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Abstract: We report neutron star predictions based on our most recent equations of state. These
are derived from chiral effective field theory, which allows for a systematic development of nuclear
forces, order by order. We utilize high-quality two-nucleon interactions and include all three-nucleon
forces up to fourth order in the chiral expansion. Our ab initio predictions are restricted to the domain
of applicability of chiral effective field theory. However, stellar matter in the interior of neutron stars
can be up to several times denser than normal nuclear matter at saturation, and its composition is
essentially unknown. Following established practices, we extend our microscopic predictions to
higher densities matching piecewise polytropes. The radius of the average-size neutron star, about
1.4 solar masses, is sensitive to the pressure at normal densities, and thus it is suitable to constrain ab
initio theories of the equation of state. For this reason, we focus on the radius of medium-mass stars.
We compare our results with other theoretical predictions and recent constraints.

Keywords: neutron matter; equation of state; neutron star; symmetry energy; chiral effective field
theory

1. Introduction

The equation of state (EoS) of neutron-rich matter is at the forefront of nuclear astro-
physics because of its role in shaping the properties of neutron stars. Recently, interest in
compact stars has increased considerably as we have entered the “multi-messenger era” of
astrophysical observations. The recent GW170817 neutron star merger event has yielded
new and independent constraints on the radius of the canonical mass neutron star [1,2].
Astronomy with gravitational waves provides additional opportunities to explore these
exotic systems and other yet unknown regimes in the Cosmos.

The structure of a neutron star probes a very large range of densities, from the density
of iron up to several times the nuclear matter saturation density, and thus no theory
of hadrons can be considered reliable if extended to those regions. On the other hand,
contemporary ab initio theories of nuclear and neutron matter at normal densities can be
taken as the baseline for any extension or extrapolation method, which will unavoidably
involve phenomenology. We recall that the radius of a 1.4 M� is sensitive to the pressure at
normal densities, see Ref. [3], and thus it is a suitable constraint for microscopic theories of
the EoS at those densities where they are reliable.

Chiral effective field theory (EFT) [4,5] provides a path to a consistent development of
nuclear forces. Symmetries relevant to low-energy QCD are incorporated in the theory, in
particular chiral symmetry. Thus, although the degrees of freedom are pions and nucleons
instead of quarks and gluons, there exists a solid connection with the fundamental theory
of strong interactions through its symmetries.

Chiral EFT employs a power counting scheme in which the progression of two- and
many-nucleon forces is constructed following a clear and systematic hierarchy. This allows
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for the inclusion of all three-nucleon forces (3NFs) which appear at a given order, thus
eliminating the inconsistencies which are unavoidable when adopting meson-theoretic or
phenomenological forces. Finally, it provides a clear method for controlling the truncation
error on an order-by-order basis. In the simplest approach, the latter can be expressed as
the difference between the quantity computed at a given order of the chiral expansion and
the one obtained at the next order. We will revisit this point in Section 4.1.

We will report neutron star predictions based on our most recent EoS, which includes
all subleading 3NFs [6,7]. For the reasons stated above regarding the limitations of chiral
EFT, we focus on the average-mass neutron star, rather than the maximum mass of a
sequence, as the latter is much more sensitive to the polytropic extensions we perform in
order to complete the EoS. We also discuss the proton fraction present in our β-stable EoS,
because of its relevance in neutron star cooling. Our findings are among the numerous
microscopic predictions in disagreement with the outcome of PREX II and its implications
for neutron stars [8].

We also take the opportunity to present a succinct yet fairly complete review of the
various steps in our calculations, as well as to include some general background on neutron
stars to provide context. The paper consists of the following sections. In Section 2, we
review general aspects of neutron stars. We then outline the main aspects of our calculations,
see Section 3. Predictions are presented and discussed in Section 4. We summarize and
conclude in Section 5.

2. General Aspects of Neutron Stars

A neutron star is the remnant collapsed core of a giant star which has undergone a
supernova explosion. Only stars with sufficient mass, estimated to be between 8 and 25 M�,
undergo a supernova event at the end of their life cycle [9]. Due to its extremely compact
nature, the neutron star is directly supported against further gravitational collapse into a
black hole by mechanisms of nuclear origin, which make these objects excellent natural
laboratories for exploring the nuclear EoS.

