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THE EQUALITY CASE OF THE PENROSE INEQUALITY

FOR ASYMPTOTICALLY FLAT GRAPHS

LAN-HSUAN HUANG AND DAMIN WU

Abstract. We prove the equality case of the Penrose inequality in all dimen-
sions for asymptotically flat hypersurfaces. It was recently proven by G. Lam
that the Penrose inequality holds for asymptotically flat graphical hypersur-
faces in Euclidean space with non-negative scalar curvature and with a mini-
mal boundary. Our main theorem states that if the equality holds, then the
hypersurface is a Schwarzschild solution. As part of our proof, we show that
asymptotically flat graphical hypersurfaces with a minimal boundary and non-
negative scalar curvature must be mean convex, using the argument that we

developed in our paper, Hypersurfaces with non-negative scalar curvature (J.
Differential Geom., vol. 95 (2013), pp. 249–278). This enables us to obtain
the ellipticity for the linearized scalar curvature operator and to establish the
strong maximum principles for the scalar curvature equation.

1. Introduction

The Penrose inequality in general relativity states that the ADM mass of an
asymptotically flat manifold is at least the mass of the black holes that it contains,
if the energy density is non-negative everywhere. A particularly important special
case of the physical statement is called the Riemannian Penrose inequality.

The Riemannian Penrose Inequality Conjecture. Let (Mn, g), n ≥ 3, be an
asymptotically flat n-dimensional smooth manifold with a strictly outer-minimizing
smooth minimal boundary which is compact (not necessarily connected) of total
(n − 1)-volume A. Suppose M has non-negative scalar curvature and ADM mass
m. Then

m ≥ 1

2

(

A

ωn−1

)

n−2
n−1

,

where ωn−1 is the volume of the unit (n− 1)-sphere in Euclidean space. Moreover,
the equality holds if and only if (M, g) is isometric to the region of a Schwarzschild
metric outside its minimal hypersurface.

G. Huisken and T. Ilmanen proved the conjecture in dimension three for a con-
nected minimal boundary [17]. H. Bray used a different approach and proved the
conjecture in dimension three for any number of components of the minimal bound-
ary [2]. In dimensions less than 8, the inequality was proved by H. Bray and D. Lee,
with the extra spin assumption for the equality case [5]. In the case that (M, g)
is conformally flat, H. Bray and K. Iga derived new properties of superharmonic
functions in R

n and proved the Penrose inequality with a suboptimal constant for
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32 LAN-HSUAN HUANG AND DAMIN WU

n = 3 [4]; F. Schwartz obtained a lower bound of the ADM mass in terms of the
Euclidean volume of the region enclosed by the minimal boundary [25]; and J. Jau-
regui proved a Penrose-like inequality [18]. For the Penrose inequality (with the
sharp constant) in dimensions higher than 8, the only result that we know, other
than the spherically symmetric case, is the result of G. Lam [19] (cf. [8]), where he
proved the Penrose inequality for graphical asymptotically flat hypersurfaces. (Note
some related work regarding the Penrose inequality for asymptotically hyperbolic
graphs in [7, 9].)

Theorem 1 ([19]). Let Ω ⊂ R
n, n ≥ 3, be open and bounded. Assume that either

each connected component of Ω is star-shaped or ∂Ω is outer-minimizing1,2 .
Let f ∈ C2(Rn \ Ω) ∩ C0(Rn \ Ω) be asymptotically flat. We assume that the

graph of f has non-negative scalar curvature. Suppose each connected component
of ∂Ω is the level set of f with |Df(x)| → ∞ as x → ∂Ω, and each component of
∂Ω has positive (Euclidean) mean curvature in the hyperplane. Then,

m ≥ 1

2

( |∂Ω|
ωn−1

)

n−2
n−1

,

where |∂Ω| is the (n− 1)-total volume of ∂Ω.

The proof is simple and elegant, which we include in Section 5. However, the
equality case was not discussed in [19], and the techniques there seem far from
sufficient to handle the equality case. Our main result in this article proves the
equality case in all dimensions n ≥ 3. It may be particularly interesting because
there was no rigidity result for the Penrose inequality, other than the spherically
symmetric case, known to hold in dimensions n ≥ 8.

Theorem 2. Under the conditions of Theorem 1, suppose the graph of f is Cn+1

up to boundary, and

max
|x|=r

f(x) ≤ min
|x|=r

f(x) + C for n = 3 or 4(1.1)

for all r sufficiently large. If the equality holds, i.e.,

m =
1

2

( |∂Ω|
ωn−1

)

n−2
n−1

,

then the graph of f is identical to the region of the Schwarzschild solution of mass
m outside its minimal (n− 1)-hypersurface.

Remark 1.1. In dimensions less than 8, the above theorem is implied by more
general results in [2, 5, 17] because hypersurfaces in Euclidean space are spin. Our
proof is different and works for all dimensions. The additional assumption (1.1)
for n = 3 or 4 ensures that the oscillation of f at infinity is under control. We
actually conjecture a stronger statement that an n-dimensional asymptotically flat
hypersurface with zero scalar curvature has the following expansion at infinity:

f(x) =

{

C0

√

|x|+ C1 + o(1) if n = 3,
C0 ln |x|+ C1 + o(1) if n = 4,

(1.2)

1In [19], each connected component of Ω was assumed convex, but the proof can be generalized
to our setting.

