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The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA

methylation, histone modifications, chromatin remodeling, and non-coding RNA species.

Increasing lines of evidence support the concept that certain acquired traits are derived

from environmental exposure during early embryonic and fetal development, i.e., fetal

programming, and can even be “memorized” in the germline as epigenetic information

and transmitted to future generations. Advances in technology are now driving the global

profiling and precise editing of germline and embryonic epigenomes, thereby improving

our understanding of epigenetic regulation and inheritance. These achievements open

new avenues for the development of technologies or potential management interventions

to counteract adverse conditions or improve performance in livestock species. In

this article, we review the epigenetic analyses (DNA methylation, histone modification,

chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian

livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of

gamete and embryo viability. We also discuss the effects of parental environmental

exposures on the epigenetics of gametes and the early embryo, and evidence for

transgenerational inheritance in livestock.
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INTRODUCTION

The epigenome carries information encoded by DNA methylation, chromatin configuration,
histone modifications, and non-coding RNAs. Drastic epigenome reprogramming occurs during
gametogenesis and early embryogenesis, leading to the reset of the epigenetic modifications
and the conversion of differentiated gametes into a totipotent embryo. The dynamics of this
epigenome reprogramming have been extensively studied in rodent models and humans with
fewer studies focused on domestic species. Deficiencies in epigenetic remodeling during this time
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can cause severe developmental defects, especially in domestic
species where assisted reproductive technologies (ARTs) are
widely used for research and accelerating genetic selection from
genetically superior animals (Sutcliffe et al., 2006). Abnormalities
in embryos, fetuses, placentas, and offspring created in vitro are
thought to be due to improper establishment and/ormaintenance
of the epigenetic modifications formed during this window (Li
et al., 2005; Fernandez-Gonzalez et al., 2010).

Dramatic phenotypic differences have been established and
stabilized between livestock breeds by decades and sometimes
centuries of selective breeding. These differences include growth
rate, presence or absence of horns, muscle characteristics,
milk production, heat tolerance, fertility and many others.
In some cases, these phenotypic differences can be clearly
defined as allelic variations between breeds and are inherited
as genetic traits. However, there is phenotypic variation that
is not due to underlying sequence differences. In cattle, for
example, 32–80% (depending on the trait) of the additive genetic
variance can be attributed to genetic variation (e.g., single
nucleotide polymorphisms, substitutions) (Haile-Mariam et al.,
2013). Thus, there is a missing heritability component (Yang
et al., 2010). Furthermore, the interaction of the genotype with
environmentally susceptible epigenetic modifications contributes
to phenotypic variability and is important to analyze. In
many species, there is evidence that environmentally induced
epigenetic modifications can persist in future generations serving
as a “memory” of past experiences (Daxinger and Whitelaw,
2012; Heard and Martienssen, 2014). Many correlative studies
in animal models, such as rats, mice, and even in humans,
have suggested various epigenetic factors (e.g., DNAmethylation,
histone modification, and small RNAs) in germ cells may
carry these memories, reviewed in Daxinger and Whitelaw
(2012), Heard and Martienssen (2014), Chen et al. (2016b),
and Zhang et al. (2019). Numerous studies have looked at
the effects of parental environmental exposures on livestock
development and production. However, a more limited number
of studies in domestic animals have examined the epigenetic
mechanisms/modifications responsible, and even fewer have
sought to identify transgenerational inheritance.

The development of epigenomic technologies is facilitating
the global profiling of germline and embryonic epigenomes,
and rapidly improving our understanding of epigenetic
regulation and inheritance in a number of species. These
achievements provide new areas for the development of
promising technologies, or potential management modifications
that can neutralize adverse conditions or even improve the
performance of livestock. In this review, we outline the current
epigenetic characterization of germ cells and embryos in
livestock species. We avoid extensive discussion of the epigenetic
analysis in model organisms, such as rodents, which have been
comprehensively reviewed elsewhere (Smith and Meissner, 2013;
Lee et al., 2014; Xu and Xie, 2018; Greenberg and Bourc’his,
2019; Wen and Tang, 2019). We will also discuss studies in
livestock species that analyze parental, environmentally induced
epigenetics in gametes, the embryo and fetus, and evidence of
transgenerational inheritance.

EPIGENETIC REPROGRAMMING DURING

EARLY EMBRYO DEVELOPMENT IN

LIVESTOCK SPECIES

DNA Cytosine Methylation
5-methylcytocine methylation (5mC) is an important epigenetic
modification. It plays essential roles in mammalian development
as it is crucial in regulating gene expression, genomic imprinting,
silencing of repetitive DNA, differentiation, and X chromosome
inactivation (Li et al., 1993; Bird, 2002; Jaenisch and Bird,
2003; Hackett et al., 2013). 5mC can conceal gene regulatory
regions and recruit transcriptional repressors and/or chromatin
modifiers/remodelers, and therefore is mostly involved in gene
silencing (Schultz et al., 2015). However, 5mC has been
implicated in transactivation if distributed within the gene body
as seen in bovine oocytes and placental tissues (Schroeder et al.,
2015). TET enzymes can modify 5mC to 5hmC, 5fC, 5caC, which
can be considered as epigenetic modifications in their own right
(Inoue and Zhang, 2011; Inoue et al., 2011; Wossidlo et al., 2011).
Full characterization of these modifications in early embryos is
lacking in livestock species.

DNA methylation is relatively stable in differentiated somatic
cells, but highly dynamic during the development of primordial
germ cell (PGCs) and preimplantation embryos when global
DNA methylation patterns are reprogrammed (Saadeh and
Schulz, 2014). In the mammalian embryos studied to date,
the first reprogramming event takes place post-fertilization and
involves widespread and swift demethylation of the paternal
genome, followed by a progressive drop in global DNA
methylation of the maternal genome as cleavage progresses
(Smith et al., 2012, 2014; Guo et al., 2014; Gao et al., 2017; Jiang
et al., 2018; Duan et al., 2019). This nadir is followed by global
de novo methylation (Mayer et al., 2000; Oswald et al., 2000;
Santos et al., 2002; Smith et al., 2012; Gao et al., 2017; Jiang et al.,
2018; Duan et al., 2019). The second wave of mammalian DNA
methylation reprogramming takes place in PGCs where global
demethylation and erasure occurs and imprints are formed based
on the sex of the fetus (Popp et al., 2010; Guibert et al., 2012;
Hackett et al., 2013; Hill et al., 2018).

Most of what is known about the dynamics of 5mC
methylation during preimplantation development in domestic
species was revealed by immunostaining (Dean et al., 2001;
Beaujean et al., 2004; Park et al., 2007; Deshmukh et al., 2011;
Dobbs et al., 2013). While immunostaining provides important
overall methylation dynamics, it does not provide specific
sequence information of the methylated/de-methylated regions.
The more sequence-based approach of a DNA methylation
microarray was used to analyzed blastocyst stage embryos in
porcine (Bonk et al., 2008) and bovine (Salilew-Wondim et al.,
2015, 2018; Ispada et al., 2018). Although considerably more
specific than immunostaining, microarrays are limited by the
finite number of probes used in their construction and do not
provide high-level single-nucleotide resolution of methylation
status. Numerous studies have also been performed to evaluate
the methylation level of selected candidate genes and regulatory
regions in bovine and porcine oocytes and embryos (Gebert et al.,

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 557934

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhu et al. Livestock Gamete and Embryo Epigenetics

2009; Niemann et al., 2010; Heinzmann et al., 2011; Dobbs et al.,
2013; Zhao et al., 2013; O’Doherty et al., 2015; Mattern et al.,
2016; Urrego et al., 2017).

Using reduced representative bisulfite sequencing (RRBS),
we were the first to report methylome dynamics at single-base
resolution in bovine in vivo preimplantation embryos (Jiang
et al., 2018). It has also been used to assess methylation patterns
in many bovine tissues, including the uterus and testes (Zhou
et al., 2016). RRBS preferentially selects CpG-rich regions, such
as CpG islands, while CpG shores are usually under-represented
(Doherty and Couldrey, 2014). These shore regions are known
to play important roles in tissue differentiation (Doi et al., 2009).
Recently, the development of single-cell whole genome bisulfite
sequencing (WGBS) allowed for the reliable and affordable
revelation of potentially all CpG sites in a single oocyte or embryo
(Smallwood et al., 2014). It also allows for interrogation of 5mC in
non-CpG contexts, which are preferentially enriched in oocytes,
embryos and stem cells (Lister et al., 2009; Tomizawa et al.,
2011) and not clearly mapped in many livestock species. We
adopted the WGBS method to further characterize stage-specific
genome-wide DNA methylation in bovine sperm, immature
oocytes, oocytes matured in vivo and in vitro, as well as in vivo
developed single embryos at the 2-, 4-, 8-, and 16-cell stages
(Duan et al., 2019). Both studies indicated that the major
wave of genome-wide demethylation was completed by the 8-
cell stage in bovine embryos. Sequencing-based analyses have
profiled the demethylation during preimplantation development
in mice (Smallwood et al., 2011; Smith et al., 2012), and
primates (Gao et al., 2017) including humans (Guo et al., 2014;
Smith et al., 2014). The timing of the major wave of genome-
wide demethylation differs from what was observed in bovine
embryos, for example, the most marked demethylation occurred
at the zygote stage in mice (Smith et al., 2012), at the 2-cell stage
in rhesus monkeys (Gao et al., 2017), and at the 4-cell stage in
humans (Smith et al., 2012; Guo et al., 2014).

