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Abstract

Background: Ageing is one of the principal risk factors for many chronic diseases. However, there is considerable
between-person variation in the rate of ageing and individual differences in their susceptibility to disease and
death. Epigenetic mechanisms may play a role in human ageing, and DNA methylation age biomarkers may be
good predictors of age-related diseases and mortality risk. The aims of this systematic review were to identify and
synthesise the evidence for an association between peripherally measured DNA methylation age and longevity,
age-related disease, and mortality risk.

Methods: A systematic search was conducted in line with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. Using relevant search terms, MEDLINE, Embase, Cochrane Central Register
of Controlled Trials, and PsychINFO databases were searched to identify articles meeting the inclusion criteria.
Studies were assessed for bias using Joanna Briggs Institute critical appraisal checklists. Data was extracted from
studies measuring age acceleration as a predictor of age-related diseases, mortality or longevity, and the findings
for similar outcomes compared. Using Review Manager 5.3 software, two meta-analyses (one per epigenetic clock)
were conducted on studies measuring all-cause mortality.

Results: Twenty-three relevant articles were identified, including a total of 41,607 participants. Four studies focused
on ageing and longevity, 11 on age-related disease (cancer, cardiovascular disease, and dementia), and 11 on
mortality. There was some, although inconsistent, evidence for an association between increased DNA methylation
age and risk of disease. Meta-analyses indicated that each 5-year increase in DNA methylation age was associated
an 8 to 15% increased risk of mortality.

Conclusion: Due to the small number of studies and heterogeneity in study design and outcomes, the association
between DNA methylation age and age-related disease and longevity is inconclusive. Increased epigenetic age was
associated with mortality risk, but positive publication bias needs to be considered. Further research is needed to
determine the extent to which DNA methylation age can be used as a clinical biomarker.
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Background

The population is ageing [1, 2], and age is one of the stron-
gest risk factors for many human diseases, such as cardio-
vascular, metabolic and neurological diseases, and cancer
[3]. This increased burden represents a major societal, eco-
nomic, and public health challenge. Individuals, however
do not all age to the same extent. There is considerable
between-person variation in the rate of ageing, and individ-
ual differences in their susceptibility to disease and death.
The identification of individuals at greatest risk of
age-related diseases and death would provide important
opportunities for targeting prevention and intervention.

There is thus great interest in molecular targets as
clinical biomarkers which accurately predict the risk of
age-related diseases and mortality. These biomarkers,
which include cellular senescence, genomic instability,
telomere attrition, and mitochondrial dysfunction,
appear to capture pivotal aspects of biological age [4]
and have been associated with a number of age-related
diseases and mortality.

It is well established that as individuals age, there is a
raft of molecular changes that occur within the cells and
tissues. Changes in DNA methylation patterns have been
shown to occur with ageing [5] and thus may be a fun-
damental mechanism that drives human ageing [6].
Epigenetic biomarkers of ageing, otherwise known as the
epigenetic clock, have been developed using DNA
methylation measurements. Referred to specifically as
‘DNA methylation age’ (DNAmAge), they provide an
accurate estimate of age across a range of tissues, and at
different stages of life [7, 8], and are some of the most
promising biomarkers of ageing [9, 10]. DNAmAge has
also permitted the identification of individuals who show
substantial deviations from their actual chronological
age, and this ‘accelerated biological aging’ has been asso-
ciated with unhealthy behaviours [11], frailty [12], cancer
[13], diabetes [14], cardiovascular diseases (CVD) [15],
dementia [16], and mortality risk [17].

In the last few years, two meta-analyses of 13 studies (n =
13,089) and 4 studies (n=4658), respectively, have been
undertaken to investigate the extent to which DNAmAge in
blood predicts mortality risk [17, 18]. Both reported a sig-
nificant association between increased DNAmAge and mor-
tality risk. However, neither was undertaken as part of a
systematic review, raising the possibility that the findings
were not representative of all research that has been under-
taken in the field. To date, there has also been no systematic
review that has investigated whether DNAmAge biomarkers
are predictors of age-related diseases or longevity.

The aim of this systematic review is to identify and
synthesise the evidence for an association between
DNAmAge measured in peripheral tissues (blood, saliva,
buccal cells), and longevity, age-related disease, and
mortality risk.
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Methods

This systematic review protocol was registered as number
CRD42018108568 on the international website for system-
atic reviews, PROSPERO (the International Prospective
Register of Ongoing Systematic Reviews) [19]. The
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (http://www.prisma-
statement.org) [20, 21] were closely adhered to in the
preparation of this systematic review.