2The boundary ∂Ω is called outer-minimizing if whenever Ω′ is a domain with Ω ⊂ Ω′, then
|∂Ω| ≤ |∂Ω′|.
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THE EQUALITY CASE OF THE PENROSE INEQUALITY 33

for some constants C0, C1. This conjecture should compare with the celebrated
work of R. Schoen on the uniqueness of catenoids [24], in which a preliminary result
says that complete minimal hypersurfaces have specific asymptotics at infinity, up
to lower order terms. In general, hypersurfaces with zero scalar curvature are
more difficult to analyze than minimal hypersurfaces, because the scalar curvature
equation of the graphing function is fully non-linear. Assuming the strict ellipticity
and certain asymptotic behavior of the hypersurfaces at infinity (in all dimensions,
which is, in particular, stronger than (1.2) in the low dimensions), J. Hounie and
M. Leite proved the uniqueness of embedded scalar-flat hypersurfaces with two
ends [14].

Our proof of Theorem 2 relies on a key observation that an asymptotically flat
graphical hypersurface with a minimal boundary and with non-negative scalar cur-
vature must be mean convex. It is inspired by our earlier work [15], in which we
proved that closed or complete asymptotically flat hypersurfaces with non-negative
scalar curvature must be mean convex.

Theorem 3. Let Ω be an open and bounded subset (not necessarily connected) in
R

n. Let f ∈ Cn+1(Rn \Ω) ∩C0(Rn \Ω) be asymptotically flat and let the graph of
f be Cn+1 up to boundary. Suppose each connected component of ∂Ω is the level
set of f with |Df(x)| → ∞ as x → ∂Ω. If the scalar curvature of the graph of f is
non-negative, then its mean curvature H has a sign, i.e., either H ≥ 0 or H ≤ 0
everywhere.

The mean convexity enables us to derive the maximum principles for the scalar
curvature equation and to compare the graph of f with the Schwarzschild graph.
The proof of Theorem 2 is more delicate in the case n = 3 or 4, because the
graphing function of the Schwarzschild solution tends to infinity as |x| → ∞, and it
is subtle to compare two unbounded graphs. To control the asymptotical behavior
of f , we use its asymptotic flatness and develop a global strong maximum principle
(Theorem 4.6) in the region where |x| is sufficiently large. The maximum principles
for the scalar curvature equation are established in Section 4.

Note that in our earlier work [15], we proved the Positive Mass Theorem for
hypersurfaces in Euclidean space in all dimensions, including the rigidity statement,
which is a direct consequence of our proof of the positive mass inequality. However,
the proof for the Penrose case requires a new argument which uses the the strict
ellipticity of the Schwarzschild solutions of m > 0.

In response to an interesting question raised by Christina Sormani and Dan Lee
about the hypersurface which is a Schwarzschild solution outside a compact set, we
have the following result.

Theorem 4. There is no complete Cn+1 hypersurface of one end with zero scalar
curvature in R

n+1 which is identical to a Schwarzschild solution with m > 0 outside
a compact set.3

3Note that a Schwarzschild solution may not be uniquely embedded in Euclidean space as
a hypersurface. Here, we say a hypersurface is identical to a Schwarzschild solution outside a
compact set in the sense that the hypersurface is the graph of h outside a compact set of a
hyperplane, where h is the radially symmetric function that gives a Schwarzschild solution in
Proposition 2.6.
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In other words, hyperplanes are the only complete one-ended scalar-flat Cn+1 hy-
persurfaces in Euclidean space which are rotationally symmetric outside a compact
set.

The above theorem is in contrast to a general result of J. Corvino [6], where
he constructed the complete asymptotically flat manifold with zero scalar curva-
ture which is a Schwarzschild metric outside a compact set, but not identical to a
Schwarzschild solution.

After this article was written and distributed among a small mathematics com-
munity, we noticed a preprint by L. de Lima and F. Girão [10] that announced the
rigidity theorem, using the uniqueness result of Hounie and Leite [14] and assuming
ellipticity and certain expansions of the graph at infinity. Our theorem is different—
the important part of our proof is to derive ellipticity and to apply the maximum
principles. We believe that our arguments will have more future applications to
hypersurfaces in space forms with the appropriate scalar curvature condition (see,
for example, [7, 11]).

2. Definitions, notation, and preliminary results

Definition 2.1. Let Ω be a bounded subset in R
n, n ≥ 3. We say that f ∈

C2(Rn \ Ω) is asymptotically flat if the graph of f is a C2 hypersurface up to
boundary which satisfies the following conditions:

(1) Either lim|x|→∞ f(x) = C for some bounded constant C or lim|x|→∞ f(x) =
∞ (or −∞).

(2) |Df(x)| = O(|x|− q
2 ) and |D2f(x)| = O(|x|− q

2−1), for some q > n−2
2 , where

Df = (f1, . . . , fn), D
2f = (fij) and fi = ∂f/∂xi, fij = ∂2f/∂xi∂xj .

(3) The scalar curvature of the graph of f is integrable over the graph of f .

Remark 2.2. Under Condition (2), the induced metric of the graph of f has the
asymptotics

gij = δij + fifj = δij +O(|x|−q).

The decay rate q is optimal in order for the ADM mass to be well defined, assuming
Condition (3) (see [1]).

Remark 2.3. Condition (1) in Definition 2.1 is not needed in the proof of Theorem 1.
Condition (1) is actually redundant for n ≥ 6 because by Condition (2) and using
the mean value theorem along the radial direction and along the spherical direction,
we have

lim
|x|→∞

f(x) = C,

for some bounded constant C.

Definition 2.4 ([15, 19]). Let Ω be a bounded subset in R
n, n ≥ 3, and let

f ∈ C2(Rn \ Ω). The mass of the graph of f is defined by

m =
1

2(n− 1)ωn−1
lim
r→∞

∫

Sr

1

1 + |Df |2
∑

i,j

(fiifj − fijfi)
xj

|x| dσ,

where Sr = {(x1, . . . , xn) : |x| = r}, and dσ is the standard spherical volume
measure of Sr.