We begin by briefly summarizing the relevance of neutron stars for nuclear physics,
from a historical perspective. In 1934, just two years after the discovery of the neutron [10],
Baade and Zwicky hypothesized the existence of a very dense stellar object, which they
named neutron star, arising from the remnants of a supernova [11,12]. In 1939 Tolmann [13],
and simultaneously but independently, Oppenheimer and Volkoff [14] estimated the mass–
radius relationship of these neutron stars based on general relativity and crude nuclear
force models, thus producing the famous Tolmann–Oppenheimer–Volkoff (TOV) equation.
The TOV equation allows for the calculation of a theoretical upper limit on the possible
mass of neutron stars. However, due to the lack of understanding of nucleonic interactions
at the time, their original predictions were not accurate, placing the upper limit of a neutron
star mass lower than the Chandrasekhar limit.

Over the years, with a better understanding of nuclear interactions, a more realistic
picture of neutron stars and their structure emerged [15–24].

While the existence of neutron stars was a theoretical possibility, finding proof of their
existence remained a challenge. Initial efforts involving attempts to compute and observe
the thermal signature of neutron stars [19,25,26] were unsuccessful. In 1967, Pacini [27]
postulated that fast rotating neutron stars could produce large electromagnetic emission
generated from a powerful magnetic dipole. The next year, Bell and Hewish [28] discovered
the first radio pulsar, characterized by a remarkably stable periodic electromagnetic signal.
Later that year, Gold theorized that neutron stellar objects were excellent candidates to
explain the unusual characteristics of the pulsar signal [29].

By 1969, the connection between supernovas and pulsars was firmly established with
the discoveries of the Vela [30] and Crab Nebula [31] pulsars. Hundreds of pulsars were
discovered in the 1970s and 1980s using radio astronomy, while more recent developments
have identified pulsars whose signals span the electromagnetic spectrum [32]. To date, more
than two and a half thousand pulsars have been discovered [33], these stellar objects being
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found in many configurations, such as binary pulsar systems [34], main-sequence binary-
pulsar systems [35], globular clusters [36], with orbiting exo-planets [37], and displaying a
wide variety of unusual, yet periodic, signals [38,39]. The recent GW170817 neutron star
merger event, as detected through gravitational wave signatures by LIGO/Virgo [1] along
with the accompanying gamma-ray burst [2], has generated additional and remarkable
observational data.

The mass–radius relationship of neutron stars is uniquely determined from the star’s
EoS and thus reliable observational constraints can shed light on the EoS. While the radius
cannot be directly measured, the mass of neutron stars in binary systems can be inferred
from observation together with the application of gravitational theory. With constraints on
the mass of a star, the Doppler shift is one way to estimate the radius [32].

The total mass range deduced from observed neutron stars is around 1–2 M�. To date,
the smallest mass neutron star has been determined to be ≈1.17 M� [40], while the most
massive observed neutron star is≈2.14 M� [41]. Of particular interest is the Chandrasekhar
mass limit of white dwarf stars which is 1.4 M�. If this mass is exceeded, electron degen-
eracy would no longer be able to support a white dwarf star from gravitational collapse.
Observational constraints on neutron star masses yield values clustered around 1.4 M� [42]
and for this reason this value is taken as the neutron star canonical mass. This also led to
the idea that white dwarf collapse may be an additional mechanism for the formation of
neutron stars [43–45].

The neutron star radius is not measured directly, but observational data allow for
indirect inference. Observation-based constraints consistently place the estimated radius of
a neutron star in the range of 10–15 km. For instance, using accreting and bursting sources,
the radius of the canonical-mass neutron star was determined to be within a range of 10.4
to 12.9 km [46], while analysis from the LIGO/Virgo observations determined the radius to
be between 11.1 and 13.4 km [47]. Upper limits on the neutron star radii, as determined
from iron emission lines, were placed between 14.5 and 16.5 km [48].

Neutron star models are generally in good agreement with observational constraints
for the radius. For instance, the radius of the canonical-mass neutron star predicted from the
set of EoS applied in Ref. [49] is predicted to be in the range 10.45–12.66 km. From a variety
of techniques, based on experimentally determined quantities correlated to symmetry
energy parameters, the radius is determined to be between 10.7 and 13.1 km [49–52], while
using a range of theoretical models a limit of 9.7 to 13.9 km is obtained [49,53,54]. Recent
surveys of neutron star physics and theoretical approaches include Refs. [55–57]. Exotic
matter in stars is addressed, for instance, in Ref. [58].