Inclusion criteria

Types of studies and participants

Cross-sectional  studies, prospective cohorts, and
case-control studies were eligible for inclusion in this
review. Studies involving humans of any age, gender,
race and ethnicity, and who were recruited from either
the general community or a specific patient group, were
eligible for inclusion. Animal studies, in vitro, and in
vivo experiments were excluded.

Epigenetic clock (DNA methylation age)

Studies were eligible for inclusion in this systematic re-
view if they extracted DNA from peripheral biological
samples (blood, saliva, buccal swabs) and measured
DNA methylation.

Studies met our eligibility criteria if they assessed DNA-
mAge with at least one of the two most widely used and
well-validated epigenetic clocks; the Horvath clock [8] and
Hannum’s clock [7]. The Horvath estimator is based on
DNA methylation at 353 cytosine-phosphate-guanine base
pairs (CpGs) [22]. The Hannum estimator is based on
DNA methylation at 71 distinct CpGs.

To ascertain whether participants are biologically older
or younger compared to their actual age, age acceler-
ation (AA) is measured. This is done by determining the
difference between an individuals DNAmAge and their
chronological age.

There are also some more recent variations to the
AA measurements. Specifically, ‘intrinsic epigenetic
age acceleration’ (IEAA) takes into account measures
of blood cell counts and adjusts for this accordingly
[23]. This provides a measure of AA independent of
changes in blood cell composition, which can occur
with age [24] or in response to immune system func-
tions [23].

Another measure is ‘extrinsic epigenetic age acceler-
ation’ (EEAA) [18], which incorporates the changes in cell
composition by using a weighted average of age-associated
cell counts. It thus provides a measure of AA that incor-
porates changes in age-related cell composition.

The eligible estimates of DNAmAge acceleration that
were included in this review were thus:
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1. Age acceleration calculated with Horvath’s clock
(AAH)

2. Age acceleration calculated with Hannum’s clock
(AAHa)

3. Intrinsic epigenetic age acceleration calculated with
Horvath’s clock (IEAAH)

4. Intrinsic epigenetic age acceleration calculated with
Hannum’s clock (IEAAHa)

5. Extrinsic epigenetic age acceleration calculated with
Hannum’s clock (EEAA)

Studies using publicly available DNA methylation data
were also included if they fit the other inclusion criteria.

Outcome measures and timing

This systematic review included studies focusing on
age-related diseases (of any type), mortality, and longev-
ity. Studies measuring associations with age-related dis-
ease, either tracked disease incidence in individuals
initially free of the disease (and when DNAmAge was
assessed), or compared DNAmAge between groups
based on the presence or absence of disease (case-con-
trol study). Studies were excluded if they only measured
the risk factors for age-related diseases (i.e. hypertension,
hypercholesterolemia, obesity). We also included studies
that investigated all-cause or cause-specific mortality
and any studies which specifically looked at longevity.

Search strategy

A systematic search was conducted to identify relevant arti-
cles published through 2 September 2018, using the follow-
ing databases: MEDLINE, Embase, Cochrane Central
Register of Controlled Trials, and PsychINFO. Search terms
included [epigenetic clock or epigenetic ag* or methylation
ag* or (biological ag* and methyl*)] and [blood or serum or
plasma or peripheral or leukocyte or PBMC* or mono-
nuclear or buccal or saliva] and [longevity or mortality or
death* or disease* or condition*]. A grey literature and
Google Scholar search were also performed. Additional
studies were identified by searching the reference list of the
review articles identified from the database search, as well
as those of the included studies. Studies that were published
in either English or French were eligible for inclusion.

Synthesis of the data

After removal of duplicate articles, the title and abstracts
were screened independently by two authors (JR and
JW) to assess initial eligibility. The full text of any seem-
ingly eligible article was then obtained, and suitability
for inclusion in the systematic review was again assessed.
Data was extracted independently by three authors (JR,
JW, and PF) on a form developed specifically for this
review and included information about the study design,
location, and sample characteristics; the biological
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sample that was available, how DNA methylation was
measured, and the calculator used to determine DNA-
mAge and AA; as well as the main findings from the
study and any adjustment that was used in the analysis.
Any discrepancies were resolved through discussion or
consultation with a third author.

