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Consider a connected C* Riemannian m-manifold R (m =2) and a continuously
differentiable function P (=0 and =0) on R, The space of solutions of dxdu= Pux1
or Au=Pu on R will be denoted by P(R). Let Opy be the set of pairs (R, P) such that
the subspace PX(R) of P(R) consisting of functions with a certain property X reduces
to {0}. Here we let X be B which stands for boundedness, D for the finiteness of

the Dirichlet integral Dg(u) = f du/\+#du, and E for the finiteness of the energy
R

integral EL(u) = Dglu)+ f Pu?x1; we also consider nontrivial combinations of these
R

properties, We denote by O, the set of pairs (R, P) such that there exists no
harmonic Green’s function on R,

The purpose of this paper is to show that (E™, P) will be an example for the
strictness of each of the following inclusion relations

(1) Os C OprsC OppC Opg

if P is properly chosen, where E™(m=3) is m-dimensional Euclidean space and
P is a continuously differentiable function on E™(=0, = 0).
More precisely let

(2) Plx)~|x|™*

as|x|—oo, i.e. there exists a constant ¢>1 such that ¢ '|z| *=Px)=c|z|* for
large |x|. Then the following is true:

J(Em)P)GOPB_@G if Oléz;
(Em,P)G@PD—OPB lf 2<a§(m+2)/2;

(3)
l(E"‘,P)e@m—@m if (m+2)/2<a=m.
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By definition, (E™, P)& O, for every a, and (E™, P)&Opg for a>m.

These relations will be proven first for a P(z) which is invariant under every
rotation of E™ with respect to the origin. To settle the general case (2) we will
study the dependence of the linear space structure of PX(R) on P for general
Riemannian manifolds R, where X=B, BD, and BE. This problem also has interest
in its own right.

Comparison theorems

1. Let (g,;) be the metric tensor on R, (g%) = (¢9,5)~* and ¢ =det(g,;). We also

denote simply by dx the volume element o/g dz'---dx™. The Laplace-Beltrami
operator is then

A= (:z«/g <>§x'—j).

We always assume that the function P in the operator
AP=A-P

is of class C', P=0, and=%= 0 in R, unless otherwise stated. We are interested in
the vector space structure of PX(R) (X=B, BD, BE, D, or E). Observe the

following:

The space PBD(R) (resp. PBE(R)) is dense in PD(R) (resp. PE(R)) with
respect to the topology Tp(resp. Tu) given by the simultaneous convergence in
Dg(-)(resp. Eg(+)) and uniform convergence on every compact set in R. In
particul ar

(4) Orp = Opgp (resp. Org = Orzs) .

The D-part of this statement is the author’s recent result ([81,[91). The
E-part was obtained by Royden [11](see also Glasner-Katz [11]). In view of these
results we will only study the class PB(R) and its subspaces PBD(R) and PBE(R).

We also mention:

Any function in PX(R) is a difference of two nonnegative functions in
PX(R).

2. The Green’s function G¥(x,y) of A¥ on R is characterized as the smallest
positive function on R such that
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(5) —AG"(z, ) = &y,
where 8, is the Dirac measure, Since P=0 and==0, G%(zx,y) always exists {cf. e. g.

Sario-Nakai [12; Appendix]). This result was obtained by Myrberg [6], who also
proved that there always exists a strictly positive solution of Afx=0 on R,

We will call a subregion Q of R regular if the closure @ of Q is compact
and the relative boundary 2Q of  consists of a finite number of disjoint C*
hypersurfaces. The Green’s function Gf(x,y) of A on Q always exists.

Let Q be another C' function on R such that Q=0 and=*=0 on R. Consider
the integral operator Tq=T%%

(6) Top = f Ga(+, )(Qy) — P())p(v)dy

for functions @ on & such that the integral on the right is defined in the sense
of Lebesgue, We also consider Sp = S§%

(7) ngln"'Tn,

where I, is the identity, If @ is bounded and continuous on £, then it is easy to

see that Top € C(Q) and

(8) (Tn‘l’)]aﬂ=0.