Remark 2.5. The above definition of the mass is consistent with the classical defi-
nition of the ADM mass [15, Lemma 5.8]; cf. [19].
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The spacelike n-dimensional Schwarzschild metric is a complete and conformally
flat metric on R

n \ {0}:
(

R
n \ {0},

(

1 +
m

2|x|n−2

)
4

n−2

δ

)

,

where m is the ADM mass. If m ≥ 0, the n-dimensional Schwarzschild solution
can be isometrically embedded into Euclidean R

n+1 as a smooth hypersurface. We
refer the reader to [3] for detailed discussions, especially for the n = 3 case. We are
interested in the region of the Schwarzschild solution outside its minimal (n − 1)-
hypersurface, which is graphical as shown in the following proposition.

Proposition 2.6. Denote by Br the open ball in R
n centered at the origin of radius

r. The region of the Schwarzschild solution of mass m > 0 outside its minimal
(n− 1)-hypersurface can be represented as the graph of h(x) over R

n \B(2m)1/(n−2) ,
where

h(x) = C0 +
√

8m(|x| − 2m) if n = 3,

h(x) = C0 +
√
2m ln(|x|+

√

|x|2 − 2m) if n = 4,

h(x) = C0 +O(|x|2−n
2 ) for |x| ≫ 1 if n ≥ 5,

for some constant C0.

Proof. Let h ∈ C2(Rn \ Br0) for some r0 ≥ 0 be rotationally symmetric. With
a minor abuse of notation, we will write h(x) = h(r) where r = |x|. By direct
computation, the scalar curvature R of the graph of h is given by

R

2
=

(n− 1)h′′h′

r
[

1 + (h′)2
]2 +

(

n−1
2

)

(h′)2

r2
[

1 + (h′)2
] ,

where h′ = dh
dr and h′′ = d2h

dr2 . Set y(r) = − 1
1+(h′)2 . Then −1 ≤ y ≤ 0 and y solves

y′ +
n− 2

r
y +

n− 2

r
=

rR

2(n− 1)
.

If R ≡ 0, for some constant C1 ≥ 0, we have

y = C1r
2−n − 1.

Therefore, for r > (C1)
1/(n−2),

(h′)2 =
1

1− C1r2−n
− 1 =

C1r
2−n

1− C1r2−n
=

C1

rn−2 − C1
.

Then,

h(r) =
√

C1

∫

1√
rn−2 − C1

dr.

Solving the integral, we have, for some constant C0,

h(r) = C0 +
√

4C1(r − C1) if n = 3,

h(r) = C0 +
√

C1 ln(r +
√

r2 − C1) if n = 4,

h(r) = C0 +O(r2−
n
2 ) for r ≫ 1 if n ≥ 5.
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By computing the mass directly, we have

m =
1

2(n− 1)ωn−1
lim
r→∞

∫

Sr

(n− 1)(h′)2

r(1 + (h′)2)
dσ =

C1

2
.

It is straightforward to check that if m > 0, h′(r) → ∞ as r → (2m)1/(n−2), and
the graph of h over ∂B(2m)1/(n−2) is the minimal (n− 1)-hypersurface in the graph
of h. �

Notation. For a hypersurface, we denote by Aij the second fundamental form, by
Ai

j =
∑

k g
ikAkj the shape operator where gik is the inverse of the induced metric,

by H the mean curvature, and by R the scalar curvature. If the hypersurface is
the graph of u, we compute Aij with respect to the upward unit normal vector and
we can write the above quantities as the functions of Du and D2u. We may also
suppress the arguments when the context is clear.

gik(Du) =

(

δik −
uiuk

1 + |Du|2
)

,

Aij(Du,D2u) =
uij

√

1 + |Du|2
,

Ai
j(Du,D2u) =

∑

k

(

δik −
uiuk

1 + |Du|2
)

ukj
√

1 + |Du|2
,

H(Du,D2u) =
∑

i,j

(

δij −
uiuj

1 + |Du|2
)

uij
√

1 + |Du|2
,

R(Du,D2u) = H2(Du,D2u)−
∑

i,j

Ai
j(Du,D2u)Aj

i (Du,D2u).

Proposition 2.7. Let h be the graphing function of the Schwarzschild solution of
m > 0 in Proposition 2.6. Then the matrix

(

Hgij −∑

k A
i
kg

kj
)

of the graph of h
is positive definite everywhere in R

n \B(2m)1/(n−2) .

Proof. It suffices to show that (Hδik − Ai
k) is positive definite, because Hgij −

∑

k A
i
kg

kj =
∑

k(Hδik − Ai
k)g

kj and (gkj) is positive definite. By rotating co-
ordinates, we can assume that Ai

k = diag(λ1, . . . , λn) where λl are the principle
curvatures. For the graph of a rotationally symmetric function h(r), the principle
curvatures are

h′′

(1 + (h′)2)3/2
and

h′

r
√

1 + (h′)2
with multiplicity (n− 1).

Therefore, the principle curvatures of the Schwarzschild solution are

−n− 2

2

√
2mr−

n
2 and

√
2mr−

n
2 with multiplicity (n− 1).