After having assessed the clinical and methodical het-
erogeneity, studies were grouped according to common
outcome assessments. Where studies were considered
clinically homogenous, and measured mortality out-
comes, a meta-analysis was performed. For outcomes
which were clinically too heterogenous, results are sum-
marised quantitatively in tables and via a narrative syn-
thesis, grouped according to types of outcomes.

Estimates of effect size were reported as correlations
or beta values and standard errors from a linear regres-
sion for longevity outcomes, as odds ratios and 95% con-
fidence intervals (95% CI) for dichotomous outcomes, or
as hazard ratios (HR) and 95% CI for time-to-event (dis-
ease or mortality).

Methodological quality assessment

The papers that were included in the systematic review
were all assessed for methodological quality using the Jo-
anna Briggs Institute (JBI) Critical Appraisal Checklist
for Cohort Study or Case-Study, as deemed appropriate
[25]. For each study, the criteria listed on the checklist
were rated as having a low, unclear, or high risk of bias.
The risk of bias evaluation was used to help evaluate the
quality of evidence from each study but not to exclude
any studies from the review. This assessment was under-
taken independently by two authors (JW and JR).

Meta-analysis

Review Manager (RevMan) 5.3 software [26] was used for a
meta-analysis. Studies which were included needed to have
reported HR and corresponding standard errors, or 95%
confidence intervals. The natural log of HR and standard
errors (some of which were calculated from confidence in-
tervals), were calculated for each study independently, then
pooled and weighted by generic inverse variance to provide
an overall HR, 95% confidence interval, and p value. The /*
statistic (i.e. the percentage of variability between study out-
comes), the chi-squared statistical test, and the correspond-
ing p value were determined automatically by the
programme and displayed in a forest plot.

Results
Search results
After duplicates were removed, 215 articles were identi-
fied from the search (Fig. 1) [27].

On inspection of titles and abstracts, 156 articles were
excluded as they either did not measure DNAmAge in a
peripheral sample in humans and/or did not investigate



Fransquet et al. Clinical Epigenetics (2019) 11:62

Page 4 of 17

)

Records excluded
(n=156):
Mot human study, or correct
tissue/outcome of interest

Full-text articles excluded
(n = 36), because:
duplicate (n=1)

not peripheral sample (n=3)
not epigenetic clock (n=11)

not correct outcome (n=21)

c
-‘9_. Records identified through Additional records identified
5 database searches through other sources
£ (n=301) (n=9)
=
7]
=l

) 4 v

P Records after duplicates removed

(n=215)
£
g
E Y
L=
i Records screened
(n=215) =
() vy
Full-text articles assessed
= for eligibility
3 (n=59) \_
&
w
k.
e Studies included in
qualitative synthesis

(n=23)

B h 4

3

© Studies included in

£ quantitative synthesis

(mortality meta-analysis)

(n=7)

Fig. 1 Prisma flow diagram

an appropriate outcome of interest. We selected 59 arti-
cles for full-text assessment.

Of these, three articles were excluded because they did not
measure DNA methylation in a peripheral tissue [28-30]
and 11 because they did not calculate DNAmAge using the
epigenetic clock calculators that met our inclusion criteria [6,
31-40]. A further 21 studies were excluded because they did
not measure an appropriate outcome. For example, 14 did
not measure a disease outcome, mortality, or longevity [41—
54], 1 study investigated prevalent, not incident, diabetes
[55], 2 studies examined physical frailty [44, 56], 3 studies fo-
cused on ageing-related genetic conditions [57-59] and 1 on
twin differences [60]. Finally, one study was excluded be-
cause it was subsequently found to be a duplicate [61].

Characteristics of included studies

A total of 23 articles were included in this systematic review,
involving 41,607 participants. For each study, we report per-
tinent characteristics of the study design, characteristics of
the participants included, information regarding the

calculation of DNAmAge, and the outcomes measured (Ta-
bles 1, 2, and 3).

Study design and participants

There were 8 case-control studies with a total of 4671 cases
and 7320 controls, including participants with Parkinson’s
disease [16], ischemic stroke [62], and cancer [11, 13, 63,
64], as well as 2 studies of participants selected on the basis
of their very old age [65, 66].