If @ is bounded and locally uniformly Hélder continuous on €, then Typ is of
class C? and

(9) ATop =— (Q— Plp+ QTup

on Q{cf.e.g. 1té6 [3 ], Miranda [5]). Therefore by (8) and Green’s formula we
deduce

DulTep) =~ [ Tupla)-ATupla)dz.
Q
By (9) the Fubini theorem implies that

(10) DulTwp) = <o >80 — [ Q(a)(Tupla))dx

Q
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where

(11) <@ ¥>o°= fﬂ . Gi(z, 5)(Qx) — P(x))(Q(y) — Py))p(x)¥(y)dzdy .

3. Let uc PB(Q). By (9), Swu=StucQB(Q). Since #~Squ=Tou, the
relation (8) and the maximum principle imply

(12) | Saze]la = flella s

where]|+||q is the supremum norm considered on Q. Let Sg=S%%. Then S,Squ € PB(Q).
Since #—SySe € PB(Q) and u—SgSou = THu+T§Squ, the relation (8) implies
that #— SgSq=0 on Q. Therefore

(13) S§FoSg% = I3, S S§* = I§.
We have thus proved that

So=SRis an isometric isomorphism from the class PB(Q) onto the class

QB(Q).

4. TFor regular regions QC R, the classes PBD(Q) and PBE(Q) are always
identical. Observe that

(Da(Sa%))"* = (Dafee))"* + (<w, w>3%)"*,

(14)
(Da(2))/* = (Dq(Sa%))"* + (<u, u>E%)\*

for every u e PB(Q). By Green’s formula we also deduce

E$(SE) + EXT5%) = Ef(w) + | (Qlz) - Pla) (),

(15)
EE(u) + EX(TRu) = E3(SI) + f (Plz) — Q(a))(Sou(x)) dz »

where Ef(u) = Dy(u)+ f P(x)(u(z))*dx. From (14) it follows that
Q

So= S§ is an isometric (with respect to || +|o) isomorphism from the class
PBD(Q) = PBE(Q) onto the class QBD(Q) = QBE(Q).

5. We proceed to the comparison of PX(R) and QX(R) for X =B, BD, and
BE, Consider the integral operator T'=T7"%
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(16) Tp=[ Gx2)(Qly)— Py)el)dy

for functions @ on R such that the integral on the right is defined in the sense
of Lebesgue. We will say that the ordered pair (P,Q) satisfies the condition

(B) if

(®) [ 6% n100) - Py)ldy < oo

R
By the Harnack inequality (B) is satisfied for every x€ R if and only if (B) is
valid for some x ¢ R. In this no. 5 we assume that (P, Q) and (Q, P) satsfy (B).

If @ is bounded and continuous on R, then T'¢ is defined and continuous on R. If
moreover @ is locally uniformly Holder continuous, then T'@ is of class C?* and

(17) ATe =—(Q— Pl
on R (cf.(9)). We also consider S =S¥
where I is the identity operator.
Let {0} be a directed set of regular regions & such that the union of {Q} is
R. For a continuous function ¢ on ) we use the same notation @, for the function
which is @ on © and 0 on R—{). Assume that
@all = supg|@al <k < 0o

for every Q. Moreover suppose there exists 2 bounded continuous function @ on R
such that limg.z@e=¢ uniformly on each compact set in R, Then

(19) Se = limg.zSa@a
uniformly on each compact set in R, In fact,
| Sp(x) — Sapalx)| = |S@(x) —Sap(x) | + | Sap(x) — Sopa(z) |

= (IT1-1Tal)|@l(x) + |p(z) — Palx) | + | Talp—pal(x) .