Our analysis also found that sperm and oocytes were
differentially methylated in numerous regions (DMRs), which
were primarily intergenic, suggesting that these non-coding
regions may play important roles in gamete specification. DMRs
were also identified between in vivo and in vitromatured oocytes,
reinforcing environmental effects on epigenetic modifications
(further discussion of this later). Overall, these characterizations
are critical to understanding the epigenetic reprogramming
and regulation that occurs during normal, bovine embryonic
development in vivo, and to providing insight into the epigenetic
alterations that occur during in vitro maturation (IVM) of
oocytes and culture (IVC) of embryos after in vitro fertilization
(IVF). Importantly, bovine embryos, which are more like human
embryos than mouse embryos are in terms of gene expression
profiles and developmental timing (Jiang et al., 2014), can serve
as a great model for understanding early human development,
especially since human in vivo embryos are not available
for research.

DNA N6-Adenine Methylation
It was widely accepted that 5mC was the only form of
DNA methylation in mammalian genomes and that the other

modifications were absent, such as N6-adenine methylation (N6-
mA), which is predominantly found in prokaryotes and a limited
number of eukaryotes (Heyn and Esteller, 2015). The role N6-
mA plays in gene regulation and epigenetic remodeling remains
essentially uncharted. With the development of next generation
sequencing technologies, N6-mA was found to be present in
several eukaryotes, including C. elegans (Greer et al., 2015), green
algae (Fu et al., 2015), and Drosophila (Zhang et al., 2015). With
the advent of more sensitive detection techniques, N6-mA has
been more recently identified in Xenopus laevis (Koziol et al.,
2016), and mammals, i.e., in mouse kidney (Koziol et al., 2016),
and embryonic stem cells (ECSs) (Wu T. P. et al., 2016), porcine
gametes and embryos (Liu J. et al., 2016), human glioblastoma
(Xie et al., 2018), and mouse trophoblast lineages (Li et al.,
2020). In pigs, mass spectrometry analysis showed that the N6-
mA/A ratio in oocytes (0.09%) was ∼6 times higher than that
in sperm. This ratio rose to ∼0.17% from the four-cell to the
morula stage and then decreased to 0.05% at the blastocyst
stage. However, only a low level of N6-mA was observed in
genomic DNA of various adult porcine tissues. These results
were also confirmed by immunostaining, which further supports
the presence of N6-mA in porcine early embryos (Liu J. et al.,
2016). These findings defy the prevalent theory of 5mC as the
only form of DNA methylation in the mammalian genome
and suggest that N6-mA is conserved and may be important
during early development and differentiation (Li et al., 2020). In
addition, N6-mA in mammals appears to be a repressor of gene
expression, that unlike 5mC, is independent of CpG islands and
thus would have increased sequence flexibility. The specificity
and dynamics of N6-mA establishment and removal will be
crucial for understanding its role in gametes and embryos.

Chromatin Remodeling
Accessible chromatin delineates regulatory sequences,
such as promoters, enhancers, and locus-control regions.
Early mammalian embryos experience extensive chromatin
remodeling and proper regulation of chromatin state is essential
for transcription and preimplantation development (Burton and
Torres-Padilla, 2014). However, it has been difficult to explore
global chromatin landscape and its dynamics in gametes and
early embryos due to the amount of DNA typically required
for such analyses. Recently, low input or single-cell assays to
profile chromatin remodeling have been developed [DNase-seq,
an assay for transposase-accessible chromatin (ATAC-seq),
nucleosome occupancy and methylome analysis (NOMe-seq),
and 5C-seq or Hi-C] reviewed by Xu and Xie (2018).

These methods have interrogated chromatin configuration
from different angles in gametes and early embryos. The
dynamics of chromatin accessibility in gametes and early
embryos in mice and humans have been extensively analyzed
(Lu et al., 2016; Wu J. et al., 2016; Guo et al., 2017;
Inoue et al., 2017; Jachowicz et al., 2017; Jung et al., 2017;
Wu et al., 2018; Liu L. et al., 2019). Unsurprisingly, these
studies have revealed highly active chromatin landscapes
during early development. As one would expect, generally,
chromatin was more accessible in embryos after embryonic
genome activation (EGA). Interestingly, Guo et al. (2017)

Frontiers in Genetics | www.frontiersin.org 3 March 2021 | Volume 12 | Article 557934

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhu et al. Livestock Gamete and Embryo Epigenetics

reported a more oscillating chromatin state, with chromatin
accessibility increasing from gametes to zygotes, followed by
a decrease after the late zygote stage, before increasing again
in the four-cell embryo. Additionally, by integrating chromatin
accessibility with the transcriptome in early embryos, a regulatory
network was constructed, and this identified the transcription
factors associated with preimplantation development and lineage
specification (Wu J. et al., 2016).

Distinct chromatin organizations in gametes and
preimplantation embryos have been revealed using the Hi-
C approach (Battulin et al., 2015; Du et al., 2017; Flyamer et al.,
2017; Jung et al., 2017; Ke et al., 2017). Topologically Associating
Domains (TADs) and chromatin compartments in sperm
appear to be largely like those in other mammalian cells, such
as embryonic stem cells or somatic cells (Battulin et al., 2015;
Jung et al., 2017). In oocytes, TADs are present in GV oocytes,
but are not observed in MII oocytes (Ke et al., 2017), which
makes sense given the transcriptional inactivity at this stage. The
re-establishment of TADs after fertilization is slower compared
with that observed in somatic cells after division and coincides
with EGA (Du et al., 2017; Ke et al., 2017). Allele-specific
chromatin architecture was also observed during mammalian
embryogenesis. In zygotes, chromatin compartments appear to
be absent or faint in the maternal pronucleus, but are evident
in the paternal genome (Du et al., 2017; Flyamer et al., 2017;
Ke et al., 2017). The 3D chromatin structure across consecutive
stages of mouse somatic cell nuclear transfer (SCNT) embryos
was also examined using a low-input Hi-C (Chen et al., 2020).
This work identified defects in the cloned embryos, specifically
stronger TAD boundaries and abnormal interactions between
super-enhancers and promoters. Importantly, this research
sheds even more light on what is required for successful nuclear
reprogramming during SCNT (Chen et al., 2020).

Integrating these datasets from mouse and human gametes
and embryos provides a widespread view of the chromatin
configuration changes during early embryogenesis. However,
the chromatin reorganization in livestock gametes and embryos
remains largely unknown. Following our recent efforts to
characterize the DNA methylomes of bovine early embryos
(Jiang et al., 2018; Duan et al., 2019), we profiled the accessible
chromatin in bovine oocytes and early embryos using ATAC-
seq (Ming et al., 2020). We generated a high-resolution map of
accessible chromatin in bovine oocytes and embryos at the 2-,
4-, 8-cell, morula, blastocyst and elongating stages. We identified
distinct gene network programs and transcription factors that
differ between in vivo and in vitro derived blastocysts, which
may serve as biomarkers of embryo viability. We also performed
an integrative analysis of the transcriptome, DNA methylome
and chromatin dynamics and exposed the essential components
of the regulatory network controlling bovine early embryonic
development. The comprehensive dataset we established will
further the understanding of the epigenetic reprogramming
that takes place during early bovine embryogenesis. Another
characterization of the accessible chromatin in early bovine
embryos using the same ATAC-seq approach was recently
published (Halstead et al., 2020). Similar to the findings
in humans and mice (Lu et al., 2016; Wu J. et al., 2016;

Wu et al., 2018), both studies suggest that cattle embryos
experience progressive chromatin accessibility during cleavage,
which is consistent with the transcriptional activation of the
embryonic genome. Interestingly, Halstead et al. (2020) identified
a conserved set of maternal factors in mice, cattle and humans
that were involved in regulating chromatin remodeling prior
to EGA. They also found that the open chromatin regions set
during EGA were enriched for homeobox motifs. Overall, open
chromatin patterns had significant similarities between cattle and
human embryos, providing further evidence that cattle embryos
are a good model for human preimplantation development.

