Langerhans cells,
express voltage-gated potassium channels [97]. Like other
cells of the NICS, LC express numerous neuropeptides and
their receptors [7, 11]. This ability allows them to commu-
nicate with the cells of the NICS. For example, a close
association between LC and Merkel cells was observed in
hair follicles and below sebaceous glands [98]. Similarly,
an intimate contact with sensory neurones was found [99].
These morphological associations strongly suggest a func-
tional interaction. The Merkel cell-LC complex was not
functionally investigated, while the CGRP released by
nerve fibres innervating human LC inhibits their antigen-
presenting function, thereby acting as an immunomodula-
tor [10].

Merkel cells
Merkel cells (MC) are epidermal cells scattered in the basal
layer of the epidermis and in the outer root sheath of hair
follicles [14, 100]. They synthesize numerous neuropep-
tides inside dense core neurosecretory granules. The corre-
sponding receptors are also present at the surface of MC,
showing evidence for autocrine and paracrine functions
[101]. The neuropeptide-containing granules are mainly
located facing the low-threshold sensory neurones which

supply nearly all epidermal MC. This fact highlights the
tight interaction between the endocrine features of MC and
neurones. Hence MC belong to the neuroendocrine cell
family and they probably play a key role in the NICS. The
cluster of MC with sensory neurones is named the Merkel
cell-neurite complex (figure 4). It constitutes the slowly
adapting mechanoreceptor (SAM) reacting in nearby fash-
ion and thus is named type 1 [102]. Conversely, Ruffini
corpuscles within the dermis feel pressure in a wider area
and are thus called type 2 SAM. The investigation of the
exact role of MC in the perception of touch within the
SAM-1 have produced conflicting results [103]. Either they
are themselves mechanoreceptors which thereafter synap-
tically transduce the signal to sensory neurones [104, 105],
or they only modulate the sensory function of neurones
[106, 107]. Furthermore, the possibility that MC are not the
trigger of the neuronal activity but rather the target of
sensory neurones in an efferent signal, is still possible. In
fact, the synaptic transmission between MC and neurones
has only been implicated by molecular biology. It was
found that MC express most of the proteins involved in
vesicle trafficking and recycling [104], they have many
components of the glutamatergic transmission machinery
[108] and they bear P/Q-type voltage-gated calcium chan-
nels [109]. The latter are normally found in excitable cells
and reveal synaptic capability, since quick calcium currents
are believed to be involved in cell depolarisation and neu-
rotransmitter release. Thus MC are the only excitable cells
within the epidermis, in addition to neurones. Nevertheless
there is still a lack of structural evidence of a synaptic
connexion, identification of neurotransmitters and the