On theoretical grounds, the largest mass was predicted to be 3.2 M� [59], based on
only three assumptions: (1) General Relativity is the appropriate theory to describe these
massive stars; (2) the EoS is constrained by Le Chatelier’s principle (∂P/∂ε ≥ 0); (3) the
causality condition, which constrains the speed of sound in dense matter to remain below
the speed of light. While such massive neutron star may be theoretically possible, none has
been observed in this mass range.

It is interesting to note the small range of values for the radius across the mass range of
neutron stars. Heavier neutron stars have larger central densities and thus the star becomes
comparatively more compact, resulting in a very narrow mass–radius range, in contrast to
main-sequence stars whose masses and radii span several orders of magnitude.

3. Description of the Calculation

The EoS for neutron and symmetric matter are obtained at the leading-order in the
hole-line expansion—namely, via a non-perturbative calculation of the particle–particle
ladder. As pointed out in Refs. [6,7], the third-order hole-hole diagram was considered and
found to be very small at normal density [60]. In comparison, the particle-hole diagram is
larger, but its contribution is still relatively minor—we estimate an uncertainty in the order
of ±1 MeV on the potential energy per particle at saturation. The single-particle potentials
are computed self-consistently with the G-matrix, employing a continuous spectrum.
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Next, we proceed to describe the input two-nucleon forces (2NFs) and 3NFs.

3.1. The Two-Nucleon Force

The 2NF we apply are from Ref. [61], a family of high-quality potentials from leading
order (LO) to fifth order (N4LO) of the chiral EFT. At fifth order, the nucleon-nucleon
(NN) data below pion production threshold are reproduced with the excellent precision of
χ2/datum = 1.15.

The interactions in this set are more internally consistent than those from the previous
generation [62]. Furthermore, the long-range part of these potentials is tightly constrained
by the πN low-energy constants (LECs) from the Roy–Steiner analysis of Ref. [63]. This
analysis is sufficiently accurate to render errors in the πN LECs essentially negligible for
the purpose of quantifying the uncertainty.

To suppress high-momentum components in the potential when solving the non-
perturbative Lippmann-Schwinger equation, one must apply a regulator, for which we
choose the non-local form:

f (p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] , (1)

expressed in terms of the final (p′ ≡ |~p ′|) and initial (p ≡ |~p |) nucleon momenta in their
center-of-mass system. With the choice Λ = 450 MeV—which we maintain throughout this
paper—the potentials are soft according to the Weinberg eigenvalue analysis of Ref. [64]
and the perturbative calculations of infinite matter from Ref. [65].

3.2. The Three-Nucleon Force

In the framework of the ∆-less chiral EFT (which we apply), the first occurrence of
3NF is seen at the third order. The leading 3NF consists of three components [66]: the
long-range two-pion-exchange (2PE) graph, which depends on LECs c1, c3, and c4, the
medium-range one-pion-exchange (1PE) diagram, carrying the LEC cD, and a short-range
contact term, containing the LEC cE. We recall that the terms depending on c4, cD, and cE
do not contribute in neutron matter [67].

In infinite matter, it is possible to construct approximate expressions for the 3NF as
density-dependent effective two-nucleon interactions as derived in Refs. [68,69]. These can
be written in terms of the well-known non-relativistic two-body nuclear force operators
and, thus, can be easily implemented in the NN partial wave formalism for the G-matrix,
which leads to the EoS. One must be careful to avoid overcounting in the 3NF when the
latter is represented as density-dependent potentials, which is accomplished by including
the appropriate combinatoric factor in the calculation of the energy per particle, as done in
Ref. [6,7].

The topologies of the effective density-dependent two-nucleon interactions originate
from the corresponding chiral 3NF. At N2LO, there are six one-loop topologies. Of those,
three come from the 2PE graph of the chiral 3NF and contain the LECs c1,3,4, which also
appear in the 2PE part of the NN interaction. Of the remaining three one-loop topologies,
two originate from the 1PE diagram of the 3NF, and depend on the LEC cD. The last
one-loop diagram is the 3NF contact term, with LEC cE.