Here|T|¢=f G, )| Q(y)—P(y)|p(y)dy and |Tq| is similarly defined. Since
R
Gz, y) =G%x,y) and limg.;G§(x,y) = G%x,y) on R, we infer that
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|Sp(x) = Sapalx) | = (1T = 1 Tal) @l () + | () = alx) | + | Tl p—pal (z)

and by the Lebesgue convergence theorem the right-hand side of the above inequality
converges to 0 on R. By the Harnack inequality applied to G?—G§ and G? we
conclude that the convergence is uniform on each compact set in R. Therefore
(19) is established,

6. We will first prove a comparison theorem for PB(R) and QB(R). This result
is already suggested in the author’s earlier paper [ 7] (see also[ 9] and Maeda [ 4]):

THEOREM 1. If (P, Q) and (Q, P} satisfy the condition (B), then S™ is an
isometric isomorphism of PB(R) onto QB(R).

PROOF. Let <€ PB{R). From (17) it follows that Su< Q(R). By the identity
(12) we deduce | Sauella = llo= ||lz¢|| and a fortiori

(20) (| Seelf = o] »
i.e. Sue QB(R). Suppose Su=0. By (13) and (19), S¥Su=u and a fortiari #=0.
Thus S is an isomorphism of PB(R) into QB(R).

To prove that S is surjective let ve QB(R) and u,= S§fv. Observe that

g€ PB(Q), lwalla=|lvl, and by (13), v = Seua. Let {Q} be a directed set of
regular subregions Q such that

u = limg..zuq € PB(R)
uniformly on each compact set in R. By (19) we infer that
Su = Iimn..RSnun =7,

i.e. S is surjective, Since |Sul = |vlla= ||Sattel| = llzall, we deduce | Su| = |«|. This
with (20) implies that"S is isometric. Q.E.D,

COROLLARY 1.1. Since P satisfies

21 [ 6ol nP)dy < oo

(¢f.14]), PB(R) and (cP)B(R) are isomorphic for ¢>0.

PROOF. The condition (21) implies that (cP, P) and (P,cP) satisfy the
condition (B). Therefore S“?F is an isometric isomorphism of (cP)B(R) onto
PB(R). QE.D.
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Royden [11] proved the following comparison theorem entirely different in
nature from ours:

If there exists a finite constant ¢>1 such that ¢ 'Q=P=cQ outside a
compact set in R, then there exists an isometric isomorphism of PB(R) onto QB(R).

7. We turn to a comparison theorem for PBD(R) and QBD(R). We will say
that the ordered pair (P, Q) satisfies the condition (D) if

(D) f Gz, 5)|Q(x) — Plx)|-|1Q(y) — P(y)|dxdy < oo.

It is clear that (E) implies (B). In this no. 7 we always assume that (P, Q) and
(Q, P) satisfy (D). In accordance with (11) we set

(22) <@ ¥y>F = f Gx)(Q(z) — Plx))(Q(y) — P(y)plxh¥(y)dzdy .

RXR

This is well defined for bounded continuous functions @ and ¥ on R. By the
Lebesgue convergence theorem we deduce

(23) <@, ¥>" = limp., <P, ¥>5°

THEOREM 2. If(P,Q) and (Q, P) satisfy the conidtion (D), then ST is an
isometric isomorphism of PBD(R) onto QBD(R),

PROOF, Since (D) implies (B), Theorem 1 implies that S=S™ is an isometric
isomorphism of PB(R) onto QB(R). Let w < PBD(R). By (14) we have

(24) (D(aSate))'* =< (Da(®))"* + (<ot u>q)"2 .

From (19) for @ = u< PB(R) it follows that

(25) limg..rdSate A %dSie = diSu N\ »dSu

on R. By (23) and the Fatou lemma, we deduce from (24)
(Dg(Sw))'* < (Dg(u))* + (<, u>)"? < 00,

Therefore S(PBD(R))c QBD(R). To obtain the reversed inclusion let #< PB(R)
and Sz e QBD(R). Since # = Su+Tu on R,
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(26) (D))" = (Da(Su))/* + (Da(T'w)) V2.

By (25), |grad Tau|? converges to |grad Tu|? on R, By the Fatou lemma and
the relations (10) and (23), we infer that

Do(Tu) = lim infy_Do(T qu)
= limg <t u>p = <t u> < o0,
From (26) it follows that Dg(u) < oo, i.e. S(PBD(R)) = QBD(R). Q.E.D.