Histone Modifications
Histone modifications are essential for regulating gene
expression. Post-translational modifications (PTMs) of histone
tails can directly alter the spatial arrangement of nucleosomes on
the DNA and the higher-order chromatin structure. Importantly,
they can also affect the recruitment of other proteins and
complexes onto the chromatin (Kouzarides, 2007). Therefore,
the accessibility of chromatin to transcription factors and the
subsequent gene expression pattern can be controlled by histone
PTMs (Venkatesh and Workman, 2015). Interestingly, histone
PTMs can be passed to progeny through gametes (Skvortsova
et al., 2018). Conventionally, chromatin immunoprecipitation
with high-throughput sequencing (ChIP-seq), which is widely
used to survey histone PTMs, requires millions of cells to get
high-quality libraries. Modification and improvement of the
ChIP-seq methodology and the analysis pipeline [CUT&RUN
(Skene and Henikoff, 2017)] has made it possible to retrieve
high quality and reproducible data from single cells, reviewed
in Xu and Xie (2018). Therefore, it is now feasible to reveal
the genome-wide distribution of histone PTMs in gametes and
preimplantation embryos.

The reprogramming of histone modifications during early
embryo development has been well-established in mice (Dahl
et al., 2016; Liu X. et al., 2016; Zhang B. et al., 2016; Zheng et al.,
2016; Inoue et al., 2017; Hanna et al., 2018). Both H3K4me3 and
H3K27me3 display widespread distal domains in mouse oocytes,
which can be inherited in early embryos and regulate zygotic gene
expression (Dahl et al., 2016; Zhang B. et al., 2016; Zheng et al.,
2016; Inoue et al., 2017). During gametogenesis, distinct histone
modifications are established in females and males (Zheng et al.,
2016). After fertilization, maternal H3K4me3 from the oocyte is
inherited by early embryos, before it is removed upon the start of
EGA at the late two-cell stage. By contrast, sperm H3K4me3 and
H3K27me3 are quickly removed after fertilization. This is then
followed by re-establishment of low-level broad domains across
the genome (Zhang B. et al., 2016). Most recently, the remodeling
of histone modifications in human early embryo development
was reported (Xia et al., 2019). Unlike what is observed in the
mouse, the activating mark, H3K4me3, occurs as strong peaks
at promoters in human GV oocytes. After fertilization, zygotes
displayed widespread H3K4me3 patterns (Xia et al., 2019).

Dynamic changes in histone modifications in gametes and
embryos have been widely reported using immunofluorescence
in different livestock species, including bovine and porcine
(Lepikhov et al., 2008; Ross et al., 2008; Canovas et al., 2012;
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Herrmann et al., 2013; Diao et al., 2014; Huang et al., 2015;
Xie et al., 2016; Chung et al., 2017; Liu et al., 2018). Recently,
Org et al. (2019) published the first genome-wide localization of
histone H3K4me3 and H3K27me3 in the inner cell mass (ICM)
and trophectoderm (TE) of bovine blastocysts. By linking histone
PTM profiling and gene expression, this study revealed similar
levels of H3K4me3 and H3K27me3 in both up- and down-
regulated genes, respectively, in the ICM. In the TE, however,
higher levels of H3K4me3 around promoter regions and lower
levels of H3K27me3 across the whole gene region were observed
in upregulated genes. The authors suggested that together these
two histone modifications exert proactive epigenetic regulation
in the TE, but not in the ICM (Org et al., 2019). However, it
is important to note that locus specific localization of histone
modifications has not been investigated across preimplantation
embryo development in livestock species to date.

During epigenetic remodeling of bovine embryos, the
enzymes that are responsible for the methylation of H3K9me2,
H3K9me3, H3K4me2, H3K4me3, and H3K27me3 are known;
they include EHMT1/2, SUV39H1/H2, SETDB1, EZH2, and
SMYD3 (McGraw et al., 2007; Ross et al., 2008; Golding et al.,
2015; Bai et al., 2016; Zhang et al., 2016b). The expression of
enzymes responsible for removal of the methylation from H3K4,
H3K9, H3K27 were also characterized in bovine early embryos
(Glanzner et al., 2018). KDM6B (JMJD3) is involved in the
erasure of H3K27me3 during embryo cleavage. Knockdown of
KDM6B in bovine oocytes resulted in compromised EGA and
reduced development to the blastocyst stage (Canovas et al., 2012;
Chung et al., 2017). Likewise, knockdown of SMYD3, a H3K4
methyltransferase, in bovine in vitro matured oocytes negatively
impacted embryo development at the 8-cell stage and beyond
and resulted in decreased NANOG expression in oocytes, but
increased expression in early embryos (Bai et al., 2016).

In porcine embryos, H3K4me2/3 is actively demethylated
to the monomethylated form (H3K4me1) from 4-cell to
blastocyst stage by lysine-specific histone demethylase 5B
(KDM5B, also known as JARID1B or PLU-1), whose expression
is elevated during this time frame. Demethylation of H3K4me3
is suggested to be important in maintaining proper H3K4me3
(permissive)/H3K27me3 (repressive) ratio during porcine
blastocyst formation (Huang et al., 2015), which is consistent
with select genes (e.g., members of homeobox family, etc.) being
silenced for proper lineage specification during differentiation
(Bernstein et al., 2006). The elaborate balance between H3K4me3
and H3K27me3 is also controlled by KDM6B, which is
a H3K27me3 demethylase. KDM6B knockout alters gene
expression at the 8-cell stage and hampers bovine blastocyst
formation (Chung et al., 2017).

Non-coding RNAs
As sequencing technologies advance, we learn that up to
90% of the eukaryotic genome is transcribed to some extent,
while messenger RNAs (mRNAs), which are protein-coding,
only account for 1–2% of the total RNA population (Ponting
and Belgard, 2010). The remaining “non-coding” RNAs can
be classified into “housekeeping” RNAs (e.g., ribosomal RNA,
rRNA; transfer RNA, tRNA; small nuclear RNA, snRNA;

small nucleolar RNA, snoRNA), and “regulatory” RNAs (e.g.,
small non-coding RNA, sncRNA; long non-coding RNA,
lncRNAs) that are involved in modulating gene expression
(Kim and Sung, 2012).

In mammals, the “regulatory” ncRNAs have been found
to be actively involved in gametogenesis and early embryo
development. PIWI-interacting RNAs (piRNAs) and associated
PIWI proteins are rarely found in somatic cells, while they
are enriched in male germ cells and comprise the majority of
sncRNAs present during spermatogenesis in mice (Deng and Lin,
2002; Kuramochi-Miyagawa et al., 2004). It has been shown that
piRNAs are indispensable for spermatogenesis and fertility in
mice (Fu and Wang, 2014) probably through their role in the
repression of transposons (Carmell et al., 2007), where piRNAs
facilitate the de novomethylation of transposon-encoding genes,
therefore preventing their accumulation (Kuramochi-Miyagawa
et al., 2008; De Fazio et al., 2011; Siomi et al., 2011).

It has also been established in mice that besides piRNA
populations, miRNAs and siRNAs are also present during
spermatogenesis and show stage-specific transcription (Hayashi
et al., 2008; Song et al., 2011). Nonetheless, our understanding of
miRNA and siRNA functionality of germ cells is rather limited
compared to what is known about piRNAs. In mice, disruption
of sncRNA biogenesis is associated with defective primordial
germ cell proliferation, meiotic progression, spermatid
condensation/elongation, and elimination of spermatocytes
(Maatouk et al., 2008; Romero et al., 2011; Song et al., 2011;
Greenlee et al., 2012; Wu et al., 2012; Zimmermann et al.,
2014; Modzelewski et al., 2015). Other roles of sncRNAs in
murine spermatogenesis, e.g., heterochromatin formation,
transcriptional silencing and DNA damage repair, have been
reviewed elsewhere (Hilz et al., 2016). Compared with their role
in males, miRNAs and piRNAs seem to be non-essential in later
stages of oogenesis and in early embryos, at least in mice (Suh
et al., 2010; Hilz et al., 2016). Recent studies suggest that this
aspect of the functionality of sncRNAs in mice might be the
exception in mammals. For example, studies show that PIWI
proteins and piRNAs are present in human, macaque and bovine
ovaries, indicating their role of transposon repression in oocytes
(Roovers et al., 2015). Of note, PIWIL3, one of the four PIWI
proteins in most eutherian mammals, is only found in oocytes
and not in the testis in bovine, while this copy is completely lost
in mice (Roovers et al., 2015). Thus, it appears that sncRNA
functions in gametogenesis diverged during evolution.