Figure 4. The close association of Merkel cells and sensory
neurones forms the Merkel cell-neurite complex which acts as
a slowly adapting type of mechanoreceptor. For the double
immunofluorescence assay, we used a mouse monoclonal anti-
body against cytokeratin 20 (Progen, Ks20.2, 1:100), rabbit
polyclonal anti-pan neurofilament (Cedarlane, 1:100), donkey
anti-mouse TRITC-conjugated (Santa Cruz, sc-2300, 1:400)
and donkey anti-rabbit FITC-conjugated (Santa Cruz, sc-
2090, 1:400).
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stimuli which activate MC [102, 110], and confirmation of
synaptic transmission, and thus the neurosensory character-
istics of MC.
Mechanoreceptive Ab-neurones are the most represented
subset of neurones supplying MC in the SAM-1. However,
recent findings show that C and Ad-fibres also innervate
MC [21], demonstrating that the formation of the SAM is
dependant on multiple neurotrophins and their receptors
[111]. The presence of multiple nerve fibres in touch domes
may suggest that MC can be implicated in many functions
other than touch perception. Trophic roles onto sensory
neurones, participation on the premise of the sub-epidermal
plexus, keratinocytes proliferation and skin homeostasis
are all expected, but we lack direct proof. Human epidermal
MC do not express TRPV1 and SP and thus may not
participate in the transduction of noxious stimulations.
However, MC from the outer root sheath of hair follicles are
different because they co-express them [33]. This could be
explained by the need for hair follicles to keep an excellent
sensitivity. In addition to their part in pain perception,
TRPV1 and SP could be implicated in the maintenance of
the homeostasis, as happens in hair cells of the organ of
Corti [37, 112]. Hair follicles are among the most sensitive
mechanoreceptors in the body and thus are frequently used
to study mechanoreception. So MC from hair follicles
would act in mechanosensation rather than in pain percep-
tion. Thus, it is important to be mindful of the polymodality
of ion channels. Other ionic channels, like the osmotic
receptor TRPV4 and the purinergic receptors P2Y2, are
present on MC [42, 58]. Swelling-induced hypo-osmolarity
may be able to activate MC through the TRPV4 receptor,
while the P2Y2 receptors may mobilize the intracellular
calcium required for cell excitability and neuropeptide re-
lease.
In our opinion, MC are excitable neurone-like cells which
may respond to various stimuli. Few studies on MC are
available, which can be explained by their minor represen-
tation in the epidermis. The discovery of one stretch-
activated ion channel would support the idea that they are
mechanosensory cells. The glutamatergic components
present in MC (the mGluR5 receptor, subunits of the
AMPA and NMDA receptors, VgluT1, 2 and 3 [58, 110,
113, 114]) reveal their capacity to modulate the excitability
of neurones [63], rather than signal transduction. Further-
more, the glutamate receptors are more specific to post-
synaptic elements than pre-synaptic ones [115]. However,
they also should be capable of activating sensory neurones
of the SAM following their depolarization and the release
of their neurosecretory granules. Transduced information
ranges from touch to hypo-osmolarity during inflamma-
tion. Hence, MC appear to be excitable cells enable to
transduce stimuli toward several sensory nerve types and
other epidermal cells, in a paracrine fashion. They act in
touch perception directly or indirectly, but their involve-
ment in other cutaneous functions remains to be seen.

Conclusion
The fundamental open question of whether epidermal cells
transduce physical and chemical stimuli to nerve endings or
if they only modulate the activity of sensory neurones, has
been explored through the examination of sensory recep-
tors. Ion channels have been discovered on epidermal cells:
TRP, purinergic and Deg/ENa channels are putative trans-
ducers of touch, thermal sensation and nociception, as

shown in invertebrate models and knockout mice. Thus
they must start the signalling of the stimulus at the molecu-
lar level, based on their thermo-dynamical properties.
Thereafter, the processes by which epidermal cells transmit
the information to neurones remain to be explored. Merkel
cells are excitable cells containing the molecular compo-
nents of synaptic connections so they should transduce the
stimuli synaptically. The mechanisms of communication
between keratinocytes, Langerhans cells or melanocytes
and sensory neurones are more mysterious. They are non-
excitable cells with no molecular basis of synaptic connec-
tions. Paracrine function is supposed, but the mediator used
to transmit rapid stimuli as fast as they occur must exhibit
the characteristics of a neurotransmitter. It must be specific
enough to carry a unique signal and quickly degraded to
transmit a short stimulation. We have started to gain insight
into this phenomenon so that some non-peptidic candidates
are now being considered, like calcium, which can activate
neighbouring cells, once released by keratinocytes.
Nowadays, we have no data about the role of epidermal
sensor proteins in dermatological disorders. They are prob-
ably involved in all inflammatory diseases and may be
implied in disorders of pigmentation or in skin dryness. In
our opinion, they are the only molecules that could explain
sensitive skin, as they can act by transforming physical OR
chemical stimuli to inflammation.
Acceptance of the epidermis as a sensory and endocrine
tissue as part of the NICS has increased, as some authors
define skin as spread brain. However, the relationship be-
tween skin and brain, although fascinating, remains poorly
understood. j
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