Hence, (Hδik − Ai
k) ≥ n−2

2

√
2mr−

n
2 I where I is the n × n identity matrix, so it is

positive definite everywhere in R
n \B(2m)1/(n−2) . �

The following two propositions were proven in our earlier paper [15]. They play
important roles to prove the mean convexity of the asymptotically flat graphs and
to derive the ellipticity of the linearized scalar curvature operator.
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Proposition 2.8 ([15, Proposition 2.1]). Let B = (bij) be an n × n matrix with
n ≥ 2. Denote

σ1(B) =
n
∑

i=1

bii, σ1(B|k) =
( n
∑

i=1

bii

)

− bkk,

σ2(B) =
∑

1≤i<j≤n

(biibjj − bijbji).

For each 1 ≤ k ≤ n, we have

σ1(B)σ1(B|k) = σ2(B) +
n

2(n− 1)
(σ1(B|k))2 +

∑

1≤i<j≤n

bijbji

+
1

2(n− 1)

∑

1≤i<j≤n
i�=k,j �=k

(bii − bjj)
2,

where the last term is zero when n = 2. In particular, if B is real and bijbji ≥ 0
for all 1 ≤ i < j ≤ n, then

σ1(B)σ1(B|k) ≥ σ2(B) +
n

2(n− 1)
(σ1(B|k))2

with equality if and only if bii are equal for all i = 1, . . . , n and i �= k, and bijbji = 0
for all i, j = 1, . . . , n and i �= j.

Notation. Let N be a (piece of) hypersurface in Euclidean space, and let μ be a
unit normal vector field to N . The mean curvature of N defined by μ is given by

HN = −div0μ,

where div0 is the Euclidean divergence operator. (The n-dimensional sphere of
radius r has mean curvature n/r with respect to the inward unit normal vector by
this convention.) We denote by 〈·, ·〉 the standard metric on Euclidean space. With
a slight abuse of notation, we may view η as a vector in R

n, as well as a vector in
R

n+1 by letting the last component be zero.

Proposition 2.9 ([15, Theorem 2.2]). Let M be a C2 hypersurface in R
n+1. Con-

sider the height function h : M → R given by h(x1, . . . , xn+1) = xn+1. Let a be a
regular value of h. Denote

Σ = M ∩ {xn+1 = a},
which is a C2 hypersurface in {xn+1 = a} and |∇Mh| > 0 at every point in Σ.
Denote by ν and η the unit normal vector fields to M ⊂ R

n+1 and Σ ⊂ {xn+1 = a},
respectively, and denote by H and HΣ the mean curvatures of M ⊂ R

n+1 and
Σ ⊂ {xn+1 = a} defined by ν and η, respectively. Let R be the induced scalar
curvature of M . Then, at every point of Σ,

〈ν, η〉HHΣ ≥ R

2
+

n

2(n− 1)
〈ν, η〉2H2

Σ

with the equality at a point in Σ if and only if (M,Σ) satisfies the following two
conditions at the point:

(i) Σ ⊂ R
n is umbilic, with the principal curvature κ;

(ii) M ⊂ R
n+1 has at most two distinct principal curvatures, and one of them is

equal to 〈ν, η〉κ, with multiplicity at least n− 1.
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3. Proof of Theorem 3

Notation. Let M be a hypersurface in Euclidean space and let int(M) be the set
of interior points in M , i.e., int(M) = M \ ∂M . The set of interior geodesic points
is given by

(3.1) M0 = {p ∈ int(M) : (Ai
j) = 0 at p}.

A classical result of R. Sacksteder [23, Lemma 6] characterizes the set of geodesic
points. While he proved the statement for complete hypersurfaces, the statement
can be easily generalized to hypersurfaces with boundary; see also [15, Lemma 3.6]
and [16, Lemma 4.5].

Lemma 3.1. Let M be a Cn+1 hypersurface in R
n+1, and let M ′

0 be a connected
component of M0. Then M ′

0 lies in a hyperplane which is tangent to M at every
point in M ′

0.

To prove Theorem 3, let us recall the following results in [15].

Lemma 3.2 ([15, Proposition 3.1]). Let W be an open subset in R
n, not necessarily

bounded. Let p ∈ ∂W , and denote by B(p) an open ball in R
n centered at p. Suppose

f ∈ C2(W ∩B(p)) ∩ C1(W ∩B(p)) satisfies

H(Df,D2f) ≥ 0 in W ∩B(p),

f = c, |Df | = 0 on ∂W ∩B(p),

for some constant c. Then either f ≡ c in W ∩B(p), or

{x ∈ W ∩B(p) : f(x) > c} �= ∅.

Theorem 3.3 ([15, Theorem 3.9]). Let W be a bounded open subset in R
n and let

N be an open neighborhood of ∂W . If f ∈ Cn+1(W∩N), f = c, |Df | = 0, |D2f | = 0
on ∂W , and the scalar curvature of the graph of f is non-negative, then f ≡ c on
W ∩N .

Theorem 3.4. Let f ∈ Cn+1(Rn \Ω)∩C0(Rn \Ω) and |Df(x)| → ∞ as x → ∂Ω.
Denote by M the graph of f . Suppose M is Cn+1 up to boundary and has non-
negative scalar curvature. Suppose that the mean curvature H of M changes signs.
Let M+ be a connected component of {p ∈ M : H ≥ 0 at p} that contains a point
of positive mean curvature. Then both M+ and the boundary of each component of
M \M+, except ∂M , must be unbounded.