We also include the subleading (N3LO) 3NF, derived in Ref. [70,71]. References [65,72–74]
report applications of the subleading 3NF in some many-body systems. The long-range part
of the 3NF at N3LO includes the 2PE topology, which is the longest-range contribution, the
two-pion-one-pion exchange (2P1PE) topology, and the ring topology, which represents a
pion being absorbed and reemitted from each of the three nucleons. Again, in-medium NN
potentials can be obtained from these topologies. For the long-range subleading 3NFs, the
expressions are given in Ref. [75] for symmetric nuclear matter (SNM) and in Ref. [76] for
neutron matter (NM). The short-range subleading 3NF includes the following topologies: the
one-pion-exchange-contact (1P-contact), which ends up giving a vanishing net contribution,
the two-pion-exchange-contact (2P-contact), and relativistic corrections, which depend on the
CS and the CT LECs of the 2NF and are proportional to 1/M, where M is the nucleon mass.
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We include relativistic corrections as well and find them to be very small (less than one MeV).
The expressions for the in-medium NN potentials generated by the short-range subleading
3NFs are taken from Ref. [77] for SNM and Ref. [78] for NM.

Table 1 displays the LECs we use, which are taken from Ref. [65]. An important
point to highlight: the largest part of the subleading two-pion-exchange 3NF has a very
similar formal structure to the leading 2PE [79] and thus a large part of the subleading
two-pion-exchange 3NF can be effectively accounted for with a shift of the LECs. For this
reason, when the subleading 3NFs are included, we replace the c1, c3, and c4 LECs shown
in Table 1 with −1.20 GeV−1, −4.43 GeV−1, and 2.67 GeV−1, respectively, corresponding
to shift of −0.13 GeV−1 (for c1), 0.89 GeV−1 (for c3), and −0.89 GeV−1 (for c4) [70].

Table 1. Values of the LECs c1,3,4, cD, cE, CS, and CT at N2LO and N3LO. The momentum-space cutoff
Λ is equal to 450 MeV. The LECs c1,3,4 are given in units of GeV−1, while cD and cE are dimensionless.

Λ (MeV) c1 c3 c4 cD cE CS CT

N2LO 450 −0.74 −3.61 2.44 2.75 0.13 −0.013000 −0.000283

N3LO 450 −1.07 −5.32 3.56 0.50 −1.25 −0.011828 −0.000010

In Figure 1, we show the EoS in NM over four orders, from LO to N3LO [6]. Large
variations at low orders are of course not surprising, nor is the remarkable impact of the
leading 3NF at N2LO. The transition to fourth order brings in a slight increase in attraction,
as was found from other EFT-based predictions [73]. The overall convergence pattern is
encouraging.
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Figure 1. Energy per particle in neutron matter as a function of density from leading to fourth order
of chiral perturbation theory. The cutoff is fixed at 450 MeV. The EoS are those obtained in Ref. [6].

In Figure 2, an analogous presentation is provided for SNM. Similar considerations
apply with regards to the order-by-order convergence pattern and the 3NF “signature” as
in NM.
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Figure 2. Energy per particle in symmetric nuclear matter as a function of density from leading to
fourth order of chiral perturbation theory. The cutoff is fixed at 450 MeV. The shaded box marks the
empirical saturation point. The EoS are the same as obtained in Ref. [7].

3.3. Equation of State for Stellar Matter

In this section we outline the main steps to construct the EoS for stellar matter in
β-equilibrium. We define the total energy per baryon as:

eT(ρ) = e0(ρ) + esym (Yn −Yp)
2 + ee + eµ + ∑

i=n,p
Yimi , (2)

where Yn,p stands for the neutron or proton fraction. The last term accounts for the baryon
rest energy, while ee/µ are the energies (per baryon) of the electrons and muons, respectively.
All terms are functions of density.