COROLLARY 2.1, If P satisfies
@) | 6" ) PlalPly)dzdy < oo
R

then PBD(R) and (¢cP)BD(R) are isomorphic for ¢>0.

PROOF. The condition (27) implies that (cP, P) and (P, cP) satisfy the condition
(D). Therefore S“P* is an isometric isomorphism of (cP)BD(R) onto PBD(R).
QED.

8. We turn to a comparison theorem for PBE(R) and QBE(R). We will say
that the ordered pair (P, Q) satisfies the condition (E) if

(E) [ 10) - Pajldz < .

It is clear that (E) implies (B). The following comparison theorem was obtained
by [11] (see also Glasner-Katz [11]):

THEOREM 3. If (P, Q) satisfies the condition (E), then S™ is an isometric
isomorphism of PBE(R) onto QBE(R).

PROOF. Since (E) implies (B), Theorem 1 entails that .S = S™ is an isometric
isomorphism of PB(R) onto QB(R). Let ue PBE(R). From (15) it follows that

Ei(Su) = Eflu) + [ Q) ~ Pla) | d.

By (25) and the Fatou lemma, we obtain
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E3(S) = Eje) + it [ 1Qa) — Plajdx < oo,

i.e. S(PBE(R))c QBE(R). Conversely let u e PB(R) and Su< QBE(R). By (15)
and |[Sgu]=|«l, we have

Bflu) = BY(Sa) + lul? [ Q1) ~ Pla)| .

On setting Spu =u on R—Q we infer by Green’s formula that
Eg(Snu - Sn:u) = Eg(Snu) — Eg'(ngu)

for Q' Q. Therefore E§(Squ)—E%(Su) as Q—R, and a fortiori

Ef) = BYS) + Jul* [ 10(@) ~ Pla)dz < oo .

We have shown that S(PBE(R)) = QBE(R). Q.E.D.

COROLLARY 3.1, If P satisfies

(28) f Plz)dx < =,

then PBE(R) and (cP)BE(R) are isomorphic for ¢>0.

PrROOF, The condition (28) implies that (cP, P) and (P,cP) satisfy the
condition (E). Therefore S®% is an isometric isomorphism of (cP)BE(R) onto
PBE(R). QED.

9. As usual we denote by H(R) the space of harmonic functions # on R, i.e.
Au=0, Comparison theorems between PX(R) and HX(R) for X =B, BD, and
BE can be obtained on replacing by O in nos. 1—8. We will denote by
G(x, ¥)=Gg(x,y) the harmonic Green’s function on R, If R e Oy, then PB(R)= {0}
(Ozawa [10], Royden [11]). Therefore excluding trivial cases, we assume in this
no. 9 that Re& O, We will say that P satisfies the condition (B,), (D,), or (E,) if
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Glz, y)P(y)dy < oo,

s
—

Glz, y)Plx) P{y)dxdy < oo

XR

or

(Eo) Plx)dx < oo,

m\

Since G*(x, ¥)<G(x,»), the conditions (B,), (Dy), and (E,) imply(21), (27), and (28),
respectively,
Dicussions in no. 6 are valid if Q is replaced by 0:

COROLLARY 1.2. If P satisfies the condition (B,), then S*°is an isometric
isomorphism of PB(R) onto HB(R).

The replacement of Q by 0 does not affect the wvalidity of the reasoning in
nos, 7 and 8, With this in view we maintain :

COROLLARY 2.2, If P satisfies the condition (D,), then S*° is an isometric
isomorphism of PBD(R) onto HBD(R).

COROLLARY 3.2. If P satisfies the condition (E,), then SF° is an isometric
isomorphism of PBE(R) onto HBD(R).

Equations on Euclidean spaces.