The remaining studies were prospective cohorts (n =
29,616 participants), which included three meta-analyses
[17, 18, 23]. The follow-up time in these studies varied
between 3 months [67] and 21 years [18]. Overall, the
studies ranged in size between 52 [68] and 12,284 partic-
ipants [18]. Participants were aged between 2 [23] and
106 years [65]. Most studies included both male and
female participants; however, one used data from the
Women’s Health Initiative (WHI) cohort of postmeno-
pausal women [69], and one used data on only men
from the US Department of Veterans Affairs’ Normative
Ageing Study (NAS) [70].
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Risk of bias assessment

Eighty percent of the cohort studies (Additional file 1: Table
S1) had a low risk of bias for all criteria, but only one of the
eight case-control studies showed a low risk of bias (Add-
itional file 1: Table S2) [25]. In the latter case, many of the
studies provided inadequate information about whether
the same criteria were used to identify cases and controls,
and only half of the studies reported that cases and con-
trols were matched. Across all study types, confounding
factors were not clearly considered in the analysis of three
[66, 71, 72], two studies did not recruit all individuals from
the same source population [62, 71], and another two
studies did not provide sufficiently clear information on
source population [16, 73].

Summary of outcomes

Longevity and ageing

Only four studies (n=880) investigated differential DNA-
mAge and longevity or ageing (Table 1). Two studies
investigated longevity specifically [65, 66] and found that
DNAmAge was correlated with chronological age (r=0.89,
and r=0.85-0.86 respectively). Their other findings, how-
ever, varied. Horvath et al. found that semi-super centenar-
ians have a lower DNAmAge compared to chronological
age (A - 8.6years), and their offspring have a lower AAH
and IEAAH compared to controls (but not compared to
their chronological age) [65]. McEwan et al. found no age
acceleration differences between long-lived Nicoyans and
age-matched controls [66].

Another study investigated associations between DNA-
mAge and chronological age in three separate cohorts (in-
cluding centenarians) [71]. When all three studies were
combined, DNAmAge was highly correlated with chrono-
logical age (r=0.93), but the correlation was much lower in
each cohort separately (r=0.52—0.73). The direction of AA
was not concordant between AAH and AAHa measures
across the three cohorts. The fourth study focused on
long-term change in DNAmAge with ageing [73]. DNA-
mAge was moderately correlated with chronological age over
the span of 25 years (r = 0.54). Younger participants aged fas-
ter (ageing seven DNA methylation years over four chrono-
logical years) than older participants.

Age-related disease

A total of 11 studies examined the association between
DNAmAge and age-related diseases (Table 2). There were 5
studies of 10,650 participants that focused on cancer [13, 63,
64, 69, 70]. However, two separate studies used the same co-
hort, and some of the participants could have been the same
[63, 64]. All studies found that increased DNAmAge (at
least one of their measures) was associated with an in-
creased risk of cancer incidence; however, the type of cancer
and exact associations varied. For example, of the two stud-
ies which examined breast cancer [63, 64], only one reported
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a significant association [63], and the two studies of lung
cancer also had discordant results [13, 69]. On the other
hand, the two studies of colorectal cancer, reported very
similar findings, with AAH positively associated with risk
[13, 64].

There were four studies focusing on cardiovascular-related
diseases including stroke and coronary heart disease [23, 62,
67, 74]. Two studies, authored by the same group, looked at
different outcomes associated with ischemic stroke [62, 67].
The first found an association between increased DNAmAge
and ischemic stroke (AAHa + 2.5 years, p = 0.008) [62], and
the second showed that increased DNAmAge was associated
with poorer outcomes 3 months post-stroke [67]. It is not
clear if the same participants were included in both studies.
A large study of 4296 individuals from 10 separate cohorts
did not find any evidence of an association between DNA-
mAge and incident coronary heart disease [23]. However, a
smaller (1 =832) more recent study found that for every
1-year increase in DNAmAge (AAH), there was a 3.3%
greater incidence of cardiovascular disease (p = 0.02) [74].

The remaining two studies looked at dementia [16, 68]
and reported findings in a similar direction. Younger
DNAmAge was associated with better memory, and in-
creased DNAmAge predicted incident dementia [68].
Both AAH and EEAA were also positively associated
with Parkinson’s disease.

Mortality

Eleven studies (27,840 participants, 10,233 deaths) investi-
gated the association between age acceleration and mor-
tality (Table 3) [11, 13, 17, 18, 67, 70, 72, 75-78]. Results
from 7 of the 11 studies, involving 17 individual popula-
tion samples and 17,988 participants (5277 deaths), were
combined to perform two independent meta-analyses (6
studies per epigenetic clock method) that investigated
all-cause mortality [11, 17, 18, 72, 76-78].