The energy density (εi), pressure (pi), and number density (ρi) for each particle species,
i, at a given Fermi momentum, (kF)i, can be expressed as:

εi =
γ

2π2

∫ kFi

0

√
k2 + m2

i k2 dk , (3)

pi =
1
3

γ

2π2

∫ kFi

0

k2√
k2 + m2

i

k2 dk , (4)

ρi =
γ

2π2

∫ kFi

0
k2 dk , (5)

where γ is the spin/isospin degeneracy factor. The energy per volume is obviously related
to the energy per particle:

ε = ρ e(ρ) . (6)

The Fermi energy for each species, i, or chemical potential, is given by

µi =
∂εi
∂ρi

=
√

k2
Fi
+ m2

i . (7)

The fractions of each particle species,

Yi =
ρi
ρ

, (8)

is related to the chemical potential through:

µi =
∂εi
∂ρi

=
∂ei
∂Yi

. (9)
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From the condition of energy minimization, subjected to the constraints of conserved
nucleon density and global charge neutrality,

ρp + ρn = ρ or Yp + Yn = 1 , (10)

ρp = ρe + ρµ or Yp = Ye + Yµ , (11)

one can obtain all particle fractions.

3.4. Polytropic Extrapolation

Chiral predictions have a limited domain of validity, which, in the previous section,
we estimated to be about twice the saturation density. The densities within neutron stars
can reach five to six times saturation density, and therefore an appropriate method for
extrapolating the EoS to these densities must be employed. To accomplish this, we express
the high density pressure through polytropes [80]:

P(ρ) = ρ2 ∂eT(ρ)

∂ρ
= αρΓ , (12)

where α is chosen such as to ensure continuity at the matching density. A comment is in
place: while continuity of the pressure is of course preserved, additional considerations are
necessary to ensure continuity of the derivative. The latter would be essential to implement
thermodynamic consistency of the piecewise EoS, which is beyond our present scope. Note,
further, that the presence of discontinuities in the polytropic index is not unusual for the
purpose of describing the global features of the star [80]. Following Ref. [3], we match
piecewise polytropes to the ab initio predictions as explained next.

The microscopic predictions reach a Fermi momentum of 1.6 fm−1, which corresponds
to 2.016 fm−1 in pure neutron matter at the same density, ρ = 0.277 fm−3. The standard
practice is to ensure that the characteristic momentum of the system, p, divided by the
cutoff, Λ, is a reasonable expansion parameter. Taking p to be the average momentum in
a free Fermi gas of neutrons at the highest density we consider, we obtain a value of 68%
for p/Λ, which is a pessimistic estimate, since the average momentum in β-stable matter
is smaller than in pure NM. Having chosen the matching density, ρ1, we join the pressure
predictions with polytropes of different adiabatic index, ranging from 1.5 to 4.5. This range
is chosen following guidelines from the literature, in particular Ref. [80], where constraints
on phenomenologically parameterized neutron-star equations of state are investigated. To
simulate a (likely) scenario where the pressure displays different slopes in different density
regimes, we define a second matching density, ρ2, approximately equal to 2ρ1, at which
point a set of polytropes covering the same range of Γ is attached to each of the previous
polytropes, yielding a total of 49 possible combinations. This is illustrated in Figure 3.
It is important to emphasize that high-density EoS extrapolations are not meant to be a
replacement for microscopic theoretical predictions [3] which, at this time, are not feasible
at super-high densities. Instead, the spreading of the high-density pressure values from the
piecewise variation of the polytrope index allows to probe the sensitivity of lower-density
predictions to the much larger uncertainty at high density.

To construct a physical EoS for high densities, we must apply additional constraints.
One is the causality limit, which imposes the speed of sound in matter to be less than the
speed of light. In terms of P(ε), the causality condition reads:

dP(ρ)
dε(ρ)

< 1 . (13)

Note that the constraint on the speed of sound is strictly valid only in the absence of
dispersion or absorption in stellar matter [81]. Nevertheless, imposing the causality con-
straint is standard practice when constructing neutron star EoS and we will apply it in this
work [32,59,80,81].
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Additionally we will only consider polytropes, which can support a maximum mass
of at least 2.01 M�, to be consistent with the lower limit of the (2.08 ± 0.07) M� ob-
servation reported in Ref. [82] for the J0740 + 6620 pulsar along with a radius estimate
of (12.35 ± 0.75) km. To complete the EoS on the low-density side, we attach a crustal
EoS [83,84].

3.5. Mass-Radius Relation

With the EoS available over a full range of densities, we move to the mass–radius
relation in a neutron star. In this section we will briefly review the relativistic equations for
hydrostatic equilibrium, the TOV equations [13,14] and how the mass–radius relationship
emerges from them for a given input EoS.