Our understanding of ncRNAs during gametogenesis
and embryo development in livestock species mainly comes
from quantitative RT-PCR analyses (Tesfaye et al., 2009;
Tscherner et al., 2014; Gilchrist et al., 2016; Berg and Pfeffer,
2018). However, comprehensive profiling of ncRNAs has been
conducted in bovine (Gilchrist et al., 2016; Pasquariello et al.,
2017; Cuthbert et al., 2019), porcine (Yang et al., 2012; Zhong
et al., 2018), and caprine (Deng et al., 2018; Ling et al., 2019) with
high-throughput sequencing-based technology. In cattle, miRNA
abundance is elevated at 8-cell stage when the major EGA occurs.
Of note, the upregulated miRNAs were predicted to target genes
involved in cell development, cell division, Wnt signaling and
pluripotency, etc. (Cuthbert et al., 2019). In contrast, piRNAs
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were found in bovine oocytes and blastocysts, but not in 8-cell
stage embryos. The shift of sncRNA abundance at 8-cell stage
alludes to an important role in activating the bovine embryonic
genome (Cuthbert et al., 2019). In porcine, lncRNAs have been
involved in oocyte maturation, transcriptional regulation of
EGA, first lineage segregation and somatic reprogramming to
pluripotency (Yang et al., 2012; Zhong et al., 2018). Interestingly,
many of the sncRNAs are mapped to annotated repetitive
elements (e.g., SINEs and LINEs) in the pig genome, indicating
the regulatory function of these elements during early embryo
development (Yang et al., 2012). In goats, 5,160 differentially
expressed lncRNAs were identified across developmental stages;
the extensive association of lncRNA target genes with other
key regulatory genes indicates that lncRNAs are indispensable
in embryonic development (Ling et al., 2019). However, the
functional characterization of sncRNAs during early embryo
development and gametogenesis is still limited in livestock
species, so how sncRNAs contribute to the overall epigenetic
regulation that takes place during this time is unclear.

Overall, epigenome reprogramming is extensively
characterized in the mouse, and most recently, in humans.
Recent epigenomic studies building on advances in ultra-low
input chromatin profiling methods will help to integrate the
DNA methylome, chromatin states, histone modifications
and non-coding RNAs during early embryo development in
livestock. As discussed, research in these areas is emerging on a
large scale. It would be very interesting to combine all available
datasets to determine the conserved and divergent epigenome
reprogramming programs during early embryo development
across different mammalian species. Most importantly, it is
critical to determine how the different epigenetic mechanisms
regulate the transcriptional program, and how different
epigenomic reprogramming events interact with each other to
secure successful development.

EPIGENETIC DETERMINANTS OF GAMETE

AND EMBRYO VIABILITY

Epigenetics and Oocyte Viability
Success in in vitro embryo production (IVP) relies on
successful oocyte collection and optimal oocyte quality
(Baruselli et al., 2012). However, manipulation of oocytes
by superovulation, IVM, oocyte cryopreservation, etc. influences
oocyte competency, largely through the introduction of
epigenetic abnormalities. Additionally, environmental stressors
can reduce oocyte competence even further. The effects of
aging on oocyte quality and associated epigenetic changes have
been documented and extensively reviewed in humans (Ge
et al., 2015). There is growing interest to identify the epigenetic
signatures of gametes, and investigate the key molecular drivers
that are perturbed at susceptibility loci leading to aberrant
gametes in livestock.

Superovulation and oocyte pick up (OPU) have been widely
used in bovine IVP programs to increase the number of oocytes
from elite animals for assisted reproduction. As observed in
human and mouse studies, superovulation can induce aberrant

epigenetic profiles and alter gene expression in oocytes and
embryos (Khoueiry et al., 2008; Fauque, 2013). In cattle, oocytes
retrieved with or without stimulation showed significantly
different expression of genes regulating the cell cycle; overall,
more than 50% of the genes studied were upregulated after
gonadotropin treatment (Chu et al., 2012). Differential DNA
methylation of imprinted loci was also detected in oocytes
collected from women and mice after superovulation (Shi
and Haaf, 2002; Sato et al., 2007). Limited studies have been
carried out on the epigenetic landscape of oocytes retrieved
from hormonally primed cows. In one study, divergent DNA
methylation patterns were found only in satellite sequences,
but not in developmentally important, non-imprinted genes
(e.g., SLC2A1, PRDX1, ZAR) after FSH and IGF1 treatment
(Diederich et al., 2012). To determine the ultimate effect of
exogenous hormone on oocyte competence and embryo quality,
comprehensive epigenomic studies are needed; however, this is
limited by the ability to collect enough naturally ovulated oocytes
to serve as proper controls.

Oocyte maturation is relatively efficient in vitro, especially
in cattle and swine, and is now widely used to generate source
material for ARTs and gene editing both for agricultural and basic
research applications. However, it is well-established that in vivo
derived oocytes are much more developmentally competent
and capable of normal development at higher rates than those
in vitromatured (Leibfried-Rutledge et al., 1987; Reik andMaher,
1997; Rizos et al., 2002). In cattle, genome-wide methylation
patterns during oocyte maturation in vivo and vitro have been
comprehensively investigated (Jiang et al., 2018; Duan et al.,
2019). Global DNA methylation of oocytes appears to be stable
during the in vitro maturation process; in vitro maturation
maintained GV oocyte-levels of methylation. Whereas, in vivo
maturation increased DNA methylation levels in both RRBS and
WGBS studies (Jiang et al., 2018; Duan et al., 2019). Interestingly,
a significant increase in DNA methylation level was found in
in vivo matured oocytes compared to in vitro matured ones
in our RRBS study (Jiang et al., 2018), which only detected
the clustered CGs that are mainly located within CpG islands
(CGI). However, only a minor increase in DNA methylation
level was observed after in vivo maturation (Duan et al., 2019),
which is consistent with mouse studies (Kono et al., 1996;
Smallwood et al., 2011) and most recently found in humans as
well (Ye et al., 2020). A total of 801 DMRs associated with 68
genes, were found differentially methylated between in vivo and
in vitro matured oocytes. Interestingly, many of these have not
been characterized for their roles in maturation, making them
good candidates for gene-specific epigenetic modification studies
(Duan et al., 2019). These observations provide the underlying
mechanism for the abnormal gene expression and reduced
embryo and fetal development when oocytes are matured
in vitro. Interestingly, imprinted loci (e.g., H19/IGF2, PEG3,
SNRPN), in which epigenetic aberrations are commonly found
in imprinting defects in human, mouse and bovine embryos,
showed no or only minor methylation alteration between
in vivo and in vitro matured bovine oocytes. However, their
mRNA expression levels were changed when matured in vitro
(Duan et al., 2019), indicating that regulatory mechanisms other
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than DNA methylation may affect these loci and subsequent
oocyte competence and developmental potential of embryos
(Heinzmann et al., 2011).

IVM culture conditions influence oocyte competence. For
example, when a defined maturation medium with three
cytokines (FGF2, LIF, and IGF1) dubbed “FLI medium,” was
used, researchers saw improved nuclear maturation of oocytes
derived from immature porcine ovaries and a significant
increase in blastocyst rate (Yuan et al., 2017). The introduction
of simulated physiological oocyte maturation (SPOM) has
substantially improved bovine embryo development in vitro
(Albuz et al., 2010). Many factors in the culture medium
have been identified to be involved in epigenetic signature
alteration of in vitro matured oocytes, including non-esterified
fatty acids (NEFA) (Desmet et al., 2016). In contrast to the
changes in DNA methylation during in vitro maturation that
we previously discussed, histone modifications have shown more
dynamic changes. H3K9me2, which is strongly associated with
transcription repression and acts as a DNAmethylation protector
(Nakamura et al., 2012), is present from the GV stage until
the end of the maturation period, while H4K12ac, which is
associated with active promoters, declines drastically after the
break down of the germinal vesicle (Racedo et al., 2009). Unlike
DNA methylation, genome-wide histone modification dynamics
are not available during in vitro maturation, thus ChIP-Seq
analyses are necessary to understand the effects of this process.

Oocyte cryopreservation is another routine procedure in IVP.
It has been established that vitrification affects cellular structures
of oocytes and the developmental potential of embryos (Khalili
et al., 2017). Chen H. et al. (2016) showed that DNA methylation
and H3K9me3 levels are reduced in the bovine oocytes after
vitrification, leading to a drastic decline in blastocyst rate.
Given the fact that DNA methylation and H3K9me3 are usually
associated with gene silencing and heterochromatin formation
(Becker et al., 2016), lower abundance of these two epigenetic
modifications indicates a permissive andmore relaxed chromatin
state. This may lead to aberrant epigenetic regulation and
expression of imprinted genes (Chen H. et al., 2016). In another
study evaluating the effect of different freezing protocols on
DNAmethylation levels of bovine oocytes, opposing results were
obtained depending on the method, with decreased global DNA
methylation in slow freezing and DMSO groups, and elevated
DNA methylation with the propylene glycol protocol (Hu et al.,
2012). Advanced sequencing-based methods will provide more
locus-specific information, and are therefore more instructive in
directing future studies and possible protocol modifications.

Epigenetic Modifications Associated With

Sperm Fertility in Livestock Species
Male fertility is critical for livestock reproduction, and is
mostly influenced by environmental, management and epigenetic
factors. There is a growing interest to develop potent epigenomic
biomarkers for bull fertility via a systematic approach by
compiling epigenomic datasets and associations with reliable
phenotypic data.