Three of these studies [17, 72, 78] measured associations
using unadjusted AA, whilst two studies measured associ-
ations with all (AA, IEAA, and EEAA), or otherwise all
but one (IEAAHa) of the five variations of age acceler-
ation, previously described. The two remaining studies
were included in one of the two meta-analyses, focusing
on the more common measures of DNAmAge, namely,
AAH and AAHa [76, 77]. The HR and SE reported from a
multivariate-adjusted Cox regression model for time to
death (all-cause) were used for each study.

Weighted average varied for each study and depended
on the SE defined by the sample size, thus those with a
larger sample size contributed the most to the resulting
HR and 95% CI for each meta-analysis. Heterogeneity be-
tween and within studies was moderate to high (46% and
67% for AAHa and AAH respectively), and a
random-effects model was thus used [79]. As presented in
Fig. 2a, b, a higher biological age (per 5-year increase in
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a Hazard Ratio Hazard Ratio
Study or Subgroup _ Weight IV, Random, 95%Cl I, Random,95%Cl
Chen ARIC black 14.7% 1.10 [1.04, 1.16] -
Chen BLSA Whits 156% 1.50 [1.01, 2.24]
Chen INCHIANTI 4.8% 1.20 [0.99, 1.47] =T
Chen KORA 1.6% 1.46 [0.99, 2.16]
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Chan WHI Hispanic 3.5% 1.40[1.10, 1.79] ity
Chen WHI White 9.8% 1.08 [0.98, 1.22] =
Christiansan 2016 1.8% 1.35[0.94, 1.94] T =
Dugue 20180 14.7% 1.05 [0.99, 1.11] b
Marioni FHS 7.7% 140 [1.22, 1.61] —
Marionl LBC1921 2.4% 1.08[0.96, 1.21]
Marioni LBC1936 4.5% 1.12 [0.91, 1.38] E
Marioni NAS 7.8% 1.08 [0.95, 1.25] .
Pema 2016 6.6% 1.10[0.84, 1.29] T
Walf 2018 0.8% 1.84 [1.06, 2.20]
Total (95% CI) 100.0% 1.15[1.08, 1.21] L ]
05 07
Survived Died

Haterogeneity: Tau® = 0.00; Chi* = 27.97, df = 15 (P = 0.02); * = 46%
Test for overall effect: Z = 5,37 (P < 0.00001)

Fig. 2 Forest plots for Horvath and Hannum meta-analyses. Meta-analyses used HR and standard errors collected from seven of the nine studies
measuring associations between age acceleration for a AAHa and b AAH, and all-cause mortality. HR and 95% Cl's were calculated independently
via a univariate Cox regression model and combined to provide a total value of risk. ARIC, Atherosclerosis Risk in Communities Studies; BLSA,
Baltimore Longitudinal Study of Ageing; INCHIANTI, Invecchiare in Chianti, ageing in the Chianti area; KORA, Cooperative Health Research in the
Augsburg Region; Rotterdam: The Rotterdam Study; WHI, Women'’s Health Initiative; FHS, Framingham Heart Study; LBC1921, Lothian Birth Cohort
1921; LBC1936 Lothian Birth Cohort 1936; LSADT, NAS, US Department of Veterans Affairs’ Normative Ageing Study

b

Hazard Ratio Hazard Ratio
Study or Subgroup Weight IV, Random, 95% CI ¥, Random, 85% Cl
Chen ARIC black 10.0% 1.06[0.97, 1.14] -
Chen BLSA White 1.2% 1.93 [1.28, 2.92]

Chen INCHIANT] 3.1% 122 [0.97, 1.55] —
Chen KORA 1.4% 1.00 [0.68, 1.45] —
Chen Rofterdam 19% 1.16 [0.85, 1.58] ———
Chen WHI Black 7.4% 1.05 [0.93, 1.18] -
Chen WHI Hispanic  2.4% 111 [0.84, 1.45] ——
Chen WHI White 8.6% 0.95 [0.86, 1.05] b
Christiansen 2016 2.5% 1.35[1.03, 1.76] —
Dugue 20186 12.2% 1.05[1.00, 1.10] b
Kim 2017 13.5% 1.00 [0.88, 1.02]
Marlani FHS 7.3% 147 [1.04, 1.32) =
Marioni LBC1821 8.2% 1.10[0.99, 1.22) F—
Marioni LBC1936 5.0% 1.17 [0.88, 1.38] [
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Pema 2016 T.6% 1.23[1.10, 1.38] =
Total (95% CI) 100.0% 1.08 [1.03, 1.13] L]

05 07 1.