10. Hereafter we take the Euclidean space E™(m == 3) as the base Riemannian
manifold for the equation Au = Pu. We fix an orthogonal coordinate so that the
metric tensor is (3,). For a point xe E™, its coordinate will be denoted by
(x!,+-+, ™). The volume element is thus dr=dz'---dx™ We also write

m 1/2
lz] = (Z (x’)2> .
i=1

The harmonic Green’s function G(x,y) on E™ is given by
(29) Gl y) = |z —y[* ™,

where ¢,, = (m—2)w,, with o, the surface area 27™?2/I'(m/2) of the unit ball in
E™ We first observe the following elementary identity (a special case of the Riesz
composition theorem):
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(30) f'G(x,y)lyl‘“dy =alz| " m>a>2),

where a = a(m, a) is a finite strictly positive constant depending on m and a but
not on x# 0,
In fact let 2= A(y) be an affine transformation of E™ given by

1) 2= M) = [2]7 3 puly! = @i = 1-eom)

where (p;;) is an orthonormal matrix such that

(32) 3 == >"pylx| ' Xi=1,--+,m).
From (31) and (32) it follows that

(33) ly—z|=lzll2], |y|=lz||z—e|

With e = (15 O)"',O). The ]aCObian Of A iS

a i
J = det <—8§7> = det(|x|"1pi,) =|x|™™
and therefore dz = |x| ™dy. Hence

f__G(x,y)lyI““dy = c;#f. |z — 12"y~ dy
=it [ Jzlnlzlem 2]l — o] 2l

=a lxl _(ﬂ—9)’

where

a=c;1f 2| ™|z —e|"dz << o
E

if a>2,
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11, Let A(2) be a real-valued C? function on [0, o0) such thatg—;)\,(t)

2
= Q%x(t) =0, A(t) =¢, and

AEg)=¢& (t<[0,8/2]),
(34)
Mt)=1¢t (te,[E+38, ),

where & and & are arbitrarily fixed positive number. Consider the equation
(35) Au(z) = Qu(x)u(x), Qaulx) = AMlx])™"

m 2
where o€ (— o0, 00) and A- = Z%z— We maintain:
i=1

(36) dim Q.B(E™) =1
for every ac (— oo, o0).
For the proof let dim Q.B(E™) > 0. Take two positive functions #, in

Q.BE™i=1,2). Let Qn)= {x<cE"||x|<n}(n=1,2,--+) and S, =S58, S
= S%°*. Then

Sut@) = (@) + | Gawls 9)QuIu(5)dly .

Q(n)

Observe that S,u; € HB(Q(%)) and [Sa#llacny = letllacns = llogsll.  Since #,>0, we
obtain by the Lebesgue-Fatou convergence theorem that

) Sul) = wi@) + [ GlaQuhul)dy

and Su, ¢ HB(E™). Since
(38) HB(E™) = E*,

Su,=c,>0. Set w=cu,—cu, € Q.B(E™). Then by (37)

wie) == | Glo3)Quokelldy = —(Tw)ia
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and consequently |w|=T|w|on E™, Since |w| is subharmonic and T |w]| is a
potential, we obtain |w|=0. Thus %, and u, are linearly dependent, The space
Q.B(E™) is generated by positive functions in Q,B(E™). We conclude that
dim Q.B(E™) =1.

12, We have seen that either dim Q.B(E™)=0 or 1. We next study for what
a the first or the second alternative occurs. Let @w=(w,;) be an orthonormal matrix
and f, be the function defined by f.(x) =flxw) for a given function f on E™ Here
zx is viewed as the matrix of type (1,m). Since (Q.).= Q. rotation free, we
conclude that u, € Q.B(E™) for u< Q.B(E™). Because of (36), we must have =1,
for every o. Therefore :

Every function u< Q.B{(E™) is rotation free.

A fortiori there exists a C? function @,(¢) on [0, co] such that

(39) u(z) = pu(|x]).

Suppose dim Q.B(E™)=1. Then for < Q.B(E™) such that >0 we maintain:
(40) lim infjppmt(z) >0.
If this were not the case, there would exist an increasing divergent sequence
{ra} CE™ such that @,(r,)—0 as n—oo, Let Q(r,) = {x<c E™||x|<r,}. The

maximum principle implies that |«qec,,, =®u(r,) and a fortiori =0, a contradiction,
By (37)

Sulz) = ulz) + [ Glen)Quy)ulz)dy .