The TOV equation describes a spherically symmetric inertial massive object composed
of a perfect fluid in hydrostatic equilibrium. The equation relates the pressure within the
star to the mass-energy density as functions of the radial distance from the star’s center:

dP(r)
dr

= −G
c2

(P(r) + ε(r)) (M(r) + 4πr3 P(r)
c2 )

r(r− 2GM(r)
c2 )

. (14)

A spherical shell of material is related to the energy density at a distance r from the star’s
center by:

dM(r)
dr

=
4π

c2 r2ε(r) . (15)

The star’s gravitational mass (M) is determined from the radius (R) and the mass-energy
density (ε(r)):

M(R) =
∫ R

0

ε(r)
c2 d3r . (16)

Since the pressure and energy-density are functions of density, for a fixed central den-
sity the mass–radius of the star can be determined by Equations (15) and (14). Equation (14)
can be integrated numerically by summing over shells of fixed width at incremented
distance from the star’s center so as to evaluate the total pressure as a function of radial
distance. Equation (15) can be integrated in the same fashion, simultaneously, to determine
the mass contained within each spherical shell. To accomplish this, we employed the
fourth-order Runge–Kutta method. The radial distance at which the pressure effectively
vanishes corresponds to the star’s radius. Then, Equation (16) provides the total mass
enclosed within such radius.

4. Results and Discussion
4.1. Chiral Uncertainty

First, some comments on the estimation of the chiral error.
As pointed out in Section 3.1, errors in the πN LECs are small enough to be neglected

when quantifying the combined uncertainty. The truncation error is of course central to
the philosophy and the application of chiral EFT, being the indicator of the quality of the
convergence pattern.

In the most basic approach, one may argue that, if observable X has been determined
at order n and at order n + 1, a reasonable estimate of the truncation error is simply the
difference between the value of X at order n and the one at the next order:

∆Xn = |Xn+1 − Xn| . (17)

To estimate the uncertainty at the highest available order, one needs additional con-
siderations. We follow the prescription of Ref. [85]. First, one needs to identify the typical
momentum or energy scale for the system being considered, say, p. Defining Q as the
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largest between p
Λb

and mπ
Λb

, where Λb is the breakdown scale of the chiral EFT, about
600 MeV [85]. The truncation error for the observable X at N3LO is then defined as:

∆X = max{Q5|XLO|, Q3|XLO − XNLO|, Q2|XNLO − XN2LO|, Q|XN2LO − XN3LO|} . (18)

We take p to be the average momentum of a Fermi gas of neutrons,
√

3
5 kn

F.

4.2. Results

In Figure 4, we show the proton fractions we obtain from leading to fourth order of
chiral perturbation theory. Electron fractions are not shown to avoid excessive crowding—
prior to the onset of muons, electron and proton fractions are of course equal, and remain
close to each other, as it can be inferred from the small values of the muon fractions. Our
proton fractions are very small, consistent with the relatively soft symmetry energy, see
Figure 5, which brings up the issue of direct Urca processes—the most effective neutrino
emission mechanism. Our predictions are far from the direct Urca threshold of approxi-
mately 11% around normal density. Instead, we find for the N3LO proton fraction a normal
density a value of 0.046± 0.0035.

To offer the reader a broader overview, we show in Table 2 the value of the symmetry
energy and the slope parameter L with their uncertainty, where L is defined as

L = 3ρo

(∂esym(ρ)

∂ρ

)
ρo

. (19)

Table 2. The symmetry energy and the slope parameter at N3LO at saturation density ρo. L is defined
as in Equation (19).

ρ0 (fm−3) esym(ρo) (MeV) L(ρo) (MeV)

0.16 31.3 ± 0.8 52.6 ± 4.0

We proceed with pressure predictions. Figure 3 displays the pressure in stellar matter
as a function of the number density. The various curves span the range of acceptable
combinations of polytropes, as explained in Section 3.4. In Table 3 we present predictions
for the radius, central density, and speed of sound for M = 1.4 M� for those combinations.
Several comments are in place. First, we note that, overall, the radius is not very sensitive to
the Γ1, Γ2 variations. For values of Γ1 on the low end of the range, acceptable combinations
require values of Γ2 on the higher end—understandable in terms of maximum mass
constraints. Further, for a fixed value of Γ1, the sensitivity of the radius to variations
in Γ2 is essentially negligible, and of course it vanishes when the central density is below
the second matching density. One more comment regarding causality: While all EoS are
causal at the central densities displayed in Table 3, some may not be so at the central density
of the maximum mass of the sequence. In such cases, the M(R) correlation is typically
truncated at the causality limit, retaining the EoS at the lower densities.