Survived Died

Heteroganeity: Tau® = 0.00; Chi* = 46,12, df = 15 (P < 0.0001); I = 67%
Test for overall effect: Z = 3.22 (P = 0.001)

age) was associated with an 8% and 15% increased risk of
all-cause mortality for AAH and AAHa respectively.

The funnel plots for both measures were asymmet-
rical, indicating positive publication bias (Fig. 3). Results
were similar for the two remaining studies not included
in the meta-analysis [13, 75].

Four of the eleven studies [11, 13, 70, 78] (8339
participants, 1780 died), examined cancer-related
deaths, with each reporting a significantly increased
risk of cancer-related mortality in those with a higher
DNAmAge. Effect sizes varied (ranging 4-23%), and
there was no obvious pattern in relation to the
duration or follow-up, nor study design (case-control
vs. cohort only). This contrasts with findings from
the three remaining studies (3896 participants, 477
deaths) investigating associations between AA and

CVD, where a higher DNAmAge was only found to
be significantly associated with an increased risk of

mortality in those who had already experienced a
CVD related event [67].

Discussion

Main findings

An increasing number of studies have investigated the as-
sociation between DNAmAge, longevity, age-related dis-
ease, and mortality, with a total of 23 studies included in
this systematic review and all published from 2015 on-
wards. Our primary finding is that there is sufficient evi-
dence to support an association between accelerated
DNAmAGge, in particular for the Hannum epigenetic clock
(AAHa), and an increased risk of all-cause mortality.

ao SE(log[Hazard Ratio]) s bu__SE[Iug[!-lazam Ratio])
. '.‘ o ‘,% Idj‘q{)
. . 4 =
0.14 £ oTgo Yy 01t FA
S 1 [} J; i o'
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021 Lo @ 024 & -
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0.37 o ! , 03+ E i
;‘ . k) J’ L .
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Fig. 3 Funnel plots for Horvath and Hannum meta-analyses
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The majority of studies (10 out of 11) independently
found that a higher biological age relative to chronological
age is a predictor of time-to-death, cancer-related, CVD-re-
lated, or all cause. Of these studies, two stratified by sex to
determine possible differential effects [17, 18], and two ad-
justed for sex using an interaction effect with biological age
[11, 78]. Some other studies included only males [70], or fe-
males [18]. There was, however, no clear difference in the
association between the epigenetic clock and the risk of
death across the sexes. Likewise, findings from the two
studies which considered ethnicity (as defined by country
of birth or race) [11, 18], do not provide any evidence for
differences between groups.

Collectively, these results are supported by our two
meta-analyses for all-cause mortality. Interestingly, risk
was greater when predicted by AAHa compared to AAH
(15% vs. 8%, respectively), a finding supported by the
two meta-analyses on this topic [17, 18]. It thus appears
that these epigenetic calculators are measuring slightly
different components of the ageing process. Indeed, it
has been suggested that Horvath’s calculator is more
suited for innate process that accompany development
such as puberty and menopause, whilst Hannum’s may
better reflect later-life diseases states and mortality [34].
Differences in the findings depending on the DNAmAge
predictor used may also relate to how these algorithms
were initially constructed. Specifically, Horvath’s epigen-
etic clock algorithm was developed as a robust
multi-tissue age predictor based on DNA methylation at
353 CpGs, compared with Hannum’s epigenetic clock
which is a blood-based estimator, defined by DNA
methylation at 71 CpG sites [80].

There were 11 studies that investigated the association
between DNAmAge and age-related disease. These
showed that there is some evidence, although with often
varying findings, that DNAmAge might be positively asso-
ciated with the incidence of age-related diseases. It was
difficult to make any disease-specific comparisons, as even
within disease groups, the outcomes were highly heteroge-
neous. For example, the two studies concerning ischemic
stroke investigated different outcomes, one being ischemic
stroke incidence [62], and the other being the severity of
ischemic stroke outcomes at a follow-up time point [67].
However, despite different study samples and investigating
various outcomes, all but one of the studies found that in-
creased DNAmAge predicted future risk of disease. These
findings are also in concordance with those for mortality,
and further support the potential of DNAmAge as a global
biomarker of biological ageing and health.