Proof. Note thatM is homeomorphic to R
n\Ω given by the projection π(x, f(x)) =

x. Let Rn \π(M+) =
⊔

α Uα where each Uα is a connected component and Ω ⊂ Uα0

for some α0. Because π(M+) is connected, each ∂Uα is connected [15, Proposition
A.3]. We claim that Uα is unbounded for each α �= α0. Suppose to the contrary
that Uα is bounded for some α �= α0. Denote π−1(∂Uα) = Γ. By Lemma 3.1,
Γ ⊂ M0 lies in a hyperplane Π. Note that Γ does not intersect with ∂M because
|Df | = ∞ on ∂M . Hence M can be represented as the graph of a Cn+1 function
u in an open neighborhood of Γ in Π, and u satisfies u = 0, |Du| = 0, |D2u| = 0
on Γ. By Theorem 3.3, we have u ≡ 0 on π−1(Uα) and hence π−1(Uα) ⊂ M+.
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It contradicts. Similarly, one can show that Uα0
is unbounded and ∂Uα0

does not
intersect ∂Ω, unless Uα0

= Ω.
Furthermore, M+ must be unbounded. Suppose not. Then the complement

R
n \ π(M+) has a unique unbounded connected component that contains infinity.

Therefore, either Rn \ π(M+) = Ω ⊔ U where U is the unbounded connected com-
ponent that contains infinity, or R

n \ π(M+) = Uα0
if Uα0

is unbounded. Hence
we have either ∂π(M+) = ∂Ω ⊔ ∂U or ∂π(M+) = ∂Uα0

. Applying Theorem 3.3 to
π(M+) on either ∂U or ∂Uα0

, we have H ≡ 0 on M+ which contradicts that M+

contains a point of positive mean curvature. �

Proof of Theorem 3. Suppose to the contrary that H changes signs. Let M+ be a
connected component of {p ∈ M : H ≥ 0 at p} that contains a point of positive
mean curvature. By Theorem 3.4, a component Γ of ∂M+ is unbounded. By
Lemma 3.1, Γ lies in a hyperplane Π andM is tangent to Π at Γ. By the assumption
that f is asymptotically flat, the upward unit normal vector of M converges to ∂n+1

at infinity. Because M is tangent to the hyperplane Π at an unbounded set, we
must have lim|x|→∞ f(x) = C for some bounded constant C and Π = {xn+1 = C}.

By Lemma 3.2, the level set {x : f(x) = C + ǫ} has non-empty intersection with
{p ∈ int(M) : H > 0 at p} for all ǫ > 0 sufficiently small. Let ΣC+ǫ be a connected
component of the level set which intersects {p ∈ int(M) : H > 0 at p}. Note
that ΣC+ǫ is closed if ǫ �= 0, and that H ≥ 0 at every point of ΣC+ǫ because by
Theorem 3.4 the mean curvature H can only change signs through an unbounded
subset of M0, which must lie on {xn+1 = C}. By the Morse-Sard theorem, ΣC+ǫ

is a Cn+1 submanifold with |Df | > 0 for almost every ǫ. Let η = Df/|Df | be a
unit normal vector of ΣC+ǫ where C + ǫ is a regular value. For ǫ > 0 sufficiently
small, η points inward to the region enclosed by ΣC+ǫ because f decreases to C at
infinity. Let HΣC+ǫ

be the mean curvature with respect to η. By Proposition 2.9,
HΣC+ǫ

≤ 0 at every point of ΣC+ǫ, which contradicts compactness of ΣC+ǫ. �

4. Ellipticity and maximum principles

In this section, we will derive various maximum principles for graphs with non-
negative scalar curvature. The scalar curvature equation of the graphing function
is fully non-linear. Its linearization, first introduced by [21], gives a second-order
differential equation. The linearized equation may not be elliptic in general. It
is known that if the scalar curvature is a positive constant, then the strict ellip-
ticity trivially holds pointwise (see, for example, [22]). However, this is no longer
true if the scalar curvature may vanish. An important step to establish our maxi-
mum principles is to explore the (strict) ellipticity of the linearized scalar curvature
equation.

Lemma 4.1. Let u be a C2 function and let R be the scalar curvature of the graph
of u. Then

∂R

∂uij
(Du,D2u) =

2
√

1 + |Du|2

(

Hgij −
∑

k

Ai
kg

kj

)

.
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Proof. By the chain rule,

∂R

∂uij
=

∑

k,l

∂R

∂Ak
l

∂Ak
l

∂uij

=
∑

k,l

∂R

∂Ak
l

∂

∂uij

(

∑

p

gkpApl

)

=
∑

k

∂R

∂Ak
i

gkj
√

1 + |Du|2

= 2H
gij

√

1 + |Du|2
− 2

∑

k

Ai
k

gkj
√

1 + |Du|2
. �

Proposition 4.2. Let u be a C2 function, and let R and H be the scalar curvature
and mean curvature of the graph of u, respectively. If R ≥ 0 and H ≥ 0, then the
matrix

(

Hgij −∑

k A
i
kg

kj
)

is semi-positive definite.

Proof. Because Hgij−∑

k A
i
kg

kj =
∑

k(Hδik−Ai
k)g

kj and (gkj) is positive definite,
it suffices to prove that (Hδik − Ai

k) is semi-positive definite. By rotating the
coordinates, we assume (Ai

k) = diag(λ1, . . . , λn). Then

(Hδik −Ai
k) = diag(σ1(A|1), . . . , σ1(A|n)).

By Proposition 2.8, because H = σ1(A) ≥ 0 and R = 2σ2(A) ≥ 0, we have
σ1(A|k) ≥ 0 for all k = 1, . . . , n. �

Theorem 4.3 (Strong maximum principle for the interior point). Let Ω be a con-
nected open subset in R

n. Suppose u, v ∈ C2(Ω), u ≥ v in Ω, and u, v satisfy

R(Du,D2u) = 0, R(Dv,D2v) ≥ 0,

H(Du,D2u) ≥ 0, and H(Dv,D2v) ≥ 0 in Ω.