It has been proposed that sperm-borne factors (proteins,
mRNAs, DNA methylation, histone modification, and miRNAs)
are associated with fertility and are indispensable for early
embryo development (Ostermeier et al., 2004; Yuan et al., 2016).
The current knowledge in humans about the different epigenetic
signals in sperm that are responsive to environment and evidence
of sperm-borne epigenetic factors is well-reviewed in Donkin
and Barres (2018). In cattle, studies using sperm samples
from low and high fertility bulls have suggested various sperm
factors associated with bull fertility, including sperm proteomics,
gene expression, sperm protamine status, macromolecules,
metabolomics, superoxide dismutase, and amino acids of seminal
plasma (Peddinti et al., 2008; Feugang et al., 2010; Govindaraju
et al., 2012a; De Oliveira et al., 2013; Dogan et al., 2015; Grant
et al., 2015; Kaya and Memili, 2016; Kutchy et al., 2017, 2019;
Velho et al., 2018, 2019; Viana et al., 2018; Menezes et al., 2019;
Ugur et al., 2019; Memili et al., 2020).

Epigenetic modifications are reported to be associated with
sperm fertility, although the mechanisms governing this process
remain unclear. For example, acetylation and methylation of
H3K27 (H3K27ac and H3K27me3) in sperm has been correlated
with bull fertility (Kutchy et al., 2018). Furthermore, inadequate
histone replacement in sperm coincides with reduced fertility
in bulls (Dogan et al., 2015). Genome-wide H3K4me2 and
H3K27me3 profiles were also analyzed in the sperm of water
buffalo bulls with divergent fertility. When comparing buffalo
sperm from bulls with high fertility and sub-fertility, a total of
84 genes associated with H3K4me2 and 80 genes associated with
H3K27me3 were differentially enriched (Verma et al., 2015).

MicroRNAs can also influence male fertility by regulating
gene expression (Govindaraju et al., 2012b). Sperm miR-15a and
miR-29b have been reported to be associated with bull fertility
(Menezes et al., 2020). When researchers looked at small RNAs
in sperm with low and high motility from a single bull by RNA-
sequencing, they found altered miRNA and piRNA expression
(Capra et al., 2017). The characterization of the epigenome
in high and low motility bovine sperm also had methylation
variations that affected genes involved chromatin organization
(Capra et al., 2019). Profiles of the bull sperm small non-coding
RNAs across breeds was most recently characterized and showed
that miRNAs make up about 20% of the RNA population. This
study also increased the list of known miRNAs in bovine sperm
considerably (Sellem et al., 2020).

Recent studies using RRBS andWGBS have fully characterized
the bull sperm methylome and identified partially methylated
domains and hypomethylated regions unique to sperm when
compared to somatic tissues (Perrier et al., 2018; Zhou et al., 2018,
2020; Fang et al., 2019). Additionally, assessment of the DNA
methylation of spermatozoa between high and low fertility bulls
revealed 76 DMRs (Kropp et al., 2017). These studies provide
initial steps toward understanding the roles of small non-coding
RNAs and methylation in sperm and fertility.

Due to the inability to conduct in vitro spermatogenesis in
livestock species, sperm usually experience less environmental
stressors than oocytes. For example, stresses during IVM,
including oxygen tension, temperature fluctuation, media
composition and osmotic stress, could cause epigenetic
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alternations in oocytes (El Hajj and Haaf, 2013; Osman et al.,
2018). In domestic species, since the establishment of epigenetic
modifications has finished before sperm are retrieved and treated
for IVP, the chance is much higher that epigenetic defects in
the sperm genome come from perturbation during in vivo
spermatogenesis rather than sperm handling procedures (Urrego
et al., 2014). However, adverse conditions may be present in
the testis and lead to male infertility by disrupting epigenetic
regulation as has been observed in humans (Rajanahally
et al., 2019; Sadler-Riggleman et al., 2019). Reactive oxygen
species (ROS)-induced oxidative stress is known to cause DNA
damage in sperm in mammals (Schieber and Chandel, 2014).
A recent study indicates that ROS can also affect the epigenetic
reprogramming of sperm after fertilization (Wyck et al., 2018).
The AID-TDG mediated base excision repair (BER) pathway has
been found to be pivotal for active demethylation of the paternal
genome (Kohli and Zhang, 2013). However, in the presence of a
DNA lesion, XRCC1, a protein involved in the last step of BER,
is recruited to repair the damaged DNA instead of functioning in
demethylation; this led to aberrant active demethylation in the
male pronucleus of bovine zygotes (Wyck et al., 2018).

Epigenetics and Embryo Competence
ARTs are widely used to treat human infertility and improve
animal production (Sjunnesson, 2019). IVP embryos are also
widely used for research and have increasingly become sources
of blastocyst transfer in cattle. Moreover, the production of
cloned, transgenic and genome-edited animals relies on the
in vitro production of embryos. More importantly, in vitro
production of embryos has allowed the elucidation of many
important biochemical and molecular processes that occur
throughout oocyte maturation, fertilization, and at the different
stages of preimplantation embryo development. There is concern
that ARTs contribute to developmental failure and long-
term epigenetic alterations in the offspring. Environmental
perturbations experienced during in vitro embryo production
can lead to imprinting diseases in humans (Sutcliffe et al., 2006)
and large offspring syndrome (LOS) in ruminants (Young et al.,
1998; Chen et al., 2013). The underlying mechanisms are largely
unknown at present, but alterations in gene expression and
epigenetic modifications, largely DNA methylation, during this
critical period are thought to be involved in LOS (Wrenzycki and
Niemann, 2003; Li et al., 2005; Sutcliffe et al., 2006; Fernandez-
Gonzalez et al., 2010). Epigenetic reprogramming also can
occur aberrantly in cloned (SCNT) embryos and the incomplete
reprogramming of the differentiated somatic cell DNA may
contribute to the low efficiency of cloning (Dean et al., 2001).
Abnormal epigenetic regulation in cloned embryos has also been
discussed (Yang et al., 2007). A comprehensive study comparing
both global gene expression patterns and the epigenome of IVP,
SCNT-derived livestock embryos to in vivo counterparts would
be very interesting.

A number of studies have reported that the in vitro
environment during IVM, IVP and SCNT significantly alters
DNA methylation in the embryos in a locus-specific manner
(Bourc’his et al., 2001; Dean et al., 2001; Kang et al., 2002; Han
et al., 2003; Niemann et al., 2010; Reis e Silva et al., 2012; Smith

et al., 2015; Sirard, 2017; Zhao et al., 2020). In bovine SCNT
blastocysts, methylation analysis of 41 amplicons associated
with 25 developmentally important genes on 15 different
chromosomes (a total of 1,079 CpG sites) showed reduced levels
of methylation (Niemann et al., 2010). Embryos derived by
IVF and SCNT show epigenetic anomalies in DMRs controlling
the expression of some imprinted genes, including SNRPN,
H19/IGF2, and IGF2R (Smith et al., 2015). In another study using
immunostaining analysis, DNA methylation reprogramming in
bovine preimplantation embryos from SCNT and IVF was
compared. The results showed that global DNA methylation
followed a typical pattern of demethylation and remethylation in
IVF preimplantation embryos; however, the genome remained
hypermethylated in SCNT preimplantation embryos (Zhang
et al., 2016a). Interestingly, the aberrant methylation of satellite
1 regions in bovine SCNT embryos was corrected as embryo
development and differentiation takes places (Sawai et al.,
2010). By using EmbryoGENE DNAMethylation Array, Salilew-
Wondim et al. identified altered DNA methylation in blastocysts
collected in vivo after being subjected to various time periods
of in vitro culture, clearly indicating that in vitro culture
conditions perturb the epigenetic profiles of preimplantation
embryos (Salilew-Wondim et al., 2015, 2018). Most recently, the
WGBS technique was used to analyze the methylation patterns
of bovine blastocysts derived from in vivo, IVF, or IVF with
vitrified oocytes and revealed a large number of DMRs that may
contribute to the differences in quality between in vitro and
in vivo derived embryos (Zhao et al., 2020). In porcine embryos,
the DNA methylation level was increased in in vitro embryos
compared to in vivo ones suggesting the adverse effect of in vitro
culture on the DNA methylome (Deshmukh et al., 2011). SCNT
embryos also had higher DNA methylation levels compared to
their fertilized counterparts in sheep (Beaujean et al., 2004).
In sheep LOS models, reduced expression of IGF2R but not
IGF2 [whose overexpression due to loss of imprinting status
is postulated in human fetal overgrowth syndromes (Reik and
Maher, 1997)] was caused by loss of methylation on the second
intron DMR (Young et al., 2001).