E=

Since (40) and the maximum principle imply that infmz=25>0,
| G100y = b7 (Sulw) ~ ulz)) < oo,
=

i.e. Q. satisfies the condition (B,). Conversely if Q. satisfies the condition
(B,), then by Corollary 1.2, Q.B(E™) is isomorphic to HB(E™) and therefore
dim Q.B(E™)=1.

We have shown that (E™, Q.) € Opp is equivalent to

(41) to=cu | Glo2)Qus)dy = oo

E
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Clearly there exists a constant d,>1 such that

1 1
d;l(fzée:f 'T"“_';d Sd,c,,
s I Y[R =

By using the polar coordinate we infer that e =c, f @ Ydr = oo if and only if

[

(@—1)=<1, i.e a=2.
The conclusion of this no, 12 is:
(42) (EnyQu)€Orp (@=2), (E™Q)&0Ors (@>2).
13. Since Q.BD(E™)C Q.B(E™), (36) implies that either dim Q.BD(E™) =0

or 1, Suppose the latter alternative is the case, Let #>>0 be the generator of
Q.BD(E™), From (37) it follows that

(43) ulz) = c— | Gl 3 Q)

where c€ E'. Let Q(n) = {x ¢ E™| |x|<n} and G, = Gacny. Since u|0Q(n) =c,,
a constant, we also have

ule) = e~ [ Gulea)Qulylulo)dy.
Q(n)
By (10), we infer

Dol = [ Gl QU2 Quulx)uly)dzdy

Q(n)xQ(n)

Since the integrand is nonnegative and converges increasingly to G(x, ¥)Q.(x)Q.(y) X
u(x)u(y) on E™x E™, the Lebesgue-Fatou theorem yields

(44) Dorlid = [ Gl 9)Qu=)Qu )l )z
Emx gm
As in no. 12, infgmz =5 >0, Thus

f Glx,y) Q.(y)dxdy < b ?Dym(u) < oo,
Emx g™
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i.e. Q. satisfies the condition (D,). Conversely if Q. satisfies the condition (D),
then by Corollary 2.2, Q.BD(E™) is isomorphic to HBD(E™), A fortiori dim
Q.BD(E™) = 1.

We have seen that (E™, Q.) € Opsp = Opp is equivalent to

(45 e = o Gloy)QUeIQuoNzdy = o,

Em

In view of (42) and the relation OpsC Opp, we only have to consider the case a > 2,
Clearly there exists a constant d >1 such that

diesli=c,|  GloyQiz)lyl dedy = de,

(B™x— V)XBE™y

where V = {|z|=&+38}. Let ¢,, be as in no. 10, Assume a<<m. By (30),

1=caf (f G(x,y)lyl‘“dy)Qa(x)dx=acm [ 1almen. (zimdz

Em En—vy

— ac2mf r-?a+1n+1d7..

s+

The condition / = oo is then equivalent to—2a+m+1=—-1, ie a=(m+2)/2
for a<<m. Clearly [ < oo for a=m.

The conclusion of this no, 13 is:
(46) (E™ Qu) € Opsp (@ = (m+2)/2), (E™ Q)& Opsp (@ > (m+2)/2).
14. Since Q.BE(E™}C Q.B(E™),(36) implies that either dim Q.BE(E™)=0
).

or 1. Suppose that the latter is the case. Let #>>0 be the generator of Q.BE(E™
Recall that infz=z = &>0 (no. 12), Since

Bl = D7+ | Quallula))de

we infer that

[ Quadz = b < o,

™
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i.e. Q. satisfies the condition (E,). Conversely if Q. satisfies the condition (E,),
then by Corollary 3.2, Q.BE(E™) is isomorphic to HBD(E™). A fortiori dim
Q.BE(E™) =1.