We assume that either u or v satisfies
(

Hgij −∑

k A
i
kg

kj
)

being positive definite
in Ω. If u = v at some point in Ω, then u ≡ v in Ω.

Proof. Let R(p, ξ) ∈ C1(Rn × R
n×n) be the scalar curvature operator. Hence

0 ≥ R(Du,D2u)−R(Dv,D2v)

= R(Du,D2u)−R(Du,D2v) +R(Du,D2v)−R(Dv,D2v)

=
∑

i,j

aij(uij − vij) +
∑

i

bi (ui − vi),

where

bi =

∫ 1

0

∂R

∂pi
(tDu+ (1− t)Dv,D2v) dt
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and by Lemma 4.1

aij =

∫ 1

0

∂R

∂ξij
(Du, tD2u+ (1− t)D2v) dt

=
1

√

1 + |Du|2

(

(

H(Du,D2u)gij(Du)−
∑

k

Ai
k(Du,D2u)gkj(Du)

)

+
(

H(Du,D2v)gij(Du)−
∑

k

Ai
k(Du,D2v)gkj(Du)

)

)

.

If u = v at p ∈ Ω, thenDu = Dv at p. Then, by the assumption and Proposition 4.2,
(aij) is positive definite at p. By continuity, (aij) is positive definite in an open
neighborhood Ω′ of p in Ω. Then by the standard strong maximum principle, u ≡ v
in Ω′. Hence, the set {p ∈ Ω : u(p) = v(p)} is open and closed. Because Ω is
connected, we prove that u ≡ v in Ω. �

Theorem 4.4 (Strong maximum principle for the boundary point). Let Ω1,Ω2 be
connected open sets in R

n such that Ω1 ⊂ Ω2. Suppose p ∈ ∂Ω1 ∩ ∂Ω2 �= ∅ and
∂Ω1, ∂Ω2 are C1 near p.

Let u ∈ C2(Ω1) ∩ C0(Ω1), v ∈ C2(Ω2) ∩ C0(Ω2). Suppose the graphs of u, v are
C2 hypersurfaces up to boundary which satisfy

R(Du,D2u) = 0, R(Dv,D2v) ≥ 0,

H(Du,D2u) ≥ 0, and H(Dv,D2v) ≥ 0 in Ω1.

We also assume that either u or v satisfies
(

Hgij −∑

k A
i
kg

kj
)

being positive defi-
nite in Ω1. If u ≥ v ≥ 0 in Ω1 and u|∂Ω1∩Br(p) = v|∂Ω2∩Br(p) = 0 for some open ball
centered at p of radius r with |Du(x)| → ∞ and |Dv(x)| → ∞ as x → p ∈ ∂Ω1∩∂Ω2,
then u ≡ v in Ω1.

Proof. Let Π be the vertical hyperplane in R
n+1 so that Π is tangent to ∂Ω1 ×

{xn+1-axis} at p×{xn+1-axis}. The graphs of u, v near p can be locally represented
as the graphs of some functions ũ, ṽ over a subset of Π, say ũ, ṽ ∈ C2(D × [0, ǫ])
where p ∈ int(D) ⊂ {xn+1 = 0} and D × [0, ǫ] ⊂ Π. Moreover, ũ and ṽ satisfy
ũ ≥ ṽ in D × [0, ǫ], ũ = ṽ and ∂n+1ũ = ∂n+1ṽ = 0 at p ∈ D × {0}, and

R(Dũ,D2ũ) = 0, R(Dṽ,D2ṽ) ≥ 0,

H(Dũ,D2ũ) ≥ 0, and H(Dṽ,D2ṽ) ≥ 0 in D × [0, ǫ].

Either ũ or ṽ has
(

Hgij −∑

k A
i
kg

kj
)

being positive definite in D × [0, ǫ]. As
analyzed in the proof of Theorem 4.3, (ũ− ṽ) satisfies

0 ≥
∑

i,j

aij(ũij − ṽij) +
∑

i

bi(ũi − ṽi),

where (aij) is positive definite in D × [0, ǫ] with a possibly smaller ǫ. Then by the
standard Hopf boundary point lemma, ũ = ṽ at some interior points of D × [0, ǫ].
Hence u = v at some interior points in Ω1, and by Theorem 4.3, u ≡ v everywhere
in Ω1. �

To prove Theorem 4, we need the following version of the strong maximum
principle for the boundary point, where the domains of u and v are complement to
each other. The proof is nearly identical to the proof of Theorem 4.4, so we omit
it.
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Theorem 4.5. Let Ω be an open subset in R
n. Let p ∈ ∂Ω and consider the open

ball Br(p) centered at p of radius r for some r > 0 small. Suppose ∂Ω ∩ Br(p) is

C1. Let u ∈ C2(Br(p)\ (Ω ∩Br(p)))∩C0(Br(p)\ (Ω∩Br(p))), v ∈ C2(Ω∩Br(p))∩
C0(Ω ∩Br(p)) and u ≥ 0, v ≤ 0. Suppose the graphs of u, v are C2 hypersurfaces
up to boundary which satisfy

R(Du,D2u) = 0, R(Dv,D2v) = 0,

H(Du,D2u) ≥ 0, and H(Dv,D2v) ≥ 0.

We also assume that the matrix
(

Hgij −∑

k A
i
kg

kj
)

of u is positive definite. If
u|∂Ω∩Br(p) = v|∂Ω∩Br(p) = 0, then |Du(x)| and |Dv(x)| cannot both tend to ∞ as
x → p ∈ ∂Ω.