The mean value and standard deviation are (R̄1.4 = 11.96 ± 0.58) km. The same
procedure is applied at the lower orders—LO to N2LO—that is, the EoS at each order is
extended with polytropes and the mean value of the radius is calculated. With radius
predictions available from leading to fourth order, we determine the truncation error via
the prescription in Equation (18), where we take p to be the neutron Fermi momentum
at saturation density. This choice is reasonable because the average density of a neutron
star is comparable to saturation density and because of the strong sensitivity of the radius
to the normal density region. From Equation (18) we obtain an uncertainty of ± 0.54 km.
Combining the truncation and extrapolation uncertainties in quadrature, we state our
estimate of the radius as:

R1.4 = (11.96± 0.80) km , (20)
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in excellent agreement with the LIGO/Virgo range of 11.1 to 13.4 km [47].
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Figure 3. Pressure in β-stable matter as a function of density. The figure shows the spreading
of the pressure values due to the matching of polytropes at two densities, ρ1 = 0.277 fm−3 and
ρ2 = 0.506 fm−3. Each group of curves with the same color contains EoSs with the same Γ1 and
varying Γ2. The microscopic predictions (single pink curve prior to the first matching point), are
obtained at N3LO and cutoff equal to 450 MeV.
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Figure 4. Proton fraction and muon fraction as a function of density. The numbers in the curve
labels (0, 2, 3, 4) indicate the chiral orders LO, NLO, N2LO, and N3LO, respectively. See text for
more details.

Our result is within the range generally found with EoS based on chiral EFT, which is
10 km to 14 km [86,87], accounting for additional theoretical uncertainties, such as those
originating from the choice of the many-body method and the implementation of the
3NF [88–92]. Some sensitivity of R1.4 to the matching density was found [93,94]. Moving
the matching density from ρ0 to 2ρ0 changed the range to (9.4–12.3) km [94] and to (10.3–
12.9) km [93]. In the present analysis, the first matching point is determined by the highest
density we reach out with the EFT calculations–a natural matching point. As for the second
matching density, Table 3 shows that the details of the extension at the higher densities has
only a minor impact on R1.4.
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Figure 5. Symmetry energy as a function of density, order by order.

Table 3. Radius, R, central density, ρc, and speed of sound at central density, vs/c (in units of the
speed of light), for M = 1.4 M� at N3LO and Λ = 450 MeV. The shown values of Γ1 and Γ2 are
the combinations of polytropic indices consistent with both the maximum mass and the causality
constraints up to the relevant densities. When the star’s central density is below the second matching
density, there is no dependence on Γ2.

Γ1 Γ2 R (km) ρc (fm−3) vs/c

1.5 4.5 10.05 0.82 0.90

2 4 10.64 0.74 0.81
4.5 10.70 0.71 0.86

2.5 3.5 11.34 0.63 0.71
4 11.34 0.62 0.78

4.5 11.35 0.61 0.84

3 3 11.87 0.51 0.62
3.5 11.87 0.51 0.63
4 11.87 0.51 0.63

4.5 11.87 0.51 0.63

3.5 any 12.15 0.45 0.67

4 any 12.29 0.41 0.71

4.5 any 12.39 0.39 0.75

Closely related to the star radius is the tidal deformability, which is a measure of
how easily the star deforms under an external tidal field. Therefore, a smaller compact
star will have smaller tidal deformability as compared to a larger, less dense star. The
tidal deformability is defined as the ratio of the induced quadrupole Qij to the perturb-
ing tidal field Eij, which explains the sensitivity to the radius [95]. The dimensionless
tidal deformability in the mass range that is relevant for GW170817 (and for the present

analysis)—1.1M� ≤ M ≤ 1.6M�—is found to be proportional to
(

M
R

)−6

sc
, where

(M
R

)
sc
=

GM
Rc2 (21)

is the (dimensionless) star compactness. The dimensionless tidal deformability can then be
expressed as:

Λ = a
(M

R

)−6

sc
, (22)
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where a = 0.0093± 0.0007 [96]. Using our estimate for the radius as in Equation (20), we
obtain from Equation (22) a range of Λ between 247 and 474, in excellent agreement with
the Bayesian analysis of Ref. [93], where the limits of 68% credibility are found to be 249
and 465, with Λ = 379 the most probable value.