Histone modifications, specifically histone methylation, was
also shown to be a key epigenetic barrier to epigenetic
reprogramming in SCNT embryos (Matoba et al., 2014).
In bovine, immunofluorescence analysis revealed that the
acetylation andmethylation levels of H3K9ac, H3K18ac, H4K5ac,
H4K8ac, H3K4me3, and H3K9me2 were abnormally increased
in the SCNT embryos from the zygote to the 8-cell stage,
while H4K8ac and H4K5ac were abnormal when compared
with the IVF controls. After EGA, the distribution and the
pattern of the histone modifications were similar in both SCNT
and IVF embryos (Wu et al., 2011). The hypermethylation of
H3K9 was also observed in SCNT embryos and associated with
DNA hypermethylation; in addition, an association between
the epigenetic modifications and the developmental potential
of cloned embryos was established (Santos et al., 2003). In
porcine, global hypermethylation of H3K27me3 was observed
in early cloned embryos compared with IVF embryos (Xie
et al., 2016). Cao et al. (2015) compared multiple histone
methylation modifications, including transcriptionally repressive
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(H3K9me2, H3K9me3, H3K27me2, H3K27me3, H4K20me2, and
H4K20me3) and active modifications (H3K4me2, H3K4me3,
H3K36me2, H3K36me3, H3K79me2, and H3K79me3) between
porcine SCNT and IVF embryos at different developmental
stages. Histone methylation exhibited stage-specific abnormal
patterns in SCNT embryos (Cao et al., 2015). IVP may also
change the localization of histone PTMs systematically, separate
from SCNT. Between in vivo and in vitro derived bovine
embryos, histone modifying enzymes (e.g., PRMT5, KDM5B,
KAT8, HDAC1, and HAT1, etc.) were differentially expressed
during preimplantation development (Duan et al., 2019). It
has been theorized that the low efficiency of SCNT embryo
development rate results, in part, from the divergent DNA
methylation and histone modification status between terminally
differentiated somatic cells and mature spermatozoa (Peat and
Reik, 2012; Jin et al., 2017).

A number of studies have defined precise approaches to
remove epigenetic barriers and improve the efficiency of SCNT.
In the mouse, treatment with histone deacetylase inhibitors
(Kishigami et al., 2006, 2007; Van Thuan et al., 2009), the
overexpression of H3K9me3 demethylase Kdm4b/4d (Matoba
et al., 2014; Liu W. et al., 2016), the correction of abnormal
DNA remethylation (Gao et al., 2018) or the deletion of Xist on
the active X chromosome (Inoue et al., 2010) can significantly
improve the developmental potential of SCNT embryos. This
significant body of work provides considerable evidence that
aberrant epigenetic modifications are the major barriers to
complete reprogramming of the donor cell during SCNT.

In porcine, GSK126 and GSK-J4, two small molecule
inhibitors of H3K27me3 methylase (EZH2) and demethylases
(UTX/JMJD3), were used to improve the developmental
efficiency of cloned embryos by reducing the H3K27me3
level (GSK126) (Xie et al., 2016). However, GSK-J4 treatment
increased the H3K27me3 level in cloned embryos and decreased
the cloned embryo development (Xie et al., 2016). Another
study showed that BIX-01294 (a specific inhibitor of histone-
lysine methyltransferase of H3K9) enhanced the developmental
competence of porcine SCNT embryos (Huang et al., 2016). In
addition, use of histone deacetylase inhibitors (e.g., trichostatin
A) in the SCNT protocol has been shown to improve both
in vitro and in vivo developmental competence in pigs (Zhao
et al., 2010). In bovine, it has been reported that inhibiting H3K9
methyltransferases (SUV39H1) or injecting H3K9 demethylases
(KDM4E) in SCNT embryos could improve blastocyst rates
similar to what was observed inmice (Zhang et al., 2017; Liu et al.,
2018).

Establishing proper epigenetic modifications during
gametogenesis and embryogenesis is an important aspect
in reproduction and embryo biotechnology. The reprogramming
process may be influenced by external and internal factors that
result in improper epigenetic changes in germ cells and embryos.
Therefore, a combination of epigenetic and other factors could
be responsible for the decreased developmental competence of
oocytes matured in vitro and/or embryos produced in vitro.
Further comprehensive epigenetic studies are required to
compare embryos produced with different ARTs in a stage
specific manner using high-throughput sequencing approaches.

Also, a full mechanistic description of the many facets of
epigenetic reprogramming during this developmental timeframe
is needed. Understanding the epigenetic mechanisms is essential
to gain insights into normal molecular regulation and correlate it
with unperturbed embryonic and fetal development. This would
also help to improve ART success and develop new approaches
to improve the fertility of animals.

THE EFFECTS OF PARENTAL

ENVIRONMENTAL EXPOSURE ON

EPIGENETICS AND REPRODUCTION

PHENOTYPES

Animal models, such as rats andmice, have been used extensively
to study correlations between epigenetics and disease and there
is emerging research in this area using livestock. Considerable
work has been focused on studying developmental origins of
adult health and disease since it was hypothesized over 30 years
ago (Barker, 1990, 1995). Epidemiological studies in humans
have shown that parental malnutrition can affect offspring much
later in life and extend into the next generation (Heijmans
et al., 2008; Pembrey et al., 2014; Eriksen et al., 2017). As a
notable example, mothers who were pregnant during the Nazi
imposed food crisis in the Netherlands in 1944, also known as the
Dutch Hunger Winter, had children with a wide range of health
problems as adults, including type II diabetes, obesity, cancer,
cardiovascular disease and schizophrenia (Heijmans et al., 2008).
Higher body weight was also observed in the next generation in
adulthood (Painter et al., 2008; Veenendaal et al., 2013). Tobi
et al. (2014) used reduced representation bisulfite sequencing to
examine DNA from whole blood in individuals that experienced
the Dutch Hunger Winter in utero compared with siblings
born before or after the period. They found 181 differentially
methylated regions in exposed individuals compared to their
siblings. The regions were enriched for genes involved in early
development (Tobi et al., 2014). The fact that the authors could
detect differences more than 60 years after the event emphasizes
the nature of epigenetic mechanisms and the importance of
epigenetic reprogramming during early development.

Nutrient intake is one of the most direct influences of
environment on phenotype. The interaction between nutrition
and reproduction has important implications for fertility,
especially in cows (Martin et al., 2010). In cattle, prenatal, early
post-natal and juvenile nutritional scenarios impact reproductive
activity of females later in life; thus, there is the potential for
strategic nutritional management during these critical times
to program reproduction (Funston et al., 2010). Nutrition is
important for epigenetics. For example, nutrients like folate,
choline, b-vitamins (B2, B6, B12), and methionine are methyl
donors to S-adenosylmethionine (SAM), which is the substrate
used by DNA and histone methyltransferases in the one-
carbon metabolism pathway, reviewed in Clare et al. (2019).
Research in both cattle and sheep has shown that maternal diet
(supplemented with methyl-donors) during the peri-conception
period and/or pregnancy can alter DNA methylation in embryos
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and in analyzed fetal tissues (Sinclair et al., 2007; Lan et al., 2013;
Acosta et al., 2016).

A lot of the fetal programming work conducted in livestock
species has been focused on nutrient restriction during
pregnancy and its impacts on reproductive function, behavior
and growth, reviewed in Ashworth et al. (2009) and Sinclair
et al. (2016). In pigs, studies have found significant effects of
maternal malnutrition on offspring gene expression, growth,
and metabolism to name a few (Leibfried-Rutledge et al., 1987;
Barker, 1990; Li et al., 1993; Gonzalez-Bulnes et al., 2014; Ji et al.,
2017; Franczak et al., 2018). For instance, Franczak et al. (2018)
found over 450 highly differentially expressed genes (>5 fold and
mostly up-regulated) between day 15 and 16 pig embryos from
gilts fed a normal control diet and gilts fed a restricted diet during
fertilization and early preimplantation development (days 0–9).
In sheep and goats, calorie restriction during pregnancy resulted
in aberrant imprinted (IGF2, PHLDA2, DIRS3, SLC22A18)
(Duan et al., 2018) (IGF2R) (Williams-Wyss et al., 2014)
and epigenetic regulator (TET1, MBD2) gene expression,
respectively, in the tissues of late gestation fetuses (Li et al.,
2018). Nutrient restriction during the peri-conception period
in sheep also resulted in reduced methylation and increased
H3K9 acetylation in the promoters of the hypothalamic genes
proopiomelanocortin and the glucocorticoid receptor in fetuses,
indicating the role of maternal malnutrition’s programming of
metabolic and stress response issues later in life (Stevens et al.,
2010; Begum et al., 2012). Very recent work by Toschi et al.
(2020) in sheep found that maternal peri-conceptional (−14/+28
days) nutrient restriction can also affect the sperm methylome
of offspring. Using RRBS analysis, the authors identified 244
DMRs in the sperm of offspring that experienced poor nutrition
in utero compared with control rams. They also found reduced
sperm motility, abnormal chromatin structure and a reduction
in the ability to produce blastocysts in this treatment group.
Interestingly, folic acid supplementation during the restriction
period also created many DMRs, but this treatment rescued the
blastocyst rate (Toschi et al., 2020). This result supports the
concept of using management interventions to offset epigenetic
perturbations and improve reproductive outcomes.