Theorem 4.6 (Global strong maximum principle). Let Ω be a bounded subset (not
necessarily connected) in R

n, and let v ∈ C2(Rn \ Ω) be asymptotically flat. We
assume that the graph of v satisfies R = 0 and H ≥ 0 in R

n \ Ω. Let h be the
Schwarzschild solution given by Proposition 2.6. Then there exists r ≫ 1 so that,
for any r2 > r1 ≥ r,

max
Br2

\Br1

(h− v) = max
Sr2

∪Sr1

(h− v),

min
Br2

\Br1

(h− v) = min
Sr2

∪Sr1

(h− v).

If (h− v) attains its maximum or minimum at an interior point in Br2 \Br1 , then
(h− v) must be a constant in Br2 \Br1 .

Proof. As computed in the proof of Theorem 4.3, we have

0 = R(Dh,D2h)−R(Dv,D2v)

=
∑

i,j

aij(hij − vij) +
∑

i

bi (hi − vi),

where

aij =
1

√

1 + |Dh|2
∑

k

(

H(Dh,D2h)δik −Ai
k(Dh,D2h)

+H(Dh,D2v)δik −Ai
k(Dh,D2v)

)

gkj(Dh).

We shall prove that (aij) is positive definite in R
n \Br for r ≫ 1. Then the lemma

follows directly from the standard maximum principles. Because (gkj) is positive
definite, we can prove the positivity of (aij) by showing that the matrix

(H(Dh,D2h)δik −Ai
k(Dh,D2h) +H(Dh,D2v)δik −Ai

k(Dh,D2v))(4.1)

is positive definite. By direct computation,

H(Dh,D2v)δik −Ai
k(Dh,D2v)

= H(Dv,D2v)δik −Ai
k(Dv,D2v) +O(|Dv|2|D2v|+ |Dh|2|D2h|)

= H(Dv,D2v)δik −Ai
k(Dv,D2v) + o

(

r(−3n+2)/4
)

,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE EQUALITY CASE OF THE PENROSE INEQUALITY 43

where r = |x| and we use the asymptotic flatness of h and v. By Proposition 4.2,
(

H(Dv,D2v)δik −Ai
k(Dv,D2v)

)

is semi-positive definite. By Proposition 2.7,

(

H(Dh,D2h)δik −Ai
k(Dh,D2h)

)

≥ n− 2

2

√
2mr−n/2I.

The right-hand side above is positive enough to absorb the error term o(r(−3n+2)/4)
if r ≫ 1. Hence (4.1) is positive definite. �

5. Proofs of Theorem 2 and Theorem 4

We need the following inequalities. Proposition 5.1 is a special case of the
Alexandrov-Fenchel inequalities. The classical result was proven for a convex do-
main. It has been generalized to a star-shaped domain Ω with a mean-convex
boundary [13] or a domain whose boundary is outer-minizing by Huisken and by
[12].

Proposition 5.1. Let Ω ⊂ R
n be star-shaped or outer-minimizing and let Σ = ∂Ω

be mean convex. Denote by HΣ the mean curvature of Σ with respect to the inward
unit normal vector. Then

1

2(n− 1)ωn−1

∫

Σ

HΣ dσ ≥ 1

2

( |Σ|
ωn−1

)

n−2
n−1

with equality if and only if Σ is an (n− 1)-sphere.

Proposition 5.2. Let a1, a2, . . . , ak be non-negative real numbers and 0 ≤ β ≤ 1.
Then

k
∑

i=1

aβi ≥
( k
∑

i=1

ai

)β

.

If 0 ≤ β < 1, the equality holds if and only if at most one of ai is non-zero.

Proof. Without loss of generality, we assume k = 2. We shall prove that xβ + yβ ≥
(x+ y)β if 0 ≤ β ≤ 1 and x, y ≥ 0. Fix β, x and define w(y) = xβ + yβ − (x+ y)β .
Then w(0) = 0 and

w′(y) = β
(

yβ−1 − (x+ y)β−1
)

≥ 0 for all y ≥ 0.

Hence w(y) ≥ 0 for all y ≥ 0 with w(y) = 0 if and only if x = 0, or y = 0, or
β = 1. �

Proof of Theorem 1 ([19]). The scalar curvature of the graph of f has a divergence
form in terms of the derivatives of f [20] (see also [15, 19])

R =
∑

j

∂j
∑

i

(

fiifj − fijfi
1 + |Df |2

)

.

Let Ωǫ be a bounded open set in R
n that contains Ω with Ωǫ → Ω as ǫ → 0, and

let each connected component Σǫ
k of ∂Ωǫ be the level set of f . By applying the
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divergence theorem over Rn \ Ωǫ, we have

2(n− 1)ωn−1m

= lim
r→∞

∫

Sr

1

1 + |Df |2
∑

i,j

(fiifj − fijfi)
xj

|x| dσ

=

∫

Rn\Ωǫ

Rdx−
∑

k

∫

Σǫ
k

1

1 + |Df |2
∑

i,j

(fiifj − fijfi)η
j dσ

=

∫

Rn\Ωǫ

Rdx+
∑

k

∫

Σǫ
k

|Df |2
1 + |Df |2HΣǫ

k
dσ,

where HΣǫ
k
denotes the mean curvature of the level set Σǫ

k with respect to the unit
normal vector η pointing inward to the region enclosed by Σǫ

k (cf. [15, Proof of
Lemma 5.6]). Let ǫ tend to zero. Then each level set Σǫ

k tends to the connected
component Σk of ∂Ω and |Df | → ∞. Therefore, we have

m =
1

2(n− 1)ωn−1

(

∫

Rn\Ω

Rdx+
∑

k

∫

Σk

HΣk
dσ

)

≥
∑

k

1

2(n− 1)ωn−1

∫

Σk

HΣk
dσ

≥
∑

k

1

2

( |Σk|
ωn−1

)

n−2
n−1

(by Proposition 5.1)

≥ 1

2

( |∂Ω|
ωn−1

)

n−2
n−1

(by Proposition 5.2). �

Corollary 5.3. Under the conditions of Theorem 1, if

m =
1

2

( |∂Ω|
ωn−1

)

n−2
n−1

,

then R ≡ 0 in R
n \ Ω, and ∂Ω is a sphere of radius (2m)

1
n−2 .