We have seen that (E™, Q.) € Opsr = Opg is equivalent to
(47) c= f Qu(x)dx = oo .
E‘
Let V= {z]||x|=¢&+8}. Clearly there exists a constant d >>1 such that

d"c<p=f Q.(x)dr < c.
E®-V

Using ¢,, in no. 10, we deduce

r=.

and therefore p= oo if and only if —a+m—1=—1, i.e. a=m,
The conclusion of this no. 14 is:

lx|*dx = cmf roetmidy

14 e+3

(48) (Em, Qa) € OPBE (a é m)’ (Em, Qa)$ OPE (a > m)

15. From the results obtained in nos. 10-14, we have the following strict
inclusion relations:

(49) @G < @PB < @PD = OPBD < @PE = 0PBE

where % <8 means that U is a proper subset of B. It is perhaps more or less
trival to merely establish the strict inclusions in (49) but we are interested in this
paper in giving a unified way for finding counter examples, The strict inclusion
Os<Ops was remarked by Royden [11] for m =2, Glasner-Katz-Nakai [ 2] remarked
Ops < Opp for m=2 except for m = 3,

16. We next study the equation
(50) Aulzx) = Plxhdx), Pz}~ x| (|x|—00)

on E™m =3). Here Pfx)~|z| {|x|—oc) means that there exist positive constants
¢>1 and p>1 such that
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(51) ci|z| = = Pa) < clx| (| z] = p).

Thus PJx) is “almost rotation free,” We are assuming that PJfx) is of class C!
and PJfx)=0 on E™,

THEOREM 4. The following degeneracy relations are valid

(52) (E™, Po) € Ops — Og for every ac(— o ,2];
(53) (Em’ Pa) € Ops—0Crm f07‘ every de (2, (m -+ 2)/2] ;
(54) (E™, P.) € Opg— Opp for every ac((m+2)/2,m];
(55) (E™, P& Opg for every a c(m, o),

PROOF. Since m=3, E™ always carries the harmonic Green’s function given
by (29). Therefore (E™, P.)& O, for every e < E'. Observe that there exist some
positive constants ¢ >1 and p>1 such that
(56) c™'Qux) = Polx) = cQu{x)
on Alp)= {x € E™||z| >p}. In particular
(57) Px) = cQ.(x)
everywhere on E™, By Royden’s comparison theorem referred to in no, 6,

(58) dim P.B(E™) = dim Q.B(E™).
Therefore (42) implies (52) and a half of (53), i.e. (E™, P.)& Opp for a>2.

Hereafter we always assume a>2. Then dim P.B(E™)=dim Q.B(E™)=
dim (cQ.)B(E™). Let p, and ¢q. be positive generators of FP.B(E™) and
(cQ.)B(E™) respectively. We set S=S7*_ Since
(59) | Pu(x) — cQalz)] = (c — 1)Qu{x)
and f Glzy)Qdx)dy < oofor a>2, (Pe, ¢(.) satisfies (B) and a fortiori S is an isometric

E™
isomorphism of P.B(E™) onto (cQ.)B(E™). We may assume

7.= Sp. = b= [ G¥o)eQus)~Poilpady<tr.

Observe that g, is rotation free and thus the maximum principle implies infgmg.>0
(see (40)). Therefore '
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(60) infemp. =d >0,

If ae (2, (m+2)/2], then by (44)

Drip) = | Gl PAePAsIpdpd) dady

> f Glx, y)Pulx) P{y)dxdy .

E™xE™

If Dg=(p.) were finite, then (56) would imply that

| 6@ )0a1Qus)dzdy < oo

E™XE™

This contradicts (46). A fortiori (E™,P.) € Opp for @€ (2,(m+2)/2]. This establishes
(53).

Let a<((m+2)/2,m]. From(46),(59), and no. 7, it follows that(E™P.)& Opp.
Suppose Ef=(pa) < co. Then the relation

22 po) > fE Pa)(pelrda = d* f P.(z)dz

E™

and (56) imply f Qq(x)dx<< oo, in violation of (48). The relation (54) is thus proved.
E=

Finally if a < (m, o), then (48), (59), and no. 8 imply the assertion (55). Q. E. D.
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