Finally, the association between DNAmAge and longevity
remains unclear, given that we identified only four eligible
studies which were all relatively small (the largest n = 257).
Comparisons of findings were not possible, as the scope of
these studies were relatively broad, having very different
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study designs with unique sample characteristics. For ex-
ample, one study focused on a sample from a Costa Nico-
yan region of Costa Rica which is known as a hot spot of
high longevity [81] and compared these individuals with
non-Nicoyans. Nicoyans, however, may be ethnically differ-
ent with very specific environmental exposures and lifestyle
behaviours. In contrast, the other studies of longevity [65]
or ageing [71, 73] compared small groups of individuals at
various life stages, but who were selected from similar com-
munity populations. Future work in this field should focus
on the study of centenarians or long-lived disease-free indi-
viduals as they may hold the answer to extended healthy
lifespans. In understanding the underlying epigenetic mech-
anisms of ageing, such as altered DNA methylation patterns,
and how it affects ageing-related genome maintenance,
there is potential to directly promote healthy longevity, in
turn possibly preventing age-related diseases [82].

Quality and strength of the evidence

The JBI Critical Appraisal has shown that most studies
in this review were not at risk of bias (57%). However,
many studies did not report on, or were unclear about,
the consistency of population, the matching of cases to
controls, the selection criteria to identify cases and con-
trols, or adjusting for possible confounding factors (43%)
(Additional file 1: Tables S1 and S2). The omission of
descriptions is possibly due to many studies using sev-
eral already established cohorts.

Within the 23 studies, there were a total of 41,607 par-
ticipants. Although some participants clearly do overlap
between studies, it is not clear to what extent. Eight indi-
vidual cohorts/studies (WHI, NAS, EPIC, MCCS, PEG,
BHS, LBC1921, LBC1936) were used in more than one
analysis, creating a possible bias in findings, and it is thus
unclear whether these studies are using the same or simi-
lar data. For example, the US Department of Veterans Af-
fairs’ Normative Ageing Study (NAS) was used in four
separate studies [17, 18, 70, 77], and the Women’s Health
Initiative (WHI) was used in three [18, 23, 69]. Further,
two studies that looked at cancer as an outcome both used
the same cohort (EPIC) and had similar sample sizes (n =
902 vs, n = 845), but it was not clear whether the data was
overlapping between both studies [63, 64].

Whilst nearly every study, apart from one [23], showed
some evidence of an association between at least one of the
DNAmAge measures examined and an outcome, there were
few studies which were directly replicated across more than
one study. The variability in these associations may be re-
lated to the different DNAmAge measures which have been
used, as well as the specific outcomes. For example, the five
cancer studies looked at eight specific types of cancer [70],
but different cancers are known to have very specific DNA
methylation patterns [83]. Whether this could also directly
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influence DNAmAge, and potentially the accuracy of this
biological age predictor, is unclear.

Despite evidence pointing towards an association with
all-cause mortality, the centrality of studies, observed in
both funnel plots (Fig. 3) is an indication of positive
publication bias, and thus caution should be taken when
interpreting these findings.

Accuracy of age estimation

It has been suggested that to be an accurate biological
age estimator, DNAmAge should be highly correlated
with chronological age (r=>0.80) (20 to 100 years) [80].
However, of the studies included in this systematic re-
view, only 8 of the 23 studies reported a correlation be-
tween DNAmAge and chronological age at or above this
level. Ten studies had either r<0.80 on at least one
measure of DNAmAge (either Horvath or Hannum) or
had a lower correlation for all measures (» =0.13-0.79).
If DNAmAge is not highly correlated with chronological
age, then the measures of age acceleration may also be
less accurate. One of the reasons for this may be that
most of the included studies focused on a narrow age
range of older individuals, whilst the epigenetic clock al-
gorithms were developed for individuals across a wide
spectrum of ages (from 0 to 100 years). The lower corre-
lations may also suggest that the measured DNAmAge
of participants are being confounded by environmental
factors beyond what studies have adjusted for. This is a
particularly important point, given that DNA methyla-
tion levels are dynamic and may be influenced by envir-
onmental factors such as stress [84] and smoking [85].

Strengths and limitations of the review

This systematic review was conducted in line with the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. A systematic search
was established with clear inclusion and exclusion criteria,
and for all studies included, the quality of evidence was
evaluated. A meta-analysis was performed by pooling the
data of multiple studies, giving greater certainty to the re-
sults. However, for both Horvath and Hannum methods,
studies showed a moderate to high amount of heterogen-
eity, suggesting that studies were not undertaken in the
same way or that different experimental protocols were
applied. Heterogeneity may also be the result of including
studies with varying cohorts, for example, the pooling of
data from same-sex twins, combined with a male-only
study, and a population study. As previously stated, funnel
plots suggest that there was publication bias.