The proof of Theorem 2 makes use of the maximum principles proven in Sec-
tion 4. The case n = 3 or 4 is more subtle because the graphing function of the
Schwarzschild solution tends to infinity as |x| → ∞, and difficulty arises when
comparing two unbounded graphs. In that case, instead of using the strong max-
imum principles Theorem 4.3 or Theorem 4.4 directly, we first control the growth
at infinity, by the asymptotic flatness of the graph and Theorem 4.6.

Proof of Theorem 2. Suppose the equality of the Penrose inequality holds. By
Corollary 5.3, the scalar curvature of the graph of f is identically zero everywhere

and ∂Ω is a round sphere of radius (2m)
1

n−2 . By translating f , we assume that
f = 0 on ∂Ω and ∂Ω = S

(2m)
1

n−2
⊂ {xn+1 = 0}. By Theorem 3, the mean curva-

ture of the graph of f must have a sign. Suppose that H ≥ 0 with respect to the
upward unit normal. Then, we have either lim|x|→∞ f(x) = C for some positive
constant C or lim|x|→∞ f(x) = +∞.

Let h be the function in Proposition 2.6 which gives the exterior region of the
Schwarzschild solution of mass m outside its minimal boundary. By translating h,
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we assume that its minimal boundary is S
(2m)

1
n−2

⊂ {xn+1 = 0}. We consider two

cases, depending on the dimension n.

Case 1: n ≥ 5. In this case, lim|x|→∞ h(x) = C0 for some bounded constant C0.
If lim|x|→∞ f(x) = C ≤ C0, we let uλ = h+λ for λ ≥ 0. For λ sufficiently large,

uλ > f . We then continuously decrease λ, until uλ = f at p ∈ R
n \ B

(2m)
1

n−2
for

the first time. If p is an interior point, uλ ≡ f by Theorem 4.3. If p is a boundary
point in S

(2m)
1

n−2
, uλ ≡ f by Theorem 4.4. Hence, the graph of f is identical

to the exterior region of the Schwarzschild solution of mass m outside its minimal
boundary.

If lim|x|→∞ f(x) = C ≥ C0 or lim|x|→∞ f(x) = +∞, we consider vλ = h− λ for
λ ≥ 0. Note that f > vλ for λ sufficiently large. We then continuously decrease
λ until f = vλ for the first time. Then by either Theorem 4.3 or Theorem 4.4, we
have f ≡ h in R

n \B
(2m)

1
n−2

.

Case 2: n = 3 or 4. (In this case, lim|x|→∞ h(x) = ∞.)

We claim that either max|x|=r f(x) > h(r) or max|x|=r f(x) ≤ h(r) for all r
sufficiently large. Suppose the first statement is false. Then there exists a sequence
of positive numbers {rk} with rk → ∞ as k → ∞ so that max|x|=rk f(x) ≤ h(rk).
Then by Theorem 4.6, we have max|x|=r f(x) ≤ h(r) for all r sufficiently large.
This proves the claim.

Suppose max|x|=r f(x) > h(r) for all r sufficiently large. By the assumption

min|x|=r f +C ≥ max|x|=r f(x) for r sufficiently large, we have for all r ≥ (2m)
1

n−2

min
|x|=r

f(x) > h(r)− C ′,

for some constant C ′ > 0. Hence, f(x) > h(x)− C ′ for all x ∈ R
n \B

(2m)
1

n−2
. We

then continuously decrease C ′ until f(x) = h(x)−C ′ for the first time. Then either
Theorem 4.3 or Theorem 4.4 implies f(x) ≡ h(x), which leads to a contradiction.
Hence, max|x|=r f(x) ≤ h(r) for all r sufficiently large. Let vλ = h + λ for λ > 0
sufficiently large. Then we continuously decrease λ. The graph of vλ approaches the
graph of f from above, until they touch for the first time. By either Theorem 4.3
or Theorem 4.4, we conclude that f ≡ h. �

Proof of Theorem 4. Suppose to the contrary that there is a complete Cn+1 hy-
persurface M of one end with zero scalar curvature in R

n+1 which is identical to
the Schwarzschild solution h (given in Proposition 2.6) of m > 0 outside a compact
set. We consider the graph of h−λ for some constant λ > 0. For λ ≫ 1, the graph
of h− λ has no intersection with M . Then we decrease λ until the graph of h− λ
approaches M from below and touches M at a point p for the first time.

Note that by [15, Theorem 4] the mean curvature of M has a sign. Then by
Proposition 2.9 and the fact that the level set of M passing through p is mean
convex near p with respect to the inward unit normal, the mean curvature of M
near p (with respect to the unit normal vector pointing away from the graph of h)
is non-negative. Depending on whether p is either an interior point or a boundary
point of the graph of h−λ, we apply either Theorem 4.3 or Theorem 4.4 to conclude
that M is identical to the graph of h outside B

(2m)
1

n−2
over Rn. Then notice that
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M must be graphical in a neighborhood of S
(2m)

1
n−2

in B
(2m)

1
n−2

, for otherwise p

cannot be the first touch point. Applying Theorem 4.5 yields a contradiction. �
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