Recent analyses of the neutron star radius include Refs. [97,98]. Our calculations
differ from those in several ways, most importantly, the derivation of the microscopic
part of the EoS is based on local chiral interactions at N2LO—by contemporary standards,
high-precision description of NN data requires the construction of potentials at the fourth
order. Furthermore, all subleading 3NF at the same order have been available for some
time. For these reasons, modern chiral EFT-based nuclear forces should be consistently at
N3LO. Other differences include the many-body theory—local interactions are constructed
to be used in QMC calculations—and the derivation of the β-stable EoS, which we obtain
from the microscopic EoS for both NM and SNM, as opposed to considering pure neutron
matter, potentially extrapolated to β-stability.

In Ref. [99], a Bayesian estimation of the mass and radius of PSRJ0030 + 0451 based
on NICER data gives M/M� = 1.34(+0.15,−0.16) and R = 12.71(+1.14,−1.19) km
for the equatorial radius. The authors of Ref. [100] constrain the same quantities to be
M/M� = 1.44(+0.15,−0.14) and R = 13.02(+1.24,−1.06). Based on NICER and XMM
Newton data [82], a radius of 12.71(+1.14,−1.19) km is found for M/M� = 1.4. Our
central value for R1.4 falls within the lower part of these ranges.

5. Summary and Conclusions

A fully microscopic EoS up to central densities of the most massive stars—potentially
involving non-nucleonic degrees of freedom and phase transitions—is not within reach.
Nevertheless, neutron stars are powerful natural laboratories for constraining theories of
the EoS. One must be mindful about the theory’s limitations and the best ways to extract
useful information from the observational constraints. Concerning the latter, there is no
doubt that The golden age of neutron-star physics has arrived [101].

Recently, we developed EoS for NM and SNM based on high-quality 2NF at N3LO
and including all subleading 3NF. These were used to construct the symmetry energy
and the EoS in β-equilibrated matter, from which proton and lepton fractions are easily
extracted. The stellar matter EoS was then extended to densities inaccessible to chiral
EFT by matching it with piecewise polytropes of different adiabatic index. From those
combinations, we dropped the EoS which did not satisfy the maximum mass constraint.
The causality condition is also applied.

Constraints on the radius of a medium-mass neutron star, R1.4, are becoming more
stringent, with the current uncertainty reported at about 2 km. Furthermore, R1.4 is known
to be sensitive to the pressure in neutron-rich matter near normal densities, accessible
to modern effective field theories of nuclear forces. For these reasons, we focused on
predicting R1.4 with proper uncertainty quantification. From reports in the literature, our
predicted range would increase by about 1 km on either side when additional theoretical
uncertainties are included.

Based on our analysis in Section 4.2, we are confident that the estimate given in
Equation (20), approximately (12± 1) km, is characteristic of EFT predictions based on high-
quality 2NF and properly calibrated (leading and subleading) 3NF1. The range currently
cited for chiral EFT-based predictions of R1.4 is between 10 km and 14 km, accounting for
additional theoretical uncertainties. In fact, it is interesting to notice that the extensive
analysis from Ref. [93], where 300,000 possible EoS were generated, provides a range for
R1.4 between 10.0 and 12.7 km, with 12.0 km being the most probable value. We recall
that the outcome of PREX II gives 13.33 km as the lower limit for the radius, which is
problematic to reconcile with a multitude of microscopic predictions [8].

In conclusion, we reiterate that gravitational wave astronomy offers new exciting
opportunities for nuclear astrophysics. Even though chiral EFT cannot reach out to the
extreme-density and yet unknown regimes at the core of these remarkable stars, contin-
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uously improved ab initio calculations of the nuclear EoS are an essential foundation for
interpreting current and future observations in terms of microscopic nuclear forces.
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