The previously discussed work outlines research that induced
nutrient restriction during peri-conception or pregnancy;
however, recent work has focused on understanding the
epigenetic impacts of post-partum negative energy balance on
oocyte methylation in high-producing dairy cows. O’Doherty
et al. (2014) looked at imprinted gene methylation during
the early, mid and late post-partum periods and found highly
variable methylation levels across the time points for several
genes. A follow up IVM experiment found specific effects of
non-esterified fatty acids (NEFAs) and NEFAs + SAM on the
methylation of PLAGL1 (O’Doherty et al., 2014). Recent work
expanded on this candidate gene analysis and used WGBS to
examine the effects of negative energy balance on the epigenome
of in vivo oocytes collected at early (∼37 days post-partum) and
mid (∼65 days post-partum) time points vs. oocytes from heifers
(Poirier et al., 2020). The oocytes collected during the early
negative energy balance period displayed significant methylation
variation within the group (3 replicate pools of oocytes); they also

had lowermethylation levels overall compared with themid post-
partum and control oocytes. These two factors combined led to
the identification of a vast amount of DMRs unique to the early
group, many of which were associated with genes involved in key
metabolic processes. It is also of interest that a large majority
of the imprinted gene bodies analyzed had higher methylation
levels in the early post-partum oocytes compared with the other
groups. One region, a uniquely differentially methylated CpG
island in the early post-partum group specifically mapped to
the imprinted gene, MEST. Oocytes collected at the mid post-
partum time point were much more similar to control oocytes
(in overall methylation level and number of DMRs), indicating
a degree of recovery when the cows returned to positive energy
status (Poirier et al., 2020). Taken together, this work indicates
that nutritional stress can impact the methylome of developing
gametes, which likely has impacts for gamete viability and
developmental potential.

In humans and rodents, studies have shown that paternal
nutritional status is associated with metabolic disruptions in
the offspring (Chen et al., 2016a). Malnutrition affects sperm
viability in males of various species. In rodents, malnourished
fathers produce developmentally delayed and metabolically
compromised embryos; the conceptuses also have altered
placental development (Carone et al., 2010). The effects of
paternal malnutrition on the reproductive physiology of adult
offspring have also been observed. In mice, two generations of
progeny from fathers who ingested a low-protein diet during
the preconception period had abnormalities in their reproductive
organs (Carone et al., 2010). In female offspring of malnourished
fathers, oocyte meiotic competence was reduced, expression of
glucose transporters in ovaries and cumulus cells was altered,
and reproductive ability was compromised, as seen by lower
fertilization and cleavage rates as well as embryos with delayed
development (Ashworth et al., 2009). In cattle production
systems, bulls are commonly placed on high-energy rations
during development to result in a high rate of weight gain
(Allen et al., 2017). Energy expenditure during the breeding
season commonly results in weight loss in bulls, especially in
bulls that have not reached their mature body weight and are
still undergoing post-pubertal reproductive maturation (Cardoso
et al., 2014). Undernutrition can also occur in pastures or range-
based systems, due to normal seasonal variation in nutrient
availability (Hills et al., 2015). Therefore, metabolic scenarios
related to weight loss and undernutrition could affect seminal
parameters and influence epigenetic transmission of traits. These
events support the role of sires in the nutritional programming of
reproductive function.

Bull fertility is a critical factor dictating economic potential
in cattle production systems. Fertility is affected by several
factors, including management, nutrition, disease, stress, age,
and genetics. A decline in bull fertility affects the conception
rate of herds, resulting in decreased production and therefore
decreased profit. The ability to confidently predict male fertility
would be a boon to the livestock industry. For example, fertility
differences among different breeds and even individual bulls
within same breed have been well-documented (Den Daas
et al., 1998; Dejarnette, 2005). It has been shown that sperm
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molecular differences between individuals are associated with
specific phenotypes of bull infertility (Dogan et al., 2015).
The “omics” approaches, such as genomics, transcriptomics,
proteomics, metabolomics and epigenomics, have been used to
ascertain molecular determinants of bull fertility (Feugang et al.,
2010; De Oliveira et al., 2013; Kumar et al., 2015; Bromfield,
2016; Westfalewicz et al., 2017; Velho et al., 2018; Menezes
et al., 2020). For example, recent work using RNA-seq examined
sperm-derived RNAs in pre-EGA bovine embryos and found 65
differentially expressed RNAs in embryos fertilized with sperm
from bulls with low and high fertility (Gross et al., 2019). Analyses
of inter-individual variations in bull sperm DNA methylation
found a number of DMRs with significant associations with
reproduction traits like sperm motility, further supporting the
notion that epigenetic information can be harnessed to improve
production (Liu S. et al., 2019). Despite abundant research, vast
gaps in the knowledge base exist, including specific functional
genomic signatures coupled with epigenetic profiles in different
bull breeds, as well as mechanisms for their involvement
in fertility.

In the livestock industry, selected sires have greater
opportunities for breeding, in comparison to females. A
small number of sires may be able to “nutritionally” program
reproduction in a significant number of female progeny. Thus,
assessing the impact of paternal nutrition on reproductive
function and the potential heritability of acquired traits merits
investigation as a viable strategy to mitigate problems with
infertility and subfertility.

TRANSGENERATIONAL EPIGENETIC

INHERITANCE IN LIVESTOCK SPECIES

Dramatic phenotypic differences have been established and
stabilized between livestock breeds. There are two different
models of phenotypic polymorphism: (1) differences between
breeds where dramatic phenotypic differences exist due
to decades of selective breeding; and (2) environmentally
induced phenotypic differences, specifically those induced by
nutritional status. There is significant evidence in mammals
that individuals can acquire environmentally induced epigenetic
modifications that can be passed transgenerationally, reviewed
in Daxinger and Whitelaw (2012), Heard and Martienssen
(2014), Chen et al. (2016b), and Zhang et al. (2019). In the case
of transgenerational inheritance, it is the founder individual
that experiences the environmentally induced epigenetic
perturbation and this is passed down via gametes to subsequent
generations that have never experienced direct exposure.
For true transgenerational inheritance when a gestating
female has faced the perturbing event, the aberrant epigenetic
pattern must persist to the third generation (F3) (Jirtle and
Skinner, 2007). This is because the embryo or fetus’ primordial
germ cells or gametes (which will form the F2 generation)
will also potentially be exposed during their development.
In males and non-pregnant females, epigenetic persistence
to the F2 generation is sufficient (Skinner, 2008). Thus, it
becomes clear the difficulties involved in conducting strong

transgenerational epigenetic inheritance studies in livestock
species, specifically the cost and complexities associated with
performing a study across several generations in species with
long generation intervals.

There has been somemultigenerational research in dairy cattle
that showed the granddam’s prenatal environment influenced
milk production of daughters and granddaughters (Gonzalez-
Recio et al., 2012; Gudex et al., 2014). However, since the analysis
started with pregnant females, the F2 generation was exposed,
and so the work cannot be categorized as transgenerational in
nature. Nonetheless, a transgenerational study with epigenetic
analysis has been done in swine. Braunschweig et al. (2012)
examined Swiss Large White F2 animals to identify effects
of a methyl-donor enriched diet fed to founder boars. They
found differences in carcass traits (the control diet progeny
tended to be fatter with a trend of decreased shoulder muscle
percentage) and gene expression in the liver (64 DEGs),
muscle (79 DEGs), and kidney (53 DEGs) of pigs whose
grandsires had the experimental diet vs. pigs that descended
from control diet fed pigs. The authors examined the DNA
methylation pattern of the promoter region of a few selected
genes and found reduced methylation of the promoter for the
gene iodotyrosine deiodinase in the livers of the experimental
progeny; the methylation level was correlated with gene
expression level. While this study is limited by the number
of F2 pigs analyzed (8 for each group) and the lack of a
genome-wide epigenetic analysis, it is the first attempt to
examine transgenerational inheritance in a livestock species
(Braunschweig et al., 2012).

There is even compelling evidence for transgenerational
inheritance in humans. Among the epidemiological human
examples, the detailed analysis of the copious historical data from
Överkalix, Sweden demonstrates the effects of famine during pre-
pubescence in both girls and boys on subsequent grandchildren’s
health and longevity (Bygren et al., 2001, 2014; Pembrey et al.,
2006; Kaati et al., 2007). Physiological challenges (severe nutrient
restriction and stress) to grandparents were linked with health
issues in the following generations.

We now appreciate that phenotypic complexity goes beyond
Mendelian genetics. It is critical that we continue intensive
research in this area to fully characterize the epigenetic
(and other) mechanisms involved. Furthermore, despite the
difficulties inherent in transgenerational studies, it is imperative
to expedite this research in livestock species. It will provide a
better understanding of the underlying mechanisms controlling
phenotype, animal reproduction and health, and the potential
means to induce and/or counteract epigenetic modifications for
several generations.