Limitations to our systematic review are that only studies
assessing either the Horvath and/or Hannum epigenetic
clocks were included, which are the most commonly used
measures. However, there are a number of newer DNA
methylation age estimators that have also been developed.
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For example, a recent ‘phenotypic age estimator’ was devel-
oped [34] which shows very good predictive accuracy for
time to death in association with a number of markers of
immunosenescence and smoking status.

It remains unclear whether these methylation changes
at specific CpGs are driving ageing or are consequences of
the ageing process (cellular ageing, underlying disease pro-
cesses). Whilst larger sets of CpGs can produce more pre-
cise estimations of age [80], many measures in this review
only showed modest or weak associations with chrono-
logical age. A meta-analysis could not be undertaken in
regard to longevity or age-related disease as studies were
too few and measures and outcomes too heterogeneous.

Whilst measures of biological age and their associations
with mortality are more certain, the clinical practicality of
measuring DNAmAge proves to be problematic, for
example, when compared to physical tests that are also
able to predict mortality, such as walking speed, grip
strength, and BMI measurements, which are cheaper and
far easier to obtain [86]. Should the cost of measuring
DNAmAge come down significantly, it would be a viable
measure of risk for all-cause mortality. These studies may
provide practical suggestions for obtaining healthy longev-
ity through the active modification of DNA methylation
patterns by changing lifestyle habits. Both these, and
focusing on modifying age-related, disease specific DNA
methylation profiles may also aid in decreasing incidence
of age-related disease or early mortality.

Recommendations for future studies

In designing future studies in this field, some of the follow-
ing points should be considered. Cohort studies are pre-
ferred over case-controls, with the latter being more
susceptible to bias as we identified in this review. Cases and
controls must be sampled from the same source population
and sufficiently well matched. Thorough phenotyping of
the study population more generally is also essential. This
helps rule out competing exposures or diseases which may
also confound the associations. Somewhat surprisingly,
there was a lack of evidence for sex- or ethnic-specific ef-
fects observed in this systematic review, but future studies
should also consider analysing and reporting this data indi-
vidually. Longitudinal studies, that follow individuals over
time and track disease progression, together with biological
samples taken at several time points, would have the great-
est value and could shed light on whether DNA methyla-
tion changes are driving ageing and age-related disease, or
if they are the consequence of these processes.

In terms of reporting results, it is essential that studies
provide comprehensive details relating to the participant’s
characteristics, and present all data analysis that has been
undertaken. Replication and validation of findings across
multiple independent samples or cohorts are crucial. This
will help reduce the reporting of false-positive findings.
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Finally, the epigenetic clocks included in this review
(Horvath and Hannum) were developed to measure
biological age across a wide range of chronological ages. It
could be that there is greater utility in developing an epi-
genetic clock specifically for later life that could encapsulate
the lifetime exposure to a range of environmental factors
and the increased prevalence of comorbidities. This may
also be the period of the lifespan where predicting the risk
of disease and mortality could be particularly pertinent in
terms of interventions/treatments or prevention.

Conclusion

Some measures of biological age presented in this systematic
review may reflect longevity in long-lived individuals and risk
of age-related disease. However, due to the relatively small
number of studies and variability in findings, the evidence is
as yet insufficient to confirm the utility of DNAmAge as a
clinical biomarker in this regard.

DNAmAge is one of the most highly studied markers
of ageing [87], and, with the limitations discussed here,
appears to be a good predictor of mortality. An accurate
measure of DNAmAge, that in theory could be mea-
sured at any age, has great potential to be an early bio-
marker of disease risk. Identifying individuals with
accelerated biological ageing could permit targeted inter-
ventions to help delay their risk of age-related disease
and increase their overall health. With the ageing popu-
lation, there is increasing emphasis on promoting the
health and well-being of older individuals. Given its im-
portance, multiple studies into specific outcomes, with a
wider assortment of study cohorts, should be explored
further.

Given that DNA methylation is an epigenetic mechanism
involved in gene regulation, beyond the ability to estimate
future risk of disease and mortality, further studies could
provide novel insights into the long-standing question
about why and how people age. They may also offer an-
swers as to how we may prevent the negative effects of age-
ing such as age-related diseases. Thus, it is of particular
importance in future studies not only to measure DNA-
mAge, but also to investigate which interventions (e.g. life-
style changes) attenuate the advancement or initiate the
reversal of biological age directly.
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