Searching for Epigenetic Factors That

Transmit Acquired Phenotypes
The processes by which environmental information is coded
and transmitted inter-generationally via the germline remains
unclear. Correlative studies in mammals have suggested
that DNA methylation, histone modification and small
RNA could contribute to intergenerational inheritance of
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environment-induced phenotypes. Particularly, evidence from
laboratory rodents that these parental environment induced
traits could be “memorized” in sperm and transmitted to the
future generations, implicating sperm-mediated epigenetic
inheritance, reviewed in Chen et al. (2016b) and Zhang
et al. (2019). Recently developed technologies in the field of
omics including genome-wide high throughput sequencing,
dynamic imaging of genomic loci, quantitative proteomics and
computational analyses have allowed insight into some of these
processes (Gomez et al., 2013; Doherty and Couldrey, 2014;
Small et al., 2014).

DNA methylation is a solid candidate for epigenetic
inheritance in animals because of its relative stability and
our understanding of the mechanisms of its deposition and
erasure (Bestor, 2000; Jurkowska et al., 2011). Insights from
genome-wide methylome studies suggest that a considerable
fraction of the mammalian genome might evade the DNA
demethylation that occurs normally during preimplantation
and PGC reprogramming (Hackett et al., 2013; Guo et al.,
2014; Smith et al., 2014; Tang et al., 2015). These escapee
modifications could then be transmitted to future generations.
In addition, we know that some regions (e.g., imprinted genes)
have to be protected from embryonic epigenetic reprogramming
and that perturbations can result in differences in DNA
methylation (Barlow and Bartolomei, 2014). It has been shown
that spermDNAmethylation is altered by various environmental
exposures in mice, and it contributes to transgenerational
epigenetic inheritance (Radford et al., 2014). Recent work
points toward the possible mechanism for transmitting paternal
environmental exposures to the next generation, via sperm DNA
methylation, ncRNAs and histone retention (Ben Maamar et al.,
2020). Additionally, age-related methylation changes are well-
documented in human sperm; more recent studies shed light on
this in bulls as well (Lambert et al., 2018; Takeda et al., 2019;
Khezri et al., 2020; Wu et al., 2020a). Histone modifications have
also been implicated in transgenerational epigenetic inheritance
(Siklenka et al., 2015). Several studies have established the histone
modification mediating epigenetic memory of the germline in
C. elegans (Rechtsteiner et al., 2010; Gaydos et al., 2014). This
major mechanism of epigenetic inheritance has been intensively
reviewed (Skvortsova et al., 2018).

Among the epigenetic mechanisms, sncRNAs appear to
play a pivotal role in mediating environmental information
transmission through sperm in mammals, reviewed in Chen
et al. (2016b) and Zhang et al. (2019). Several sncRNAs can
be altered in the spermatozoa from obese and/or diabetic men,
male mice and rats. Altered sperm sncRNAs, such as miRNA
and tsRNA, have been observed following paternal exposure to
diet change or stress (Fullston et al., 2013; Gapp et al., 2014;
Chen et al., 2016a; Zhang et al., 2018). Injection of sperm
RNA from exposed males (e.g., unhealthy diet, mental stress)
has been demonstrated to efficiently induce transgenerational
inheritance in mammals (Rassoulzadegan et al., 2006; Wagner
et al., 2008; Grandjean et al., 2009; Rodgers et al., 2015; Chen
et al., 2016a), suggesting sperm RNA is an active epigenetic
modulator of offspring phenotypes. In addition, several RNA
modifications such as m5C, m2G have been found to be

enriched in the sperm tsRNA and are sensitive to diet changes
(Chen et al., 2016a; Zhang et al., 2018). These sperm RNA
modifications could alter RNA structure and thus the interactions
between RNA, DNA and proteins, leading to potentially greater
consequences and wide-ranging effects (Zhang et al., 2018).
Wu et al. (2020b) identified distinct differences in sperm-borne
miRNAs from bulls of different ages, several of which targeted
genes expressed in early embryos. This newly appreciated role
of the sperm as RNA-based carriers of hereditary information
provides a promising angle with which to understand aging
and the etiology of environmentally induced disease beyond the
initial exposure.

While epigenetic information can certainly be transmitted
between generations, there is a shortage of research in livestock
species thus far. A significant challenge to be met in this
research area will be to track epigenetic information from one
generation to another in cattle, pigs, sheep and goats. Given the
effects of environment and aging on epigenetic modifications,
future studies need to be carefully designed. This type of
research will be made increasingly possible with the continued
complete characterization of epigenetics during livestock early
embryo development.

Potential Application of Epigenetic

Information in Livestock Production
Aside from understanding the nature of the epigenetic code with
regard to programming offspring phenotypes, perhaps an equally
important mission is to control offspring health and production
by harnessing this epigenetic information.

First, it is possible that a reliable epigenetic “code” exists,
which if interpreted, may allow us to predict future phenotypes
with accuracy; this prospect is very exciting. This has obvious
implications for male reproduction. For example, bulls can
breed a large number of cows each breeding season, and
this relatively large reproductive opportunity amplifies the
impact of environmental scenarios in a few individuals on the
future performance of many progeny. If artificial insemination
or other ARTs are used, the potential to acquire abnormal
phenotypes due to age or nutrition stress in the sire, for
example, can be compounded with the perturbations caused
by the ART, thus elevating the spread of the undesirable
epigenetic modifications in the offspring. The ability to
counteract these effects would be very beneficial to producers
and researchers.

Second, epigenetic codes could be used as clinical biomarkers
of gamete and embryo viability. Improvement of pregnancy rates
with in vitro produced embryos is a critical problem that needs
to be addressed in economically valuable livestock species. The
efficiency of producing viable embryos and the development of
such embryos after transferring them to recipients is inferior
to their in vivo derived counterparts, especially in cattle
(Thompson, 1997; Diskin and Morris, 2008; Diskin et al., 2011,
2016). In addition, the offspring can have a high incidence
of abnormalities, including large offspring syndrome (LOS),
severe placental abnormalities, respiratory problems, prolonged
gestation, and dystocia (Young et al., 1998; Yang et al., 2007).
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Future studies are needed to fully elucidate how epigenetics
contributes to these abnormalities, which would therefore help
us develop new approaches to improve ARTs and more closely
mimic in vivo profiles. This would improve gamete quality and
embryo viability.

Third, phenotypic polymorphism between cattle breeds may
be reflected in the gametes as epigenetic codes and represent a
potential opportunity to introgress phenotypic differences from
one breed to another by “epigenetic engineering.” Recently
genome editing tools, such as CRISPR-Cas9 or TALENs, have
been utilized to introduce an allele from one breed into the
genome of a dramatically different breed. For example, the polled
allele from the Angus breed was edited into the Holstein genome
resulting in a naturally polled Holstein (Carlson et al., 2016;
Young et al., 2020). Additionally, an allelic variation for the
long version of the prolactin receptor (the “slick” allele) from
the Senepol breed (heat tolerant breed) was introduced into
the Angus breed (meat producing breed) using genome editing
technology (Bastiaansen et al., 2018). Like genome editing, there
is also the power of epigenome editing. Here, a deactivated
Cas9 protein can be used to haul epigenetic modifier cargo
(such as DNMT3a, TET3, KDM6B, HAT, etc.) to targeted
regions in the genome, turning genes on or off as desired
(Gomez et al., 2019).

Fourth, livestock species offer clear advantages to study
epigenetic inheritance. For example, the use of the livestock
will allow us to readily profile semen parameters such as
sperm concentration, total sperm per ejaculate and progressive
motility, as well as epigenetic modifications in the sperm in a
consecutive manner in each animal, although the heterogeneity
of the sperm epigenome would need to be examined. This
would represent an advantage over rodent models and may
represent a better model for understanding the dynamic changes
in humans.

CONCLUDING REMARKS

Our understanding of the different layers of epigenomic
regulation during gametogenesis and embryogenesis in livestock
species is incomplete. Advances in low-input genomic and
epigenomic sequencing technologies are now driving the global
comprehensive profiling of germline and embryonic epigenomes,
thereby improving our understanding of epigenetic regulation
in normal development and assessing the impacts of ARTs and
other environmental stressors on gametes and embryos. Also,
a more complete understanding of inter- and transgenerational
epigenetic inheritance in mammals will encourage further
research into how experiences can be encoded by epigenetics;
this knowledge can lead to application in livestock production
and health. Finally, the development of precise editing or
modulation of germline and embryonic epigenomes will enable
the design of strategies to counteract adverse conditions or to
program production performance in livestock. Such strategies
for epigenetically programming performance would constitute a
significant change with the potential for long-ranging effects in
the livestock industry.
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